Data Governance for Improved IQ

Thesis

- Good Information Quality (IQ) needed to comply with Sarbanes Oxley, EU Privacy, and Anti-Terrorism Acts
- Audits, business process controls and spot checks are necessary but insufficient to assure good IQ
- Data field reuse changes meaning of information
 - May result in sensitive data stored in unprotected data fields
 - Increases transaction failure risks that reduce profitability
- Data Authority Reference Model lowered liabilities and recovered USD $2 billion annual sales
 - Measure and improve semantic reliability
 - Provides effective data governance for high IQ
Data Governance for Improved IQ

Agenda

• Authors
• Managing information in a global payment network
• Data Authority Reference Model
• Measurements of Change Detection Using Cubes of Models (CDCM)
• Building a Global Data Governance Program
• Recapturing lost revenue through improved IQ
• Additional work required
• Conclusions
Authors

Joseph M. Bugajski: Senior Analyst, Burton Group Inc.
- Research data and technology governance, architecture, information quality and standards. Formerly Chief Data Officer at Visa Inc. responsible worldwide for information architecture and quality. Previously, Visa chief enterprise architect and resident entrepreneur for information strategy, risk systems, and data warehousing. Before Visa, CEO of Triada, a business intelligence software firm.

Robert L. Grossman: Managing Partner, Open Data Group
- Deliver management consulting, outsourced analytic services, and analytic staffing for data mining; Director at the National Center for Data Mining and Prof. at University of Illinois at Chicago (UIC). Also, Chair of the Data Mining Group (DMG) and advisory board member of InfoBlox. Before Open Data Group, founder and CEO of Magnify a data mining software provider to financial services. Before Magnify, was co-founder and co-director of the National Scalable Cluster Project, and co-founder and co-director of the PASS project.

Data Governance for Improved IQ

Agenda
- Authors
- Managing information in a global payment network
- Data Authority Reference Model
- Measurements of Change Detection Using Cubes of Models (CDCM)
- Building a Global Data Governance Program
- Recapturing lost revenue through improved IQ
- Additional work required
- Conclusions
Electronic Payments Overview

- 5,000 transactions per second
- > 1 billion accounts, 20K banks, 20M merchants

New Semantics in Legacy Messages

Develop Requirements

Payment Systems

Add Codes to MT100, 0110, DBMS, etc.
Business information requirements ... growing rapidly

Payment message structures – Circa 1970

Sensitive data in unprotected data field

Semantic Reuse of Legacy Data Fields

Reuse Causes Remittance Matching Error

1. Acquirer sends an airline ticket purchase to Issuer. Remittance data fits into 30 character field; last 10 characters are ticket no.
2. Issuer copies 20 of 30 characters into another data field. Airline ticket number is now lost.
3. Issuer forwards payment to card network's commercial system. It cannot match financial and remittance messages. Manual process is required which delays expense reports.
Problem Definition

- High costs and long lead times for adapting legacy systems for new products demands data field reuse
- Data field reuse creates confusing semantics and it may let sensitive data into unprotected data fields
- Multiple parties are involved in message networks, any of whom can modify data that heighten risks
- Faulty messages increase processing costs, result in lower sales revenue, and raise liability risks
- Data governance is required to lower risks

Information Quality Challenges

Data Governance for Improved IQ

Agenda

- Authors
- Managing information in a global payment network
- **Data Authority Reference Model**
- Measurements of Change Detection Using Cubes of Models (CDCM)
- Building a Global Data Governance Program
- Recapturing lost revenue through improved IQ
- Additional work required
- Conclusions
Identify, Model, Deploy, Investigate and Govern (IMDIG)

- Identify business problem associated with IQ problem
- Model – build statistical and rule-based models to monitor data; develop data architecture practice
- Deploy – implement data monitor in production
- Investigate – problems highlighted during monitoring
- Govern – organize data governance team
Data Authority Reference Model

Organizing the Data Authority Reference Model

1. Review data architecture across all I.T. systems
2. Measure production data quality (and interoperability)
3. Establish priorities for correcting data problems
4. Win commitment of CIOs to correct problems
5. Form a data governance team of experts, business and technical – team reports to CIOs
6. Build consensus solutions to top priority data issues
7. Write and maintain a Technical Reference Model
8. Report measurable progress to CIOs at least quarterly

Data Governance for Improved IQ

Agenda

• Authors
• Managing information in a global payment network
• Data Authority Reference Model
 • Measurements of Change Detection Using Cubes of Models (CDCM)
• Building a Global Data Governance Program
• Recapturing lost revenue through improved IQ
• Additional work required
• Conclusions
CDCM Data Measurements

Apply CDCM at “tap points” across processing systems

- Tap at points to get “real” data – not cleansed
- Build baseline CDCM to compare with current sample

![Diagram of Payment System and CDCM Monitor](image)

\[f(CDCM\ Monitor) = CDCM\ Monitor \]

CDCM Logical Design

Focus on Baselines & Changes

- Divide & conquer data (segment) using multidimensional data cubes
- For each cube, establish separate baselines by data quality dimension (e.g. completeness, validity, …)
- Detect changes from baselines

![Diagram of Geospatial region, Time, and Entity](image)

Separate baselines for completeness, validity, etc.
CDCM Data Monitor Architecture

Example: Bivariate Distribution Change

<table>
<thead>
<tr>
<th>Baseline Model</th>
<th>Observed Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>Percentage</td>
</tr>
<tr>
<td>90, -</td>
<td>0.13</td>
</tr>
<tr>
<td>90, blank</td>
<td>0.21</td>
</tr>
<tr>
<td>05, -</td>
<td>0.01</td>
</tr>
<tr>
<td>05, blank</td>
<td>0.01</td>
</tr>
<tr>
<td>etc.</td>
<td>etc.</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
</tr>
</tbody>
</table>
CDCM Launch Summary

Change Detection using Cubes of Models implementation
1. Select “best” data tap point(s) into production systems
2. Build baseline development and production monitor
3. Develop scoring process by quality measures: completeness, validity, etc.
4. Build baseline CDCM models and add to monitor
5. Score data from tap points – highlight serious problems
6. Generate trouble alerts then start improvement process
7. Track improvements and report results in CIO dashboard
8. Update Data Authority Reference Model with findings

Data Governance for Improved IQ

Agenda
- Authors
- Managing information in a global payment network
- Data Authority Reference Model
- Measurements of Change Detection Using Cubes of Models (CDCM)

Building a Global Data Governance Program
- Recapturing lost revenue through improved IQ
- Additional work required
- Conclusions
Create Data Governance Program

Data governance program designed to deliver business value

- Use data architecture study and baseline data quality measurements to focus program on fixable problems
- Define measurement and correction program and build support for it among all data experts
- Ask finance for estimate of monetary value of fixes
 - Build a financial model; e.g., a P&L for program; and live with it!
 - Set financial objectives for top problems list
- Earn support for program at “C” level; start with CIOs
 - Set realistic monetary value recovery objectives
 - Make business case using simple and real examples of problems
 - Assure proper level of staff support to actually fix problems

Organize Data Governance Team

Team members are data experts with “C” level credentials

- Data experts are from business units and I.T. groups
- Choose members with knowledge and collaboration skills
- Have members approved by their “C” level executives
- Host a “kick-off meeting of data governance team
 - Agree upon financial objectives and dashboard reporting
 - Agree upon data quality measurement rules
 - Approve initial version of Data Authority Reference Model
- Meet telephonically at least bi-weekly
- Meet in person at least quarterly
Lead the Data Governance Team

Team members are have real work to do!

- Write problem “alerts” as individual business cases
- Assign each alert to a governance team member
- “C” level granted authority to team members to deliver business value by fixing data problems
- Team members report progress to financial objectives
- Leader solves common problems and meets with CIOs
- Feedback from team members regarding alerts and quality improvements provides foundation which drive
 - Updates to Data Authority Reference Model
 - Improvements to CDCM and Alerting process

Data Governance Program Review

Support data quality improvement with appropriate governance

- Align corporate objectives, program oversight, and alert investigation and improvement processes
- Report to CIOs on dashboard
 - Top priority concerns as agreed by the governance team
 - Strategic objectives met through program operations
 - Total value recovered versus agreed financial objectives
- Adjust alert workflow by refining quality rules, number of CDCM statistical models, and alert value thresholds
- Support the governance team members at all times
- Maintain the Data Authority Reference Model
Data Governance for Improved IQ

Agenda

• Authors
• Managing information in a global payment network
• Data Authority Reference Model
• Measurements of Change Detection Using Cubes of Models (CDCM)
• Building a Global Data Governance Program
• **Recapturing lost revenue through improved IQ**
• Additional work required
• Conclusions

Customer Satisfaction Problem

Chip Card Terminal Coding Error

• Cards with “contact chips” common outside USA
• Terminals in USA read “contactless chips”
 • Data field codes not well defined in technical manuals
 • CDCM monitor notes contact chip activity in USA
 • VIP customer shortly thereafter receives payment decline
• Business case for solution is clear
 • Update technical manuals with clearer definitions of chip codes
 • Send technical letter terminal suppliers and banks with correct codes
• Problem resolved within weeks
Lost Revenue Issue

Incorrect Country Code Error

- Payments messages record location of merchant
- CDCM finds mismatch between country and city
- Problem results in higher than normal rate of declines
- Inappropriately declined payments reduces revenue
- Governance team member worked with merchant’s bank to define data problem and a business case for fixing it
- Problem resolved within a few weeks with corresponding increase in payment revenue

Overpayment Problem

Incorrectly Coded Sales Channel

- Payments messages record sales channel and terminal type; e.g., face-to-face and card present or e-commerce
- Channel and terminal data helps with risk assessment and also can be used to set payment processing fees
- CDCM finds mismatch between channel and terminal
- Problem leads to higher than expected payment fees
- Governance team member worked with bank to define data problem and the business case for fixing it
- Problem resolved within a few weeks with corresponding reduction in payments followed by additional business
Sensitive Data Values in Wrong Field

Data field reuse commonly applied for new products

- Payment messages designed to 1987 ISO standard
- These legacy messages used in thousands of systems
- Infrastructure costs for changing systems is HUGE!
- Reuse (overloading) of data fields is a best practice for recording data needed for new products
- Certain types of payment products required more information about cardholders than message held
- Decision to reuse data field for personally identifiable, non-public information reversed by governance team

Data Governance for Improved IQ

Agenda

- Authors
- Managing information in a global payment network
- Data Authority Reference Model
- Measurements of Change Detection Using Cubes of Models (CDCM)
- Building a Global Data Governance Program
- Recapturing lost revenue through improved IQ
- Additional work required
- Conclusions
Data Semantics Wrong from the Start

70+ case studies show problems start with data definitions

- Confusion about business definitions for data values
- Confusion about ways to correctly code data values
- Confusion about meaning of messages expressed by combinations of data values
- Reuse of legacy data fields for new semantic value adds to confusion and admits potential for sensitive data entries into fields where controls might be less stringent
- Complicated, unrecorded, metrics for data analysis result in inconsistent risk analysis and reporting

Financial Industry Tries to Fix Semantics

Work begun at ISO, UNCEFACT, OMG, other standards groups

- Solution to semantic variability problem is development of accurate, computer readable data models (e.g., UML)
- ISO 20022 (UNIFI*) standard developed to create XML messages from computer data models
- UNCEFACT Core Components applies technology similar to UNIFI to update EDI specification
- OMG Conversion Models for Payment Messages (CM4PM) applies UNIFI to generate legacy messages
- XBRL, FIX, IFX and others intend to follow suit

UNIversal Financial Industry (UNIFI) message scheme
Solutions Still Needed

High Value for solution to semantic variability problem
- Problem with defining elemental business terms
- Problem reusing elemental business terms in messages
- Modeling tools emit inconsistent XML form of models
- Software development tools today do not share models
- Metadata repositories do not support data governance
- Data models repositories incapable of global scale
- Full scale tests of technology stack remains incomplete
- Lingering belief that “yet another message format” will solve all these data semantics problems

Data Governance for Improved IQ

Agenda
- Authors
- Managing information in a global payment network
- Data Authority Reference Model
- Measurements of Change Detection Using Cubes of Models (CDCM)
- Building a Global Data Governance Program
- Recapturing lost revenue through improved IQ
- Additional work required
- Conclusions
Conclusions and Summary

Data Authority Reference Model Program Delivers Value

- Program very effective for recovering business value and improving data quality
 - Authors recovered USD $2 billion for payment company over three years of program operation
- Identify the problem, Model the data, Deploy monitors, Investigate problems, and Govern program (IMDIG)
 - Build consensus about data problems and business value
 - Develop Change Detection using Cubes of Models (CDCM)
 - Monitor production data
 - Create alerts and track solutions
 - Governance team of “C” level delegates own dashboard reports about top problems, strategic accomplishments and value recovered

Recommendations

Build governance that returns value to your business

- Develop a Data Authority Reference Model program in your business or agency
- Report your results to this forum, ICIQ, DAMA
- Help design standards that address global problem with semantic variability
- Develop tools and technologies to solve open issues
- Continue research into root causes of data problems
Data Governance for Improved IQ

References

• Joseph Bugajski, Robert L. Grossman, An Alert Management Approach to Data Quality: Lessons Learned from the Visa Data Authority Program, 12th International Conference on Information Quality (ICIQ), 2007
• Joseph Bugajski and Philippe De Smedt, Assuring Data Interoperability Through the Use of Formal Models of Visa Payment Messages, 12th International Conference on Information Quality (ICIQ), 2007
• The Predictive Model Markup Language (PMML), www.dmg.org
• The Augustus open source data mining system can be downloaded from www.sourceforge.net/projects/augustus
• ISO 20022 (UNiversal Financial Industry message scheme), www.iso20022.org
• Conversion Models for Payment Messages (CM4PM), approved and awaiting publication at http://www.omg.org/technology/documents/spec_summary.htm

Thank You!

&

Questions?

Joe Bugajski
Senior Analyst
Burton Group
jbugajski@burtongroup.com

Bob Grossman
Managing Director
Open Data Group
rlg@opendatagroup.com