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ABSTRACT  
 
A quantitative model for data quality planning in clinical research data management does not 
exist.  Thus, data collection and management processes in clinical research are currently designed 
according to practice, intuition and individual experience, and subsequently formalized in 
organizational quality systems.  Inspired by, but different from Orr’s 1998 System Theory and 
data quality work, we employ a control theory approach to model data accuracy through a series 
of data processing steps.  Expressions for the interim and outgoing data accuracy from a data 
processing process are derived from first principles.  The model is tested at known boundaries, 
benchmarked with two previous models, and benchmarked with error generation and correction 
rates consistent with those in the clinical research data quality literature. This first generation 
model enables prospective evaluation of candidate process paths and methodology with respect to 
data accuracy. As such, the model is beneficial to practitioners.   
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Topics

• Background: Clinical research data management

• Data quality in clinical research data mgt.
• Two related models
• New model

– Axioms
– Theory
– Benchmarks and Application
– Strengths and Limitations

• Conclusions
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Problem Statement

• “Mass customization”: data processes and 
methodology are constructed for each clinical trial
– Scientific differences → data differences
– Outsourcing → Fragmentation of research programs 
– Methodological non-uniformity

Unsynthesized evidence base → individual decisions, apprentices 

• A predictive of model data accuracy obtainable 
from candidate processes would be helpful

Quote, Karen Koh, Personal communication, 2009

Clinical Research R&D Spending
• Canada 2007, $1.3 billion

– 47% of which is spent on clinical trials
• US NIH 2008, $28.9 billion
• US Pharma Industry 2007 $44.5 billion PHRMA members

– 67% of which spent on clinical trials

Patented Medicine Prices Review Board, Annual Report, 2007. Analysis of research and development expenditure, 
available from  http://www.pmprb-cepmb.gc.ca/english/view.asp?x=1068&mid=864 accessed on November 30, 2008. 

Pharmaceutical Research and Manufacturers of America, Pharmaceutical Industry Profile 2008 (Washington, DC: PhRMA, 
March 2008).

“The pharmaceutical industry is, one of the most research intensive industries 
in the United States. Pharmaceutical firms invest as much as five times more 
in research and development, relative to their sales, than the average U.S. 
manufacturing firm.” — Congressional Budget Office October 2006

MIT Information Quality Industry Symposium, July 15-17, 2009

549



Clinical Trial Data Process
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Data Paths in Clinical Research
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They all end with 
“Database”, but after 
differing numbers of steps.
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Clinical Research Data 
Management

Activities
Data collection
Data processing (entry, cleaning, coding)
Data integration
System design, testing, and support

Data from
Patients 
Electronic medical records 
Electronic devices 
Paper forms …

Data types
Text & numbers
Images
Signals
Biological samples

Fertile environment for the 
study of data quality issues.

Data Processing Methods in 
Clinical Research

• Entry
Optical
Key entry (single, double, double variations)
Patient handheld device
Voice, …

• Cleaning
On-screen error traps
Batch programming
Manual review / visual verification
Aggregate data checks

• Coding
Manual (many variations)
Autoencoding

• … Are there particularly good 
or bad combinations ?
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Current State Clinical Research 
Data Management

• A quantitative framework for quality planning in 
clinical research data management does not 
exist.  

• Data collection and management processes 
currently designed according to practice, 
intuition and individual experience, then 

• Formalized in organizational quality system 
through policies and standard operating 
procedures (SOPs) GCDMP, Assuring Data Quality section

Society for Clinical Data Management, 2007. Good Clinical Data Management Practices Document. Available from 
www.scdm.org

Data Processing as a System

• As suggested by Orr’s System Theory 
conceptualization, data processes can be 
represented as a system. 

• Inspired by but different from Orr’s work, 
• We employ a control theory approach

– derive from first principles, expressions for the 
interim and outgoing data accuracy from a 
data processing process 

ORR, K. 1998. Data Quality and Systems Theory. Communications of the ACM 41, 6. 
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Gardiner Model
Gardiner, 1978 applied basic probability model to prediction of error rates.  This 
model accounted for error generation but did not account for error correction. 

= 1 – (1 – p)N

Assumed independent events. 
Assumed each event has same independent error probability, p. 
Probability of no error of any one event is (1-p) 
N is the number of events. 
By the multiplication rule (joint, intersection probability), probability of N independent events is     

(1-p)1*(1-p)2*(1-p)3 … (1-p)N
We want the compliment, i.e. error rate, so 1 - (1-p)1*(1-p)2*(1-p)3 … (1-p)N

Even low probabilities at each step result in substantial error rate of the whole.
- represents error rate where error occurs in all steps
- another option: addition rule, union, (A or B or both, inclusive or)
- another option: exclusive or (either but not both), p1+ p2+ p3 most applicable

Gardiner, Richard C. (1978) Quality Considerations in medical Records Abstracting Systems. Journal of Medical Systems, 
2:1; 31-43

Error rate after N steps
Where error occurs in all steps

Ma Model
• Probability modeling approach with record as measurement unit
• Process based approach, for three process variations below

z1=e3=(1-kd1)e1
z2=r01e3+(1-k)[r10(1-e3)+r11e3]

z3=e3-ck(e3-me3e4)

Incoming error 
from data entry

Error correction

Outgoing error

Random variable Z is a Binomial (N, z) defined as the sum of N i.i.d. Bernoulli random variables
Z = 1 means record in error in final data set
e is an error rate, 
d is an error detection rate of valid value edit checks, c is conditional probability of detected given that error exists and proofread
k is a correction rate conditional on an update needed, 
r is a error detection rate from manual proof reading 

Ma, Mei-mei Juliana (1986) A modeling Approach to System Evaluation in Research Data Management. Dissertation, University of 
North Carolina, Chapel Hill
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Similarities

• Recognition that each process step has 
potential to generate error

• A value is either correct or incorrect
• Error generation and correction rates
• Random as opposed to systematic errors (Ma)

• Independence is assumed (Ma to extent possible)

Our Model: Axioms
• Data are neither created nor destroyed.
• Data are either accurate or inaccurate.
• Each data value travels through a specified path;  

such paths may branch.
• At any data processing step, an accurate value 

may be untouched, or rendered incorrect.
• Likewise, at any data processing step, an 

inaccurate value may be untouched, or rendered 
incorrect.
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Summing the Error Generation and 
Correction for the First Processing Step

Untouched

Ro

Error 
correction

R1

λ
Σ
εoC1

Error 
generation

RoG1

εo

ε1

Σ

εo(1-C1)

111 CGRRR ooo ε+−=
( )11 1 Co −=εε

Error 
Latency

Latent Error 
Correction

Ro and εo are the input or initial values. 

Each task may touch all or a fraction, λ, of the data.  

Ri represents the number of accurate data values 
outgoing from the ith process step.  

εi, is the number of values in error outgoing from the 
ith process step.  

G and C are the error generation and correction rates

Task 1 Task 2

Summing the Error Generation and 
Correction for the ith Processing Step

-

λ

RoG1

Untouched

+

Error 
correction -

Σ

RoG1C2

Error 
generation

R1G2

Error 
Latency

Error Latencyε1

ε2

Σ

Latent Error 
Correction

ε1CL2

εo(1-C1) RoG1 (1-C2)

R1
R2

iLiiiiiiii CCGRGRRR 11211 −−−−− ++−= ε

( )iiiiLiii CGRC −+−= −−−− 11211 εεε

Task 1 Task 2 Task 3
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Outgoing Accuracy & Error
Task 2

-

Untouched

Error 
correction

-

Σ

R1G2C3

Error 
generation

R2G3

Error 
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Error 
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nLnnnnnnnn CCGRGRRR 11211 −−−−− ++−= ε

( ) nnnnnnLnnn GRCGRC 11211 1 −−−−− +−+−= εεε

Task 3

Putting it all Together
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-
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+

Error 
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-

Σ
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Error 
generation
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Error 
Latency

Error 
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ε1 ε2
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Correction
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εo(1-C1) RoG1 (1-C2) R1G2 (1-C3)

ε3
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R1 R2 R3

Task 1 Task 2 Task 3
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Testing at the Boundaries, R1 and ε1

Untouched

Ro

Error 
correction

R1

λ
Σ
εoC1

Error 
generation

RoG1

εo

ε1

Σ

εo(1-C1)

111 CGRRR ooo ε+−=
( )11 1 Co −=εε

Error 
Latency

Latent Error 
Correction

Task 2

Error generation G

R1 → εo 

ε1 → 0
R1 → Ro+ εo 

ε1 → 0

R1 → 0
ε1 → εo 

R1 → Ro

ε1 → εo 

Error 
correction C

G → 0 G → 1 

C → 0 

C → 1 

Testing at Outgoing Boundaries
Task 2

-

Untouched

Error 
correction

-

Σ

R1G2C3

Error 
generation

R2G3

Error 
Latency

Error 
Latency Σ

Latent Error 
Correction

ε2CL3

R1G2 (1-C3)

ε3

R2 R3
nLnnnnnnnn CCGRGRRR 11211 −−−−− ++−= ε

( ) nnnnnnLnnn GRCGRC 11211 1 −−−−− +−+−= εεε

Error generation G

R3 → R1 + ε2 

ε3 → R2

R3 → R2+ ε2 

ε3 → 0

R3 → 0
ε3 → ε2+ R1+R2

R3 → R2

ε3 → ε2 

Error 
correction C G → 0 G → 1 

C → 0 

C → 1 
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Benchmarks: Gardiner and Ma 
Models

• Ma’s model 1
– Exact match for manual proofread subsystem
– Reproduced order for redundancy subsystem 

without use of multiple paths
• Gardiner

– Exact match

Prediction

11 −− += nnMAX RR ε

nLnnnnnnnn CCGRGRRR 11211 −−−−− ++−= ε

( ) nnnnnnLnnn GRCGRC 11211 1 −−−−− +−+−= εεε

Maximum possible Outgoing Data Accuracy is achieved when G → 0 and C → 1  

0=MINε

Trivial, but a valid boundary check.
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Estimation in Absence of Error 
Correction Metrics 

nLnnnnnnnn CCGRGRRR 11211 −−−−− ++−= ε

( ) nnnnnnLnnn GRCGRC 11211 1 −−−−− +−+−= εεε

Conservative estimate, of best Outgoing Accuracy assuming no correction, i.e.  C → 0  

Gives a way to estimate lower bound on outgoing accuracy when metrics for 
correction rates are not known.

nnnn GRRR 11 −− −=
( ) nnnnnn GRGR 1121 1 −−−− ++=εε

Example Application

1329680.010.010.0025Cleaning

129969000.0025Data entry

99971--0.010.03Chart review

Outgoing 
Error
Number* (εi)

Outgoing Number 
of Accurate
Fields (Ri)

Latent Error 
Correction 
Rate (CiL)

Error 
Correction 
Rate (Ci)

Error 
Generation 
Rate (Gi)

Task

Input
Ro = 1000 fields
εo = 100 errors
0.09 or 9% error rate

Three step process common in clinical research 
including 1) chart review (medical record abstraction), 
2) data entry and 3) data cleaning.  Input data stream 
comes from medical records with 1000 accurate fields 
and 100 fields in error. 

*delayed accumulation due to modeling error generation in one step as input to error correction of next step. 
Shaded areas are input to the model.

Notice that for G and C indicative of our industry, as data processing steps are added:
- Outgoing number of accurate fields decreases
- Outgoing error number increases
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Limitations of the Model
• Error generation rates must be known or estimated to use the model
• Model can provide conservative estimate assuming no correction
• Model does not account for processes that selectively correct one 

type of error over another, all errors are treated equally with a 
correction rate Ci. 

• Delayed accumulation of outgoing error rate due to modeling error 
generation in one step as input to error correction of next step.

• Model can be used for data processing where portions of data are
subject to different processes. However, the complexity may 
become prohibitive.  

• Latent error correction is accounted for by assuming one correction 
rate applies uniformly to all latent errors. 
– Reality of differential correction is not accounted for 
– Even the uniform correction adds an additional correction rate term 

which must be known or estimated.  
• Model does not accept distributional input
• Dichotomous handling of data accuracy, i.e. either correct or 

incorrect

Strengths of the Model / Approach

• Understood from first principles
• Generalized and can be applied to common data 

collection and processing methods
• Takes into account error generation and correction 

capabilities of each data processing step
• Takes into account branching processes 
• Computationally simple, calculator / spreadsheet 

ready
• Uses information a practitioner can easily obtain
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Significance & Conclusion
1. Error rates for parts of a data handling process can be combined

to estimate the outgoing error rate.
2. The method for doing such is counterintuitive and more complex 

than just adding or multiplying the error rates.
3. Knowledge of the published error rates, or an organization’s error 

rates can facilitate choosing the process paths and technology 
that will yield appropriate quality.

4. Model provides theoretical basis and clarity for important aspects 
of data quality work, e.g.

– Error prevention is more effective than error clean-up
– Redundancy is an effective data cleaning method (Helms, Ma)
– The more steps, the higher the error, unless steps have ability to 

clean errors from preceding processes
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