
MODELLING AND COMPUTING

THE QUALITY OF INFORMATION

IN E-SCIENCE

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2008

By

Paolo Missier

School of Computer Science

Contents

Abstract 10

Declaration 11

Copyright 12

Acknowledgements 13

1 Information Quality in e-science 14

1.1 Quality knowledge . 14

1.2 Quality of data and quality-based decisions 17

1.3 Examples of quality knowledge for life sciences data 19

1.3.1 Quality assessment in qualitative proteomics 19

1.3.2 Quality of protein functional annotations 22

1.4 Quality knowledge management as a research problem 23

1.4.1 Aims and objectives of the research 24

1.4.2 The information quality lifecycle 26

1.4.3 Technical approach and research contributions 28

1.4.4 Thesis organization . 31

2 Modelling quality knowledge 32

2.1 Quality control in post-genomics 34

2.2 Current Data Quality research . 36

2.2.1 Record linkage and data cleaning toolkits 39

2.2.2 Completeness . 41

2.2.3 Consistency . 43

2.2.4 Quality-based source selection 44

2.2.5 Living with incomplete and uncertain data 46

2

2.3 Information Quality as data classification 48

2.3.1 Simple quality classes . 49

2.3.2 Multi-way quality classification 52

2.3.3 Multiple classifications and condition-action mappings . . 55

2.4 Discussion: the IQ lifecycle, refined 58

3 Semantic Modelling of IQ concepts 62

3.1 Rationale for semantic modelling 63

3.2 An ontology for Information Quality 64

3.2.1 OWL DL terminology and notation 67

3.2.2 Modelling class constraints as axioms 70

3.2.3 Quality metadata and quality functions 77

3.2.4 Modelling signatures of functions 79

3.2.5 E-science services as a source of quality indicators 81

3.3 Further role of reasoning in the IQ ontology 83

3.4 Summary and conclusions . 91

4 Quality Views 92

4.1 Overview of Quality Views . 93

4.1.1 Role of semantics in Quality Views 94

4.1.2 Quality View components 95

4.2 Quality View syntax . 98

4.2.1 XML Elements . 98

4.2.2 Formal parameters . 101

4.2.3 Semantic naming constraints 102

4.2.4 Additional attributes . 103

4.3 Quality Views Semantics . 104

4.3.1 Environment . 104

4.3.2 Formal representation of Quality Views 105

4.3.3 Functional interpretation of Quality Views 108

4.4 Formal consistency of Quality Views 112

4.4.1 QV consistency constraints 113

4.4.2 Checking consistency . 117

4.5 Supporting consistent Quality View specification in practice . . . 120

4.6 Summary and conclusions . 123

3

5 Quality Views as workflows 125

5.1 A scientific workflow for the proteomics example 127

5.2 Quality workflows . 129

5.3 Formal syntax and semantics of Quality workflows 132

5.3.1 Notation for the Taverna workflow language 132

5.3.2 Quality workflows processor types 135

5.3.3 Composition rules for quality workflows 138

5.4 Translating Quality Views into Quality workflows 142

5.5 Correctness of Quality workflows 146

5.5.1 Syntax and semantic rules for the QV interpreter 147

5.5.2 Correctness . 150

5.6 Embedded Quality workflows . 152

5.6.1 Worklow deployment language 155

5.7 Summary and Conclusions . 158

6 The Qurator workbench 159

6.1 Implementation of quality functions 161

6.1.1 Code generation example 164

6.1.2 Annotating functions for code generation 166

6.1.3 Conclusions . 170

6.2 Quality-aware data processing . 170

6.2.1 Related work . 171

6.2.2 Technical approach . 173

6.2.3 QXQuery: a syntactic extension to XQuery 177

6.2.4 Conclusions . 181

6.3 Quality provenance . 181

6.3.1 Characteristics of provenance 182

6.3.2 The Qurator quality provenance model 183

6.3.3 Conclusions . 188

6.4 Summary: the Qurator workbench 189

7 Conclusions 193

7.1 Summary of research contributions 193

7.2 Limitations and further research 196

7.2.1 Managing uncertainty in quality 197

7.2.2 Problems in quality knowledge discovery 198

4

A BNF grammar for Quality Views Action expressions 202

B QV interpreter in Haskell 203

Bibliography 213

5

List of Tables

2.1 Quality issues in protein identification experiments 37

3.1 OWL DL constructors (partial list) 67

3.2 Summary of object properties in the IQUO 77

3.3 Summary of axioms for the Imprint proteomics example 84

5.1 Summary of Taverna syntax and structural semantics 136

6

List of Figures

1.1 The Information Quality lifecycle 26

1.2 Components of the Qurator information quality workbench . . . 29

2.1 Abstract view of a typical data processing pipeline in biology . . . 34

2.2 An experimental pipeline for qualitative proteomics and transcrip-

tomics, and associated quality issues 35

2.3 Basic acceptability as a binary classification model 50

2.4 Multi-way classification with explicit quality actions 54

2.5 Multiple classifiers and explicit class-to-actions mapping 57

2.6 Expressions and corresponding regions in a bi-dimensional score

space . 58

2.7 The Information Quality assessment lifecycle 59

2.8 Summary of quality processing and modelling options 60

3.1 Main classes and properties in the Information Quality Upper

Ontology. An arc label p from class D to R is interpreted as

dom(p) = D, range(p) = R. 72

3.2 Partial view of the class hierarchy for the Information Quality on-

tology, with concept for the Imprint example 85

3.3 Part of the generic Quality Properties classes 87

3.4 Inferred hierarchy for the PI-Acceptability class 90

4.1 A Quality View for the proteomics example 99

4.2 Graphical depiction of XML schema for Quality Views syntax . . 100

4.3 Fragments of the DE and AF hierarchies used to illustrate QV con-

sistency constraints. 115

4.4 Pseudo-code for the requiredRanges() algorithm. 119

4.5 Screenshot of the Quality View visual specification environment . 121

7

5.1 Example Proteomics Analysis Workflow 128

5.2 Generic Quality workflow – For each processor, the input and out-

put ports that are connected by links are shown 130

5.3 Quality workflow with ancillary configuration processors 146

5.4 Proteomics workflow with embedded Quality workflow 154

5.5 Host and Quality workflows and the result of embedding 156

5.6 Deployment descriptor for integrating the example Quality View

within the Ispider workflow . 157

6.1 The IQ lifecycle as a workplan for the Qurator workbench 160

6.2 QA functions and related families 167

6.3 Semantic annotation of QA functions and code generation 169

6.4 QXQuery execution model . 175

6.5 XQuery with Quality View invocation and quality-based selection 176

6.6 QXQuery fragment . 178

6.7 Example of a quality document fragment 180

6.8 Static quality provenance model (example) 185

6.9 Dynamic quality provenance model (example) 187

6.10 Qurator Provenance GUI - example one 189

6.11 Qurator Provenance GUI - example two 190

6.12 Qurator workbench architecture. Components with a (*) include

a user interface . 191

6.13 Summary of Qurator workbench support to lifecycle tasks 192

8

To

my mother and my father, who went too soon

Matteo and Chiara, who wonder what happened to all the playtime with their dad

Marina, whose big heart and shoulders bear it all with great patience

and Emanuele

And to those who still, with an open mind,

make an effort to tell the worthy from the worthless

Abstract

Modern experimental science, or e-science, increasingly relies upon the use of

information integration and analysis techniques to achieve its results. A cen-

tral requirement in e-science is that the necessary data and service resources

be contributed by many parties within a scientific community, trascending the

boundaries of individual labs. This scenario bears the promise of reducing the

overall cost of science by encouraging the reuse of scientific information on a large

scale. At the same time, however, there is a risk that data of poor quality, re-

sulting for example from inaccurate experiments, may propagate out of control

and contaminate other experiments. To compound the problem, the fast-paced

evolution of the experimental techniques is making it difficult to investigate and

standardise methods of quality control. Quality assurance for e-science informa-

tion is therefore an important and largely open problem.

In this thesis we argue that user scientists should play a central role in ensuring

that the third-party information they wish to use is of acceptable quality. This is

difficult, however, because users, who are not part of the information production

process, are often left to estimate quality of data using empirical rules that are

based on limited and indirect evidence of correctness. This results in implicit

quality control rules being applied in a bespoke and intuitive fashion, if at all. Our

research hypothesis is that these quality rules for data acceptability are a form

of latent knowledge, for which we have coined the term quality knowledge, where

objective measures overlap with the scientists’ subjective propensity to the risk

of using errouneous data. In the thesis we investigate ways to make such quality

knowledge explicit, and to exploit it in order to make e-science experiments quality

aware in a principled way. Our main result is a model and architecture for Quality

Views, i.e., quality processes that embody the user scientists’ personal criteria for

data acceptability. We show that, with appropriate support from software tools,

Quality Views can become reusable quality components that are easily integrated

into e-science experiments.

10

Declaration

No portion of the work referred to in this thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

11

Copyright

i. The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The

University of Manchester the right to use such Copyright for any adminis-

trative, promotional, educational and/or teaching purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the John Rylands University Library of

Manchester. Details of these regulations may be obtained from the Librar-

ian. This page must form part of any such copies made.

iii. The ownership of any patents, designs, trade marks and any and all other

intellectual property rights except for the Copyright (the “Intellectual Prop-

erty Rights”) and any reproductions of copyright works, for example graphs

and tables (“Reproductions”), which may be described in this thesis, may

not be owned by the author and may be owned by third parties. Such Intel-

lectual Property Rights and Reproductions cannot and must not be made

available for use without the prior written permission of the owner(s) of the

relevant Intellectual Property Rights and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication

and exploitation of this thesis, the Copyright and any Intellectual Property

Rights and/or Reproductions described in it may take place is available from

the Head of School of School of Computer Science (or the Vice-President).

12

Acknowledgements

I am grateful to my supervisor, Dr. Suzanne Embury for her guidance, to my

advisor Prof. Carole Goble for her suggestions and for providing a broad per-

spective for my work, and to Prof. Andy Brass for providing challenging quality

problems to us.

I would also like to thank Prof. Alun Preece and his Aberdeen staff, in

particular Dr. Binling Jin, as well as Dr. David Stead at the School of Medical

Science, University of Aberdeen, for disclosing the secrets of proteomics to us.

Thanks also to Dr. Conny Hedeler, whose competence and discipline in sifting

through countless papers together has proved vital to charting an area of science

that was alien to me; and to Dr. Mark Greenwood for the stimulating discussions.

Credit is due to several students who contributed to parts of the Qurator

workbench implementation. These include Paul Waring, Richard Stapenhurst,

and Jianheng Kiu.

In addition to being a great friend, Dr. Daniele Turi has contributed his price-

less knowledge and expertise to the definition of the formal syntax and semantics

of the Taverna workflow language.

I am especially grateful to the entire CS crowd at Manchester for providing

a positive and nurturing environment. When good people understand the point

of sharing (and of serendipity!), good ideas tend to emerge from almost any

conversation —even when coffee is not involved.

13

Chapter 1

The information quality problem

in e-science

The Metaphysics of Quality would show how things become enormously more

coherent –fabulously more coherent–when you start with an assumption that

Quality is the primary empirical reality of the world.... †

1.1 Quality knowledge

The term e-science has come to refer, in recent years and especially in the life

sciences, to the practice of performing scientific experiments in which data pro-

cessing and analysis, in addition to the more traditional lab operations, play a

substantial role [GGS+03]. This new type of in silico experiment relies on a rich

base of data and services that are contributed on a large scale by many labs,

either as community-driven, autonomous efforts, or as commercial ventures. To

the extent that sufficient IT support for data and services is provided, this new

form of science holds the promise to significantly reduce the time and effort re-

quired to produce meaningful research output. In the past few years, progress in

this direction has been documented in active research areas in the life sciences,

including genomics and post-genomics (the study of gene expression and gene

products) as well as, more recently, in systems biology [IGH01].

†R. Pirsig, Lila: An Inquiry into Morals, 1991

14

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 15

The promise of e-science rests on the central assumption that the information

produced by one lab can be reused by others, possibly in new ways and after

a process of integration and adaptation (as witnessed by a number of coopera-

tive integration projects, including Tambis, Ispider, GIMS, and more [SBB+00,

BEF+05,CPH+03]). When this is the case, the lifetime of scientific information

can extend over many generations of experiments, and its value can propagate

through a scientific community.

With the value, however, also comes the risk that errors in the data, if unde-

tected, may propagate as well, causing damage in uncontrolled ways. This is a

well-known concern, although estimating the risk of scientific damage is proving

complicated. Only a handful of studies are available, for example, to assess the

risk of automated functional predictions on genes and proteins [WKA04,BDM02,

Bre99,DV01], or to estimate the cost of using the results of a faulty microarray

experiment [BEPG+05].

To mitigate this problem, obvious lines of attack that come to mind include,

on the data provider side, the early detection and correction of errors in the data,

and on the consumer side, the validation of data prior to its use. While some of

this is indeed being done, dealing with quality appears to be a difficult problem.

One reason is that scientific data is often new and difficult to understand, itself

being the subject and the result of experimental, cutting-edge research; and fur-

thermore, the experimental techniques used by scientists evolve rapidly, following

the advances of the technology that it is based upon. This makes it difficult to

establish common criteria for quality control, and to associate standard quality

control procedures to the data production process, as would instead be expected

in a stable industrial context. A few initiatives, mentioned later, are only now

being undertaken to establish guidelines for the submission and documentation

of experimental results, notably in some areas of post-genomics.

A second reason, discussed later in more detail, is that different consumers of

scientific data may tolerate different levels of quality, depending on the application

for which the data is used.

We have recently surveyed the state of the art in quality control for post-

genomics [HM07], as discussed briefly in the next chapter. The main point that

emerges from the analysis is that the idea of defining and enforcing quality con-

trols on data and processes is becoming pervasive but is often latent and implicit.

This is especially true on the information consumer side, where the problem is

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 16

to establish criteria for validating third party data. One may indeed encounter,

within a scientific workflow, steps that involve some form of data validation; but

the way they are encoded does not follow a recognizable paradigm, making it

hard to explain it to others and to reuse as part of similar experiments: there

appears to be no principled way to make the validation criteria explicit and to

expose them as “first-class citizens” as part of data processing.

The main idea pursued in this thesis is that “quality” is a form of latent

knowledge, which is grounded in the scientists’ expertise and reflects their implicit

assessment, often biased and partly subjective, of the risk of using erroneous

data. We make the hypothesis that it is possible to make such quality knowledge

explicit and to encode it in such a way that it becomes a recognizable part of data

processing. Also, we see the task of eliciting knowledge about information quality

as an experimental process in its own right, and one that parallels the scientific

processes that produce and consume the information. Even more importantly,

it should be possible to separate the objective from the subjective components

of quality knowledge, for example, objective indicators of likely errors from the

subjective importance attributed to them.

If this hypothesis is correct, we then can hope to make quality knowledge

at least in part reusable across processes that deal with similar types of data

and similar scientific problems; we see reuse as the key to reducing the “cost of

quality”, at least at the scale of a sub-field of e-science. Ultimately, we hope to

show that, by taking a principled approach to quality modelling, we can reduce

the cost of making existing scientific data processes quality-aware.

What makes this research hypothesis difficult to prove is not only the latent

nature of quality knowledge, but also its diversity: in order to achieve any degree

of reusability, we have to provide suitable abstractions that capture the common

features of many different quality criteria, and yet are still useful in practice. This

is where we hope to offer user scientists a quality management environment that

helps them elicit quality knowledge and put it to use as part of the experimental

process.

Before we move on to state the specific objectives and structure of the research

work described in this thesis, let us make the definition of “quality” more precise,

using a simple, everyday example.

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 17

1.2 Quality of data and quality-based decisions

We use the term quality of data, in a broad sense, to indicate properties of the

data that describe various types of error condition. Consider the familiar example,

used for instance in [SMB05], of a collection of database entries that describe

films. These entries may be subject to various types of error. The name of a

director may be misspelled; the association between a director and a film may be

incorrect; some attributes of a film may be missing; the biography of a director

may be out of date; and some unforgettable film may be missing altogether.

We can use a collection of distinct data properties to describe each of these

errors, or their combinations. In the data quality community some level of consen-

sus has been reached to give names to the most common properties, collectively

referred to as quality dimensions. Thus, a misspelling is a syntactic inaccuracy,

a wrong association is a case of semantic inaccuracy, missing attributes denote

field incompleteness, an outdated biography is not current, and when films are

missing, the database is incomplete with respect to some universe of known films.

We can therefore identify the quality of a specific film entry in the database

as a point in the multi-dimensional space defined by some subset of these quality

properties (a more accurate definition would have to consider data at different

levels of aggregations, for example when films are missing, we associate incom-

pleteness to the entire database rather than individual films; but this approxima-

tion will suffice for the sake of our argument). The point is that, to the extent

that we can devise error detection procedures to compute values for each of these

properties, quality forms a well-defined space of metadata. Additionally, if we

assume that suitable ordering relations are defined on each of the quality dimen-

sions, we can define quality improvement activities as any procedures that move

the quality vector in some positive direction, making error correction quantifiable.

Over the years, the data management community has been developing a va-

riety of error detection and correction techniques, which apply with varying as-

sumptions to different database configurations; some of these are well-established

and are surveyed in Chapter 2 (a related, important line of research concerns how

to make data processing tolerant to errors, when these can be detected but not

corrected). As a result, a simple framework based on quality dimensions has been

deemed sufficient as a reference for addressing data quality problems.

This is, however, a reflection of the data providers’ perspective on the data; if

we consider the data consumers’ definition of quality, we find that this foundation

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 18

is useful but not sufficient: one important concern that data consumers have is

whether or not the data is of sufficient quality to be used in applications. In other

words, it is the interpretation of quality properties in the context of data usage

that is of interest. Let us illustrate this with another familiar example. Imagine

that, while travelling on a motorway, drivers see electronic panels warning of a

queue a few miles ahead. The signs are there to help drivers decide whether to

stay on the motorway or take an early exit. The question is, can drivers actually

rely on the information they see and use it to inform their (subjective, perhaps)

decision process? What if the signs are hours old, or inaccurate in other ways? A

bad judgment in this case may result in wasteful detours on secondary roads. The

presence of suitable meta-information, for example “this message was updated five

minutes ago based on live CCTV footage of an accident” would certainly help, but

is not normally provided – too much information can be confusing, is probably

the motorway agency’s argument, and it cost additional effort to produce. Either

way, the information consumer is faced with the problem of estimating the quality

of the data in the absence of a decisive proof of correctness. Drivers familiar with

the area, for example, may rely on their prior experience, or otherwise decide

to trust the agency on the grounds of its reputation. We can carry this little

example further, to point out that drivers may not always need information of

perfect quality: if leaving the motorway is a safe option anyway, for example,

then knowing that there is actually a queue ahead may be less relevant. The last

point is an important one: the need for quality – and consequently, the need to

produce good quality estimates, is dependent upon the context of use of the data.

Returning to our e-science domain, we argue that this paradigmatic example

is representative of a typical scenario where scientists must resort to empirical

judgment on whether they can reliably make use of third party information, when

meta-information regarding its quality, as defined earlier, is either incomplete or

not available at all. In making this judgement, users must take account of the

risk of using faulty data, and conversely, of discarding important data. To make

the scenario more concrete, in the next section we present two examples involving

quality assessment in e-science.

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 19

1.3 Examples of quality knowledge for life sci-

ences data

Our first example, set in the biology field of qualitative proteomics (the study

of the set of proteins that are expressed under particular conditions within or-

ganisms), describes a case of quality knowledge that has been elicited through

independent experimentation, and can now be used to make a protein identifica-

tion process quality-aware. We have used this example in several papers, includ-

ing [MPE+05], [PJM+06] and [PJP+06], although we have not contributed to

the scientific research in this area. The second example concerns the functional

annotation of protein entries in a well-known database, Uniprot. In this case, it

is the quality of the annotations that is in question.

These two examples illustrate two common and complementary scenarios. In

the first, quality assessment is applied to data that is computed in the course of

an in silico experiment; while in the second, the data is stored persistently in a

database. Ideally, it should be possible to use similar techniques to add quality

controls to both. We are going to use the former of the two examples as a use

case throughout the rest of the thesis.

1.3.1 Quality assessment in qualitative proteomics

The term protein identification refers to the problem of understanding the reg-

ulation and function of proteins that are present in a cell sample. In a typical

proteomic experiment, several different samples are analysed using one of several

available techniques, for example 2-dimensional gel electrophoresis (2DE). This

results in a distribution of protein spots on a gel. Many hundreds of proteins can

be separated from a single sample in this way. In qualitative proteomics, the gel

represents the initial experimental artifact used to identify the specific proteins

that are present in the original sample.

Specifically, one technique that is used for this task is called peptide mass

fingerprinting (PMF). In this technique, the protein within the gel spot is first

digested with an enzyme that cleaves the protein sequence at certain predictable

sites. The resulting protein fragments, called peptides, are extracted and their

masses are measured in a mass spectrometer. This yields a list of peptide masses,

or a “fingerprint”, for each spot. The fingerprint is then compared against the-

oretical peptide mass lists, derived by simulating the process of digestion on

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 20

sequences extracted from a protein database (e.g. NCBInr1). Since, for various

reasons, it is unlikely that an exact match will be found, the protein identification

search engines (e.g. Mascot2) that perform this task typically return a list of po-

tential protein matches, ranked in order of search score. Different search engines

calculate these scores in different ways, so their results are not directly compara-

ble. It may therefore be difficult for the experimenter and subsequent users of the

data to decide whether a particular protein identification is acceptable or not.

Two main types of data quality problem arise in this type of experiment:

• Protein identification is intrinsically subject to uncertainty, due to limita-

tions in the technology used, experimental contamination, an incomplete

reference database, or an inaccurate matching algorithm. The results may

contain false positives, and it is often the case that the correct identification

is not ranked as the top match.

• Experiments performed at different times, by labs with different skill levels

and experience, and using different technologies, reference protein databases

and matching algorithms, are difficult to compare.

Therefore, it would be useful for scientists seeking to interpret the results of pro-

teomic experiments, to be able to define a quality test that applies to a list of

protein matches, to identify the likely false positives; and to apply the test repeat-

edly, on many experimental datasets. Such functionality would be particularly

useful to scientists wishing to compare protein identification results generated by

other labs with those produced within their own.

There are three readily accessible indicators that can be used to rank the

identified proteins, called hits, and which are independent of the particular search

engine used:

• Hit ratio: the number of peptide masses matched, divided by the number

of peptide masses submitted to the search:

Hit Ratio =
Matched Masses

Submitted Masses

This is a measure of confidence in the hit: while, ideally, the protein identi-

fied should contain most of the peaks in the spectrum, the presence of other

components and other types of noise may reduce the hit ratio.

1ftp://ftp.ncbi.nlm.nih.gov/blast/db/blastdb.html.
2http://www.matrixscience.com/

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 21

• Mass coverage: the number of amino acids contained within the set of

matched peptides, expressed as a fraction of the total number of amino

acids making up the sequence of the identified protein, and multiplied by

the total mass (in kDa) of the protein. This indicator will have a high

percent value for a more complete match, and a lower value for a partial

match.

• Excess of limit-digested peptides (ELDP). This accounts for the possibility

that some cleavages are missed during protein digestion, resulting in an

incorrect peptide sequence. Ideally, a complete (limit) digest will have been

achieved during PMF, in which case the number of missed cleavage sites

would be zero. However, in practice a small number of missed cleavages are

to be expected, and the algorithms try to take this into account. ELDP

represents the predicted missed cleavages, and is calculated by subtracting

the number of matched peptides containing a missed cleavage site, MCP, from

the number of peptides with no missed cleavages, NMCP: ELDP = NMCP−NMCP.

It has been shown in [SPB06] that a simple linear combination of these three

indicators:

s = α Hit Ratio + β ELDP + γ MC

is a good score for proteins in the hit list, providing an effective, and inexpensive,

criterion for indentifying false positives.

From the point of view of the automated computation of the score, a crucial

issue is the availability of the indicators, for each protein in the hit list. These

values are routinely produced during the course of the so-called wet lab part of the

experiment, performed in the traditional biology lab. Whether this information

is available when the follow-on in silico portion of the experiment is executed,

however, depends on the data format used to record the experiment itself. One

example is the Pedro data model [TSWR03], which describes one of the data

formats currently in use for storing descriptions of proteomics experiments, using

an XML syntax3. This model currently does not account for all the required in-

dicators. Thus, in practice the experimenter will have to choose among the score

models that are actually computable within a specific data processing environ-

ment. In the following chapters, we are going to assume that enough information

is provided to compute Hit Ratio and MC, but not ELDP, imposing the use of a less

3http://pedro.man.ac.uk/files/PEDRoSchema.xsd

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 22

discriminant score model, s1 = α HR + β MC, that only involves these two quan-

tities. Indeed, a number of protein identification tools satisfy this assumption.

Among these are Imprint, an in-house, freely available software tool for PMF

developed at the University of Manchester, and MASCOT [PPCC99], a commercial

software product. The output obtained from these tools includes some of these

indicators used in practice to compute protein hit lists from 2DE experiments.

Once the score metric is available for each element in the protein hit list data

set, scientists may set acceptability thresholds according to additional, personal

criteria, based for example on a trade-off between completeness of the result, and

the likelihood of including false positives. It is easy to see how, once its effectivess

has been demonstrated experimentally, a metric of this sort can be weaved into

a software tool that allows user-scientists to experiment with various setting of

the acceptance threshold, and see their effect on their in silico experiment.

1.3.2 Quality of protein functional annotations

In the example just presented, the quality indicators are computed from the same

process that produces the data, e.g. the Imprint tool. As a consequence, their

values only become available at process execution time, and therefore quality

assessment can only be performed as part of the scientist’s in silico experiment.

A complementary scenario, just as common, occurs when quality assessment is

performed on persistent data, either during a user query, or on the entire database,

independently of any user experiment.

Consider for example the large Uniprot database (www.uniprot.org),

containing rich descriptions of proteins. The database is curated by hu-

man experts, who systematically annotate the entries with a description of

the expected protein functions. The annotations are stored in the GOA

database (www.ebi.ac.uk/GOA/), and consist of terms from the Gene Ontology

(www.geneontology.org/). These annotations often reflect predictions of protein

function, which are based either on experiments reported in journal publications,

or on the algorithmic analysis of similarity to other proteins whose function is

known with certainty. It has been argued [LSBG03] that the reliability of the

annotations varies depending, among other factors, on the source of information

used by the curator.

One may therefore formulate a quality hypothesis for Uniprot annotations

where the underlying indicators include the sources used for annotations. In fact,

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 23

the GOA database conveniently provides a set of evidence codes, issued by the

curators to justify their annotations. These include for example “Inferred from

Direct Assay” to indicate that the annotation is based on knowledge of an actual

experiment; “Inferred from Electronic Annotation”, indicating that the prediction

is based on protein sequence similarity obtained by an algorithm; and “Traceable

Author Statement”, denoting an annotation based on a review paper where the

experiment can be traced, i.e., to a repository of experiment descriptions (like

Pedro [KMGa04]).

An attempt to establish a correlation between evidence codes and correct-

ness of GOA entries can be found in [LSBG03], although no conclusive study is

available, to our knowledge, that provides an authoritative quality metric based

on the evidence codes criteria.4 The very problem of establishing quality in this

case, however, show that this example fits our model of quality as the result

of an experimental process: the “quality hypothesis” requires a formalization of

relevance of the evidence codes, for example in the form of a score model.

1.4 Quality knowledge management as a re-

search problem

In this section we state our research objectives, outline our technical approach,

and anticipate our results. As a starting point we make several observations

regarding the nature of the information quality problem in e-science; we derive

them from the preceding examples as well as from our recent survey on quality

issues in post-genomics [HM07] (described in more detail in the next chapter).

Firstly, we note that concrete definitions of quality criteria are often given in

the form of decision procedures regarding data correctness. The procedures often

encode empirical rules that are used to decide whether there is enough support

for the hypothesis that the data is correct. This reflects a distinctly user-centric

perspective, as we have anticipated in our earlier example in Section 1.2.

Secondly, the complexity of the data and of the application domain makes it

difficult to obtain conclusive evidence regarding the presence of errors: the infor-

mation available to the scientist is often insufficient to determine data correctness

4One may choose to consider additional evidence, such as the frequency of annotation up-
dates compared to the update frequency of the underlying protein data. But the relevance of
such evidence has not been proven.

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 24

with certainty. Therefore the scientist’s rules and procedures must encode a pre-

dictive model, which is often determined on the basis of prior experience dealing

with similar types of data. Ultimately, the rules encode the scientist’s intuitive

quality knowledge, with some inevitable approximation. The users’ empirical

acceptability criteria express a combination of tolerance to data errors, i.e., sit-

uations where data that is somewhat incorrect can still be used, and propensity

to risk, i.e., when it is not certain whether the data is correct or not.

Thirdly, the effort required to define the decision procedures, that is, to elicit

the quality knowledge, is often substantial, with the result that scientists may

instead resort to simple rules of thumb, if any at all.

And finally, the rules tend to be tailormade for specific data types, and are

difficult to generalize. A model of quality that is shown to work well on pro-

tein identification data conducted using PMF technology, for example, fails to

perform correctly when the same data is obtained using other technologies, e.g.

“MS/MS” [LZRA03,NKKA03,NA04].

1.4.1 Aims and objectives of the research

With the term quality knowledge we denote a combination of the elements just

mentioned, namely predictive estimation of correctness, tolerance to errors, and

propensity to risk. Based on this definition, we set out to find ways to exploit

such knowledge by making it available to applications. Thus, our main research

objectives are, first of all, to find a characterisation of quality knowledge that

is suitable to capture these elements; and secondly to show that, using software

engineering and data management techniques, we can support the practical need

for user scientists to add quality controls to their applications. In doing this,

we hope to show that quality knowledge is, to some extent, reusable across data

processing applications that deal with similar types of data. If this is the case,

then we can turn customized quality controls into commodities that can be added

to applications when needed, with little effort.

One novel aspect of this research is that it is focused on a consumer-oriented,

personalized computation model of information quality, which takes into account

the elements mentioned above. This is in contrast to the distinctly provider-

oriented and data-centric models that have been at the center of traditional DQ

studies.

The management of quality knowledge, from its elicitation to its encoding in

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 25

such a way that user scientists can make effective use of it in their applications, is

a non-trivial research problem. We have already mentioned some of the reasons

for its complexity: the diversity of the quality criteria, which are rooted in the

types of data and their applications; the experimental nature of the data and

of the scientific processes that produce and consume it, which leads to a lack of

established and accepted quality standards; and the cost of quality control. We

also note that available research results in the traditional area of data quality

are of only limited help: while numerous, sometimes very specific DQ techniques

have been developed to perform data reconciliation in relational (and, more re-

cently, semi-structured) data, few of the available toolkits can be of direct help

to scientists. We will elaborate further on this point in the next chapter, where

we explore the data quality landscape.

We observe, however, that some current trends in e-science give us suggestions

on how to successfully address this problem. We refer in particular to the increas-

ing proportion of metadata that experimenters associate with their experimental

results. Metadata comes in various forms and serves a number of purposes. One

prominent example is the detailed documentation of experimental procedures, a

sort of “electronic lab book”. One of the main reasons for collecting detailed

process information, known generically as provenance [SPG05], is to provide the

community with a detailed trace that describes how experimental results were

obtained, often following their publication, as well as to enable third parties to re-

peat the experiment. In other contexts, provenance is used as a persistent process

trace that can be used to explain the outcome of the process [MGM+07]. When

the process is formally encoded, typically as a workflow, and its execution auto-

mated, then collecting provenance metadata becomes a matter of routine; indeed,

some e-science computing infrastructures are now provenance-aware [BC07].

This increasing wealth of metadata has the potential to become a precious

source of evidence to be used when formulating quality hypotheses. In this

respect, it is encouraging to see that the importance of provenance is gaining

recognition within the e-science community, and infrastructure is being built to

support its collection and exploitation. In fact, process provenance is not the only

source of rich metadata. In important areas of the life sciences, initiatives to stan-

dardize on a rich documentation of the experiments (possibly human-defined) are

met with interest. Organizations such as the Microarray Gene Expression Data

Society (www.mged.org) in the field of gene expression studies (transcriptomics)

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 26

and The Human Proteome Organisation (www.hupo.org) are notable examples.

1.4.2 The information quality lifecycle

As a first step towards our goals, we propose to model the user process of quality

knowledge elicitation and exploitation along the principles of experimental sci-

ence: user scientists make initial hypotheses, in this case regarding the predictive

power of certain indicators of data correctness; then they test their hypotheses

on the data, analyse the results, and revisit their hypotheses if needed, possibly

collecting additional supporting evidence, in a cycle of incremental refinement.

We refer to this experimental process as the Information Quality lifecycle. In

this section we propose a first, high-level description of this process, illustrated in

Figure 1.1, and use it to make out research objectives more precise. In the next

chapter we are going to spell out specific tasks that compose the lifecycle, so that

we can use it as a reference throughout the thesis to keep track of our progress.

The illustration in Figure 1.1 shows the lifecycle as consisting of two loops:

the inner loop (on the right in the figure) concerns the phase of quality knowledge

elicitation, while the larger outer loop (on the left) represents the phase of quality

exploitation by user scientists.

Select quality components

Specify quality view

compile

execute

Design

Test

Deploy

Quality knowledge

engineer

Quality knowledge engineering

Quality knowledge

user

analyse

components

quality

reusable

Figure 1.1: The Information Quality lifecycle

In the elicitation phase, the scientist’s problem is to define a predictive model

for quality that is applicable to certain specific data types and is based on some

quality evidence, typically some form of metadata (provenance, for instance, if

appropriate). We use the term quality knowledge engineer to refer to role of

the scientist who is engaged in this modelling activity. The inner loop accounts

for such iterative process of model design. Once it is tested, the quality model

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 27

is made available to other scientists, referred to as quality knowledge users, as

a software component. This requires “advertising” the component to the com-

munity. For this, we will define a new model of IQ concepts, i.e., an ontology

that accommodates symbolic definitions of user-defined quality functions (i.e.,

functions that take an input dataset and return a quality value for each of its

elements). Quality knowledge engineers are expected to update the ontology with

their new functions.

In the exploitation phase, the goal of the user scientists is to determine whether

any of the quality functions defined in the IQ model can be used as a quality

control component as part of their own applications. This goal translates into a

sequence of specific tasks, namely (i) the discovery of available quality functions,

(ii) their composition into a quality process, (iii) the testing of the quality process

on the user’s own data, and (iv) the analysis of the results, to see whether the

selected quality functions and their composition are appropriate for their data.

As anticipated, the experimental nature of this process suggests that these tasks

should be part of a loop of quality knowledge exploitation.

To support these tasks, we have proposed a form of process specification

that we call a Quality View (QV) [MEG+06]. A QV specifies an abstract and

implementation-independent composition of quality functions. We have chosen

the term Quality View to suggest an analogy with database views, which pro-

vide different “virtual” perspectives on the same data, depending on the user’s

application needs.

Quality Views are at the core of our proposed model for supporting the outer

loop tasks just mentioned. Specifically, we are going to design ontology-based

tools for the discovery of quality functions, show that Quality Views can be

automatically compiled into executable quality processes (in the form of software

services) and that these services can be integrated with the users’ data processing

applications, for example a scientific workflow. The result of this integration is

an enhanced, “quality-aware” data processing application that, when executed,

includes the new quality controls as specified by the user. To support the final

result analysis step, we also propose the notion of quality provenance, a way to

record the execution of a quality processes that makes it possible to determine

their impact on the data.

Finally, at the end of each iteration the users must determine whether their

quality process should be refined. This may involve either the selection of new

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 28

quality functions, i.e., a new iteration on the outer loop; or the refinement of the

quality functions themselves, i.e., a feedback into the inner loop.

Our overall objective is to support the users in various phases of this lifecycle.

We focus for the most part on the outer loop portion. Thus, we assume that

suitable “nuggets” of quality knowledge have been discovered by scientists. The

problem of supporting the elicitation phase is discussed briefly in the last chapter,

as a matter for future work.

Within this scope, our contributions include two main elements: a conceptual

model for IQ, which reflects the principles outlined in this chapter and facilitates

the reusability of quality functions; and a suite of software tools to help users

make their data-centered applications quality-aware. Together, these elements

form the Qurator information quality workbench [MEG+07]5. In the next section

we precisely characterise our contributions in terms of the workbench elements.

Towards the end of the thesis (please see Section 6.4), after all these elements have

been introduced, we will establish a clear relationship between the workbench and

the tasks in the IQ lifecycle, in order to clarify the scope of our contributions.

1.4.3 Technical approach and research contributions

Figure 1.2 gives an overall picture of the workbench components. We discuss our

contribution on each of its elements.

An ontology for information quality concepts. As anticipated, our first

contribution is a conceptual model for information quality, shown at the

bottom in the figure. The model consists of two parts: a characterization

of quality knowledge in terms of data classification and data ranking (on the

right in the figure), that provides a formal foundation for quality functions;

and (on the left) a semantic model, i.e., an ontology, that provides a logi-

cal structure for IQ concepts that facilitates the sharing and reuse of those

functions. A noteworthy aspect of the model is the separation between

an immutable Upper ontology, consisting of abstract quality concepts and

their relationships, e.g. “quality evidence”; and a growing, user-contributed

5The name “Qurator” comes from the EPSRC project that funded this research from 2005
to 2007 (GR/S67593 & GR/S67609), under the title Describing the Quality of Curated e-
Science Information Resources. Project partners included the School of Computer Science at
the University of Manchester and the School of Computing at University of Aberdeen. The
work described in this thesis only includes research carried out at Manchester.

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 29

Formal

consistency

constraints

IQ

concepts

IQ ontology (OWL)

Taverna

WFMS

IQ ontology

browser

QV consistency

checker

IQ ontology

consistency

checker

QV workflow

embedding tool
QV compilerQV specification tool

Quality Views
Quality enhanced

workflows
Quality workflows

Quality functions

implementation space

Annotation services

(Metadata generators)

Quality services

Formalized quality knowledge

Data classification model

Data ranking model

Quality provenance analysis

Workflow output

T
av

er
n
a

ru
n

ti
m

e
su

p
p
o

rt

Taverna workflow design support

Figure 1.2: Components of the Qurator information quality workbench

lower ontology that extends the upper ontology with domain-specific con-

cepts, for instance “Hit ratio used as quality evidence in the context of

certain proteomics data”. We use the ontology to represent the output of

the quality knowledge elicitation loop, in abstract terms. We have used the

OWL Semantic Web language to define the IQ ontology. This has made

it possible to provide an axiomatic definition of IQ concepts, using the

Description Logics operators available in OWL. The implementation coun-

terpart of this growing collection of ontology concepts is a corresponding

collection of user-defined Web Services that realize the quality functions (on

the right in the figure).

A process model for quality function composition (Quality Views).

Quality Views (QV) are abstract specifications of quality processes and

represent the core artifacts of Qurator (top left). Regarding Quality Views

we make the following specific contributions:

• A formalization of the Quality View language and semantics;

• A formal definition of Quality View consistency, based on the semantic

definition of its composition functions (i.e., as concepts in the ontol-

ogy). As we will see, a consistent QV is one that satisfies certain

constraints defined on the ontology using logical axioms;

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 30

• An interactive software environment, denoted “QV specification tool”

in the figure, that allows user scientists to specify consistent Quality

Views. The consistency guarantees are made possible by exploiting

automated reasoning on the ontology;

• A Quality View compiler that produces an executable service. Here

we assume that quality functions are themselves implemented as ser-

vices (specifically, as Web services), and therefore they can be used

as elementary building blocks to compose Quality Views. Thus, the

compiler translates the abstract QV definition into a composite pro-

cess, specifically a workflow. We provide a formal description of the

compiler that is based on the QV semantics, mentioned above, and

show that, under certain assumptions, the semantics of the resulting

workflow is consistent with the formal semantics of the abstract QV.

• A model for embedding the quality workflows that result from the com-

pilation into existing scientific workflows. With this model, Quality

Views can be deployed as part of the scientists’ in silico experiments.

A model for generating quality functions code. Although we have stated

earlier that quality knowledge elicitation is out of the scope of our work,

we find that once the logic of a quality function has been defined, we can

support the user task of providing a service-based implementation for the

function, by generating some of its code. This contribution is based on the

observation that our characterization of quality knowledge makes quality

functions similar to each other in structure and, to some extent, in their

implementation logic. We exploit this similarity to derive a model for au-

tomating the generation of implementation stubs for them, and discuss the

potential and limitations of the approach.

A model for adding Quality Views to XML query processing.

Observing that Quality Views can be used not only in the context

of workflow processing, but also of query processing, we define (i) an archi-

tecture for the integration of Quality Views into XML data processing, i.e.,

using XQuery, and (ii) a simple extension to the XQuery syntax to make

it easy for users to request the invocation of their Quality Views as part of

XQuery processing. As a result, users can add quality-based conditions to

their query, to achieve a quality-based filtering of the result.

CHAPTER 1. INFORMATION QUALITY IN E-SCIENCE 31

A model of quality provenance. As mentioned earlier, the analysis of Qual-

ity View results is the last task in the outer loop of the IQ lifecycle. Having

defined quality as a decision process, we observe that users should also be

able to understand why a certain decision, e.g. to accept or reject a data el-

ement, has been made. To address this problem we define a model of quality

provenance that describes the execution of a quality process in detail. At

the end of a workflow execution, users may query the model to determine

how the quality process has affected the data, and, most importantly, on the

basis of which quality evidence. We have implemented this functionality,

denoted “Quality provenance analysis” at the top of Figure 1.2.

To summarize, each box in Figure 1.2 (with the exception of the Taverna work-

flow management system) represents an original contribution. We have also im-

plemented the example quality functions described throughout the thesis, namely

for the proteomics running example, as Web Services (thus, they are part of the

implementation space shown in the figure). The overall result is a workbench

for information quality management that realizes the main objectives set forth in

this chapter.

1.4.4 Thesis organization

The rest of the thesis is organized as follows. We discuss the proposed conceptual

model for information quality in Chapter 2, after presenting a critical survey of the

state of the art in data quality management both in the field of post-genomics (to

which proteomics belongs), and from the point of view of general data engineering.

We present the IQ ontology in detail in Chapter 3, along with the axiomatic

definition of the IQ concepts, and the ontology-based QV composer. The Quality

Views model, its syntax and formal semantics are presented in Chapter 4, while

Chapter 5 is devoted to the translation of Quality Views into workflows. In

Chapter 6 we discuss the issues of code generation for quality functions, of quality-

aware XML query processing, and of quality provenance. This leads to a complete

presentation of the Qurator workbench as an architecture for the support of the

IQ lifecycle. We conclude in Chapter 7 with a discussion on current limitations

of this work, and we propose a research agenda for its continuation.

Chapter 2

Modelling quality knowledge

What is good, Phœdrus, and what is not good...

need we ask anyone to tell us these things? †

In this chapter we analyse in more detail the nature of information quality

problems in e-science, and propose a conceptual model for IQ that will form the

basis for the rest of the research presented in this thesis.

The chapter is organized into three interrelated parts. In the first part (Sec-

tion 2.1) we propose an analysis of quality control issues in the field of post-

genomics (the study of gene expression and gene products), currently a very

active area of research. We proceed by generalization from the example of the

preceding chapter on quality control for proteomics experiments. As we have

observed in our recent survey on this topic [HM07], experiments in this area of

science tend to follow a common, predictable pipeline structure, consisting of a

traditional wet lab portion, followed by a newer dry lab portion with a strong

data management and analysis component. Noting that different quality issues

and control techniques can be associated to each of the stages in the pipeline,

we propose a simple framework for information quality analysis that reflects this

structure.

Here, we anticipate the main observation that emerges from the analysis: while

the importance of developing quality control techniques is clear to scientists, we

do not often see these techniques used explicitly in in silico experiments. This

is especially true for the data-intensive portion of the experiments, where new

†R. Pirsig, The Zen and the Art of Motorcycle Maintenance, 1974

32

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 33

issues of data quality overlap with the more traditional issues of process control

in the lab. Instead, we see a number of bespoke procedures, often implicit or

hidden within the lab practice, that are ultimately designed to determine whether

the outcome of an experiment is acceptable as a valid scientific result. In the

introductory chapter we have argued that defining such procedures is a complex

problem, and we have introduced the term quality knowledge to emphasize the

importance of making them explicit and, hopefully, reusable.

In the second part of the chapter (Section 2.2) we survey the landscape of

current Data Quality (DQ) practice and research, as a natural source of rele-

vant technology for quality control. Here we find mainly techniques to address

problems of data reconciliation and consistency, and duplicate elimination; these

are typically applied to traditional data settings, for example prior to performing

data integration and warehousing. These represent only a small portion of the

e-scientists’ problems, however: the broader issue of the correctness of scientific

information remains open. One reason for this is the complexity of the data and

of the application domain, which makes it difficult to obtain conclusive evidence

regarding the presence of errors: information correctness is often at best esti-

mated, rather than established with certainty. Thus, quality assessment calls for

the use of techniques for correctness estimation. We also observe that the accept-

ability criteria employed by scientists who are faced with uncertainty regarding

correctness of information, are often empirical. Such criteria express a combina-

tion of tolerance to data errors, i.e., when data that is somewhat incorrect can

still be used; and propensity to risk, i.e., when it is not certain whether the data

is correct or not. Based on these observations, we define quality knowledge as a

combination of these elements: predictive estimation of correctness, tolerance to

errors, and propensity to risk.

In the third part of this chapter (Section 2.3) we address the problem of how

best to capture these elements, and we propose an original computational model

for information quality. More specifically, we propose a user-centred model that

is based on a combination of two elements: an assignment of data to classes, and

a decision (for instance, accept / reject) that is associated to each class. The clas-

sification is objective but at the same time predictive, while the decisions capture

a subjective perspective and reflect the user’s propensity to risk. We conclude in

particular that the main tools available to the scientists are not so much tradi-

tional algorithms for data quality, like those discussed in our earlier survey, but

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 34

rather those for knowledge discovery and management. Having defined quality

knowledge in terms of data classification problems, we then refine our reference

IQ lifecycle of Figure 1.1, to reflect this model.

Finally, we argue that a key to making computational quality cost-effective is

to facilitate the reuse of the quality knowledge across a large number of applica-

tions, and within a scientific community. With the goal of reusability in mind,

our model is designed to capture the common features of the users’ decision pro-

cess, abstracting from the specific type of quality knowledge. Thus, it represents

a foundation on which we later build our Qurator workbench.

2.1 Quality control in post-genomics

In post-genomic biology, high-throughput analysis techniques allow a large num-

ber of genes and gene products to be studied simultaneously. These techniques are

embedded in experimental pipelines that produce high volumes of data at various

stages. Ultimately, the biological interpretation derived from the data analysis

yields publishable results. The quality of these results, however, is routinely af-

fected by the number and complexity of biological and technical variations within

the experiments, both of which are difficult to control.

Experiment
design

Sample
preparation

Experimental
process

Data
analysis

Raw
data

Processed
data

Data
interpretation

Experiment
repositoryPublication

Functional
annotation

Public
biological

databases

Wet lab Dry lab Publication Functional annotationDesign

Figure 2.1: Abstract view of a typical data processing pipeline in biology

In abstract, an experiment consists of a recognizable sequence of generic steps

(see Figure 2.1), which begins with the design of an experiment for some scientific

hypothesis, once the constraints imposed by the technology and the equipment

are accounted for. The biologist then performs a wet-lab experiment, which usu-

ally results in some form of raw data output. Biological variability is usually

accounted for either by performing the same experiment on multiple samples,

or by repeating it on the same sample. The dry-lab portion of the experiment

involves data processing and analysis. Scientists are increasingly making use of

workflow technology to automate some of the dry-lab tasks.

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 35

In the introduction we described the problem of identifying certain proteins of

interest within a sample, one of the core problems in qualitative proteomics. If we

cast this type of experiment as an instance of the generic pipeline just described,

as we have proposed in [HM07], we can then associate different types of quality

problems with each of its stages. In fact, the general quality framework can be

used for other types of post-genomic science as well, notably transcriptomics.

Figure 2.2, with the proteomics experiment shown at the bottom, illustrates this

approach.

Wet lab Dry lab Dissemination

Ex
pe

rim
en

t d
es

ig
n

iss
ue

s

Sample
quality
control

Repeatability/reproducibility: Provenance, finegrain process description, metadata capture

Data comparability across processes: heterogeneity of processes, technology, environment, lab practices

Significance of data: control of technology and biological
variations

Significance of data interpretation: validation of data
analysis techniques and tools. Robustness of analysis with
respect to variabilities

Uniformity of representation, Reusability of results: Data and metadata standardization
across all variabilities

Quality of reference data: accuracy, completeness,
currency of reference DBs

Credibility: provenance,
reputation, process analysisCommon quality problems

Exp. description

Matching

Reference
DBs

Match results
 scores
 hit ratio
 pvalue

Experiment
repository

2DGel

LC

...

Mass spectrasample
prep.

Mass
Spectrometry

PMF

MS/MS

...
Publication

Interpretation

Lowlevel analysis Highlevel
analysis

Ex
pe

rim
en

t d
es

ig
n

Proteomics

Experiment
repository

Scan Array
Image

Image
analysis

Raw
data Normalization Interpretation

Lowlevel analysis Highlevel
analysis

cDNA array

“oligo” array

Hybridization
ontosample

prep.

Publication

Ex
pe

rim
en

t d
es

ig
n

Transcriptomics

Figure 2.2: An experimental pipeline for qualitative proteomics and transcrip-
tomics, and associated quality issues

The “swimlanes” in the middle of the figure denote the main types of qual-

ity issues and the phases of the experimental pipeline to which they apply. In

particular, by “data significance” we mean that the scientist can trust the data

to be the genuine result of an experiment that is not flawed; thus, we take it

as a general definition of accuracy of experimental data. In the companion Ta-

ble 2.1 (reproduced from Table 4.3 in [HM07]), we give more details regarding the

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 36

specific problems and techniques in this area, namely: improving the sensitivity

of protein identification at the level of technology; improving on the score mod-

els, searching and matching algorithms; and improving the underlying statistical

models for avoiding false positives.

A general conclusion that we draw from this survey is that a number of quality

problems are addressed by promoting a rich description of experimental meta-

data, that is, of the experiment itself. This is true for important other areas

mentioned in the table, such as data comparability, uniformity of representation

and reusability of the results. As suggested in the introduction, the availability

of this metadata is a key to addressing the issues of data significance just men-

tioned, by means of inductive techniques. In the next section we compare this

perspective with that of data quality research, as perceived by the data engineer-

ing community.

2.2 Current Data Quality research

The work mentioned in this section provides a background for our own work and,

in some cases, ideas for future research. The main point that emerges from this

survey is that the user-centred, metadata-based approach to information quality

proposed in this thesis brings an element of novelty to the data quality landscape,

and represents a complement to traditional approaches and techniques.

Indeed, when we turn to DQ research and practice for solutions that may be

applicable to various stages of an experimental pipeline, we find that techniques

in this area are only fit for the purpose to the extent that data management

in e-science can be viewed as a special case of data management in relational,

and possibly semi-structured, databases. Thus, the prevalent role of these tech-

niques, we will conclude, is to enable data integration and analysis across multiple

databases. This leaves the problem of defining domain-specific quality criteria

open, and certainly does not suggest that quality management issues can be ad-

dressed as a knowledge management problem, as we propose.

Efforts in data quality research have been driven, historically, by the core

data management issues faced by data-intensive business applications, namely

data warehousing and analysis. In this respect, data providers view errors in

the data essentially as complicating factors in solving traditional data engineer-

ing problems, i.e., data integration and fusion, and as noise that interferes with

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 37

T
ab

le
2.

1:
Q

u
al

it
y

is
su

es
in

p
ro

te
in

id
en

ti
fi
ca

ti
on

ex
p
er

im
en

ts
C
o
m

m
o
n

qu
a
li
ty

is
su

es
A

rt
if
a
ct

S
pe

ci
fi
c

is
su

es
E
xa

m
p
le
s,

te
ch

n
iq

u
es

a
n
d

re
fe

re
n
ce

s

Q
u
a
li
ty

o
f
sa

m
p
le

B
io

lo
g
ic

a
l
a
ss

a
y

b
io

lo
g
ic

a
l

v
a
ri

a
b
il
it
y,

co
n
ta

m
in

a
-

ti
o
n

co
n
tr

o
l

sa
m

p
le

co
n
ta

m
in

a
ti
o
n

w
it
h
,
e.

g
.,

h
u
m

a
n

p
ro

te
in

s
fr

o
m

th
e

ex
p
er

im
en

te
r

m
a
y

o
b
sc

u
re

th
e

re
su

lt
s

o
f
d
o
w

n
st

re
a
m

a
n
a
ly

si
s

P
ro

ce
ss

re
p
ea

ta
b
il
it
y,

re
su

lt
s

re
p
ro

d
u
ci

b
il
it
y

(G
en

er
a
l)

a
d
eq

u
a
te

p
ro

ce
ss

d
es

cr
ip

ti
o
n

d
a
ta

m
o
d
el

li
n
g

fo
r

ca
p
tu

ri
n
g

ex
p
er

im
en

t
d
es

ig
n

a
n
d

ex
ec

u
ti
o
n

re
su

lt
s

[F
B

0
2
]

th
e

P
E

D
R

O
d
a
ta

m
o
d
el

[T
P

G
+

0
3
]

se
e

a
ls

o
u
n
if
o
rm

it
y,

b
el

o
w

R
a
w

d
a
ta

(m
a
ss

sp
ec

tr
a
)

te
ch

n
ic

a
l
a
n
d

b
io

lo
g
ic

a
l
v
a
ri

a
b
il
it
y

a
n
a
ly

si
s

o
f
re

p
ro

d
u
ci

b
il
it
y

[S
Z
B

+
0
4
]

q
u
a
n
ti
ta

ti
v
e

a
ss

es
sm

en
t

o
f
v
a
ri

a
b
il
it
y

[C
Z
S
+

0
4
]

D
a
ta

co
m

p
a
ra

b
il
it
y

(G
en

er
a
l)

re
p
ro

d
u
ci

b
il
it
y

a
cr

o
ss

p
la

tf
o
rm

s,
te

ch
n
o
lo

g
ie

s,
a
n
d

la
b
o
ra

to
ri

es
re

v
ie

w
:
[H

W
S
G

0
2
]

S
ig

n
ifi

ca
n
ce

o
f

d
a
ta

(G
en

er
a
l)

v
a
ri

a
b
il
it
y

co
n
tr

o
l

re
v
ie

w
o
n

st
a
ti

st
ic

a
l

a
n
d

co
m

p
u
ta

ti
o
n
a
l

is
su

es
a
cr

o
ss

a
ll

p
h
a
se

s
o
f

d
a
ta

a
n
a
ly

si
s

(
[L

E
0
5
])

re
v
ie

w
o
n

a
n
a
ly

si
s

o
f
se

n
si

ti
v
it
y

[S
m

i0
2
]

R
a
w

d
a
ta

(m
a
ss

sp
ec

tr
a
)

se
n
si

ti
v
it
y

o
f

sp
ec

tr
a

g
en

er
a
ti
o
n

m
et

h
o
d
s,

d
y
n
a
m

ic
ra

n
g
e

fo
r

re
la

-
ti
v
e

p
ro

te
in

a
b
u
n
d
a
n
ce

te
ch

n
ic

a
l
a
n
d

b
io

lo
g
ic

a
l
v
a
ri

a
b
il
it
y

li
m

it
a
ti

o
n
s

o
f

te
ch

n
o
lo

g
y

fo
r

g
en

-
er

a
ti
n
g

sp
ec

tr
a

re
v
ie

w
o
n

st
ra

te
g
ie

s
to

im
p
ro

v
e

a
cc

u
ra

cy
a
n
d

se
n
si

ti
v
it
y

o
f
P

I,
q
u
a
n
ti
fi
ca

ti
o
n

o
f
re

la
ti
v
e

ch
a
n
g
es

in
p
ro

te
in

a
b
u
n
d
a
n
ce

[R
A

0
5
]

st
u
d
ie

s
o
n

sc
o
ri

n
g

m
o
d
el

s,
d
a
ta

b
a
se

se
a
rc

h
a
lg

o
ri

th
m

s,
a
ss

es
sm

en
t

o
f

sp
ec

tr
a

q
u
a
li
ty

p
ri

o
r

to
p
er

fo
rm

in
g

a
se

a
rc

h
,
a
n
a
ly

si
s

o
f
v
a
ri

a
b
le

s
th

a
t
a
ff
ec

t
p
er

fo
rm

a
n
ce

o
f
D

B
se

a
rc

h
[S

C
Y

0
4
]
(r

ev
ie

w
),

[B
G

M
Y

0
4
]

re
v
ie

w
o
n

li
m

it
a
ti
o
n
s

o
f
2
D

E
te

ch
n
o
lo

g
y

fo
r

lo
w

-a
b
u
n
d
a
n
ce

p
ro

te
in

s
[F

G
M

A
0
2
]

S
ig

n
ifi

ca
n
ce

o
f

d
a
ta

in
te

rp
re

ta
-

ti
o
n

M
a
tc

h
re

su
lt

s
si

g
n
ifi

ca
n
ce

a
n
d

a
cc

u
ra

cy
o
f
m

a
tc

h
re

su
lt
s,

li
m

it
a
ti
o
n
s

o
f

te
ch

n
o
lo

g
y

fo
r

a
cc

u
ra

te
id

en
ti
fi
ca

ti
o
n

d
efi

n
it
io

n
[C

M
M

0
3
]
a
n
d

v
a
li
d
a
ti
o
n

o
f
sc

o
ri

n
g

fu
n
ct

io
n
s

re
v
ie

w
o
n

li
m

it
a
ti
o
n
s

o
f
te

ch
n
o
lo

g
y
:
[N

A
0
4
]

st
a
ti
st

ic
a
l
m

o
d
el

s
[N

K
K

A
0
3
]

st
u
d
ie

s
o
n

m
a
tc

h
in

g
a
lg

o
ri

th
m

s
[S

C
Y

0
4
]
(r

ev
ie

w
),

[Z
A

S
0
2
]

Q
u
a
li
ty

o
f

re
fe

r-
en

ce
d
a
ta

(G
en

er
a
l)

re
d
u
n
d
a
n
cy

o
f
re

fe
re

n
ce

D
B

(s
a
m

e
p
ro

te
in

a
p
p
ea

rs
u
n
d
er

d
iff

er
en

t
n
a
m

es
a
n
d

a
cc

es
si

o
n

n
u
m

b
er

s
in

d
a
ta

b
a
se

s)
a
cc

u
ra

cy
,
co

m
p
le

te
n
es

s,
sp

ec
ifi

ci
ty

,
cu

rr
en

cy
o
f
re

fe
re

n
ce

d
a
ta

b
a
se

s

cr
it

er
ia

fo
r
th

e
se

le
ct

io
n

o
f
a
p
p
ro

p
ri

a
te

re
fe

re
n
ce

D
B

[T
P

G
+

0
3
]:

u
si

n
g

a
sp

ec
ie

s-
sp

ec
ifi

c
re

fe
re

n
ce

d
a
ta

b
a
se

w
il
l
re

su
lt

in
m

o
re

re
a
l
p
ro

te
in

id
en

ti
fi
ca

ti
o
n
s

th
a
n

u
si

n
g

a
g
en

er
a
l

re
fe

re
n
ce

d
a
ta

b
a
se

co
n
ta

in
in

g
a

la
rg

e
n
u
m

b
er

o
f
o
rg

a
n
is

m
s;

u
si

n
g

th
e

la
tt

er
m

a
y

re
su

lt
in

a
la

rg
e

n
u
m

b
er

o
f
fa

ls
e

p
o
si

ti
v
es

U
n
if
o
rm

it
y

o
f

re
p
re

se
n
ta

ti
o
n
,

re
-u

sa
b
il
it
y

o
f

re
su

lt
s

O
u
tp

u
t

d
a
ta

,
p
u
b
li
ca

ti
o
n

h
et

er
o
g
en

ei
ty

o
f
p
re

se
n
ta

ti
o
n

n
ee

d
fo

r
re

p
re

se
n
ta

ti
o
n

st
a
n
d
a
rd

s
[R

S
0
5
]

th
e

P
E

D
R

O
p
ro

te
o
m

ic
s

d
a
ta

m
o
d
el

[T
P

G
+

0
3
]

g
u
id

el
in

es
fo

r
p
u
b
li
ca

ti
o
n

[C
A

B
+

0
4
]

st
a
n
d
a
rd

s
fo

r
m

et
a
-d

a
ta

[H
W

S
G

0
2
]

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 38

analytical results, for example census statistics. As a consequence, much of the

research within the data management community has focused on error detection

and data cleaning techniques that apply when data is stored in large databases

using relational or, more recently, semi-structured data models.

A traditional example is the record linkage problem for data deduplication;

this is a central problem in all data integration efforts, certainly also relevant

to the life sciences data domain, where integration problems abound (a series of

workshops on Data Integration in the Life Sciences (DILS) have been devoted to

this topic alone [Rah04,LR05,LNE06,BT07]). Additional important problems in-

clude handling specific cases of completeness and consistency issues in databases.

The reason why these approaches are very specific, and thus of limited use, is that

they rely on the presence of suitable constraints on the schema. “Consistency”,

for example, is defined in the context of relational databases as the compliance

of the data with certain functional dependencies, a rather narrow scope1.

An important recent development, which is likely to affect our future research,

is the recognition among the data engineering community that data errors often

cannot be corrected, and therefore techniques are needed for dealing with un-

avoidable uncertainty in the data. Uncertain databases are emerging as a prolific

research area, that we consider important for the management of quality knowl-

edge: to the extent that predictive quality models are subject to approximations

and uncertainty, the ability to manage probabilistic models within a database

seems very relevant. We mention current results in this area in Section 2.2.5, and

further discuss their implications for our future research in the last chapter of

this thesis.

Although databases for the life sciences do exhibit some of the classical “dirty

data” problems, and therefore to some extent they can benefit from these results,

the main point we make here is that establishing correctness of rich life science

data is contingent upon a good understanding of the domain, and requires access

to suitable metadata to be used as predictors of quality. Neither of these two

aspects, as we will see, is typical of current DQ literature and practice.

1For an in-depth account of current DQ issues, and of open research problems, one may
consult [BS06], the most recent book to date on the topic.

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 39

2.2.1 Record linkage and data cleaning toolkits

The term record linkage, or equivalently, record matching, is used in the context

of data heterogeneity resolution, where it is often the case that the same real-

world entity, for example a person’s name or address, is represented in slightly

different ways, either because of a lexical misspelling or because of acceptable

variations and synonyms. Record linkage refers to the problem of reconciling

database records by “linking” those that represent the same entity despite these

differences. It is worth emphasizing that the problem only refers to lexical and

syntactic differences, without making attempts at considering data semantics.

The problem has a long history; it was originally addressed by New-

combe [NKAJ59] using Bayesian statistics, motivated by applications in pop-

ulation genetics [New67], and later formalized by Fellegi and Sunter [FS69]. Here

we give a simple intuition of the Fellegi-Sunter model, as an example of a proba-

bilistic classification of data that we are going to refer to later in the chapter. A

full account of this and other models of record linkage can be found in a recent

survey on data deduplication [EIV07].

In this problem we are given two tables A and B, and pairs 〈α, β〉 (α ∈ A, β ∈
B) are assigned to one of three classes M, U, and R (for “matched”, “unmatched”,

and “reject”, respectively). The third of these classes contains pairs for which the

match status cannot be determined with sufficient statistical confidence. Subse-

quent research [VM04] extends the model to a general multi-way classification

of the record pairs. To simplify the description, we only consider the simpler

case of a 2-way classification M, U, and refer the reader to the original paper for

more details. We are given pairs 〈α, β〉 of records with the same structure, each

containing n fields. The main idea is to perform a pairwise comparison of the n

fields for each such pair, using a collection of n similarity functions that return

either a binary value (i.e., agree/not agree) or a value in a known interval. This

yields a comparison vector ~x of length n for each pair. We expect that pairs in M

will exhibit high similarity on most of the n fields, while pairs in U will only show

some isolated random high similarities. In general, we associate a probability

distribution to each component of ~x, and by extension, under the assumption of

conditional independence among the components, a distribution to the whole ~x.

To partition the space of all pairs into the two classes M and U, we use a decision

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 40

rule that relies on the comparison vectors:

〈α, β〉 ∈ M if p(M | ~x) ≥ p(U | ~x) , and 〈α, β〉 ∈ U otherwise

In Bayesian statistics, ~x plays the role of an experimental observation, and p(M | ~x)

and p(U | ~x) are posterior distributions that express the probabilities of M and U

given observation ~x. Thus, the rule says that a pair is a match if the probability

of M is larger than the probability of U, given ~x. Using Bayes’ theorem, we can

express this rule in terms of the prior distributions for U and M and of the likelihood

ratio l(~x) = p(x|M)
p(x|U)

, as follows:

〈α, β〉 ∈ M if l(~x) ≥ p(U)

p(M)
, and 〈α, β〉 ∈ U otherwise

With this formulation, the matching problem is reduced to the problem of es-

timating the likelihood ratio and the prior probabilities p(M), p(U). Under the

conditional independence assumption, Fellegi and Sunter show that these prob-

abilities can be estimated without the need for training data; in addition, the

model can be extended to incorporate the third “reject” class alluded to above.

Winkler [Win93] later extended the model by relaxing the assumption of condi-

tional independence, showing that the well-known EM algorithm can be used to

estimate p(x |M) and p(x | U). See also [Win02,Win06] for more recent surveys

on these techniques.

One of the known weak spots of record linkage algorithms is that they depend

on the choice of suitable similarity functions to compare record pairs: differ-

ent functions exhibit different accuracy depending on the characteristics of the

datasets. Thus, unsurprisingly, research has recently been focusing on the semi-

automated selection of suitable similarity functions, for instance in [CCGK07]

and in [BBS05,BKM06], where Bilenko et al. apply machine learning techniques

to discover the functions.

Machine learning has also been proposed in commercial products that spe-

cialize in record matching, for example Choicemaker (www.choicemaker.com),

where accurate matching is obtained by training a three-way classification model

similar to that of Fellegi and Sunter, i.e., with match, non-match, and uncertain

regions [BBWG03].

A number of toolkits, available either as research or commercial products, have

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 41

been built around record matching algorithms. These toolkits provide a variety of

utilities that are necessary to prepare the data prior to performing record match-

ing, i.e., to normalize the content of the record fields (see for example [BG05]

for a survey of research-oriented tools), typically requiring human expertise for

their manual configuration. Research products in this space include for instance

Potter’s wheel [RH01], Ajax [GFS+01], Tailor [EEV02] and the cleaning toolkit

developed at Telcordia Technologies [CCG+00].

Finally, it is interesting to note that data quality services, centered on record

matching, are now being added to commercial business intelligence solutions,

a sign of the increasing awareness, at the enterprise level, of the importance

of ensuring baseline data quality levels prior to performing sophisticated data

analysis2.

These toolkits can certainly play a role in e-science quality assessment, i.e.,

when data concerning traditional types (names, addresses, etc.) require integra-

tion. However, matching data structures that describe complex biological objects

is likely to require ad hoc solutions, or a substantial effort for the configuration of

the matching algorithm (i.e., for the selection and tuning of similarity functions,

for example).

2.2.2 Completeness

Record matching, of course, is not the only type of data quality problem of

interest. In the introduction we have briefly alluded to various quality dimensions,

which collectively form a “data quality space”. We analyse the completeness

dimensions in this section, and the consistency dimension in the next. The lesson

to learn here is that very specific definitions of these properties are required before

we can see interesting research results for error detection and correction.

Completeness refers either to the presence of expected values in a record field

(and is then also known as density), or to the coverage of an entire dataset rela-

tive to some other source (this simple distinction is articulated in detail in [SB04]

for relational data). In the past, researchers have been interested mainly in the

former type, for practical reasons; for example, it is common for census data to

be incomplete, due to the voluntary nature of the information and the way it is

2Some of the solutions in this space include for example Microsoft SQL server Busi-
ness Intelligence and SAS (www.sas.com), with its acquisition of DataFlux quality solutions
(www.dataflux.com).

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 42

collected, and yet it is important to be able to perform meaningful analysis on

census data. One approach to the problem has been to insert likely values into

the fields, using statistical techniques of data imputation [Nau75, Red96]. This

may not always be possible, due to the low confidence in the values, or even

permissible, as is often the case for official government data in the public sec-

tor [MLV+03]. In these cases, resolving completeness issues has more to do with

improving the data acquisition and editing process, than with any algorithmic

solution.

The second type of completeness is perhaps more specifically relevant to life

sciences data, where in many cases we see secondary databases that integrate

information from a number of primary sources, adding value to them in various

ways. For example, in the context of the Qurator study we have designed a

secondary database for SNP data, i.e., data about simple genetic mutations, that

draws its contents from various primary sources while offering added-value quality

services to users of that data [MEH+07]. Here the problem is that, if the new

database is missing some SNPs that biologists consider important, or even worse,

has unpredictable gaps, the potential added value will not be delivered, because

the services will simply not be trusted.

In this case we have a simple definition of completeness of the secondary

source relative to one or more of the primary sources: for each specific query, the

database completeness associated to the query is the amount of data that is re-

turned by the query, expressed as a fraction of the amount of the data that would

be obtained by issuing the equivalent query to the primary sources. Although

simple to express, this measure is not easy for data providers who are responsible

for the secondary database to compute, and even when available, is hardly ever

disclosed to users at query time. Naumann et al. describe a possible approach to

managing completeness [NFL04] in the context of information integration. They

introduce the notion of usefulness of a source to answer a query, and show (i)

how to measure completeness of a single and of integrated sources, and (ii) how

to use measures of completeness for source selection and query planning.

We have recently addressed this problem in our own work [ME05] and have

proposed a simple algorithm to enable providers to estimate database complete-

ness. The main original idea is to keep track of the incremental updates to the

secondary database in an intensional way, i.e., as a set of update queries, and to

then compare such query history with the conditions found in user queries as they

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 43

are submitted; this enables a provider to estimate the coverage on a per-query

basis.

Note that we have presented coverage as a provider’s problem, in that it re-

quires knowledge of the provider’s data architecture. In some cases, however,

users may try to assess coverage without the help of the provider, i.e., by per-

forming queries to multiple data sources (i.e., to both a secondary and a primary

database), when those primary sources are available to them. In the case of the

SNP database mentioned earlier, for example, this is an option because all sources

are public. This approach, however, requires a significant deployment effort by

the users in terms of data architecture, which may not be practical.

2.2.3 Consistency

Consistency refers, in general, to the compliance of data with certain constraints.

A simple case is syntactic consistency, where grammar rules are used to define the

acceptable formats of some data type, for example addresses or phone numbers.

In this case, error detection can be done using a parser, and in some cases compli-

ance can be restored by means of some domain-specific rules. Database schema

constraints, for example referential integrity in relational databases, are examples

of semantic consistency. While the DBMS is sometimes able to detect these viola-

tions, this is not always the case. Some of reasons, listed for example in [ABC+03],

include the integration of autonomous data sources, where constraints may hold

on individual sources but not on the integrated database, and legacy DBMSs that

do not perform integrity checking. In this case, record matching is the main tool

used in practice to restore consistency, i.e., to determine the most likely primary

key record for a foreign key that violates an integrity constraint, as a particular

case of record matching in two arbitrary datasets. Note that, when we extend

this notion of consistency to multiple independent databases, and to more gen-

eral consistency rules, record matching may no longer be adequate, or sufficient.

Consider for instance the case of two protein records in two databases, where

the proteins have the same name but different descriptions. Reconciling the two

records typically requires the use of domain knowledge in combination with rules

to determine whether the two descriptions are compatible with each other, or

whether it is more likely that one of the protein IDs is wrong.

As we can see, these notions of consistency are fairly restrictive. We can

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 44

sometimes write slightly more general, domain-specific rules, to express for ex-

ample the fact that a certain area code must be consistent with the name of the

city: having a US address record with area code 079503 and city equal to San

Francisco, for example, is a semantic inconsistency. In a recent effort to address

the problem of detecting this type of errors in a principled way, Bohannon et

al. [BFG+07] propose a definition of consistency that relies upon an extended

version of data functional dependencies (FD). Their main observation is that an

FD such as “area code → city”, defined at the schema level, is insufficient to de-

tect an inconsistency like the one above, because the pair 〈07950, San Francisco〉
is not a violation unless the table contains another record of the form 〈07950, X〉
with X different from San Francisco. However, by adding a new, instance-level

constraint to the FD, i.e., “07950 → Morristown”, we capture a more specific

semantic rule. Based on this observation, the authors develop a theory of Condi-

tional Functional Dependencies (CFD) and show that, in some cases, they can be

used to automatically restore consistency to the database [CFG+07]. They also

note that, in general, it is possible to propose several repairs to the database, i.e.,

alterations that restore consistency, and therefore that some criteria are required

to select repairs. This leads to a formal notion of accuracy, as a measure of ad-

equacy of a particular repair. In the model proposed in [CFG+07], for example,

the repairs are chosen to minimize the number of changes to the database.

In summary, current research on inconsistency detection and correction, al-

though formally interesting, appears to be confined to the rather narrow scope of

functional constraints on relational data. By contrast, expressing the consistency

of biological data requires a broader approach and more complex rules, for ex-

ample to establish the plausibility of data produced by an experiment, given the

description of the experiment and its intermediate results. In this case, plausibil-

ity follows from consistency: an experimental pipeline where noise is introduced

at some stage, for example, may disrupt consistency by corrupting the results

produced downstream from that stage.

2.2.4 Quality-based source selection

Record matching is often used as a preliminary phase for the integration of mul-

tiple information services with overlaps among their datasets. After a reconcil-

iation step, it becomes possible for a distributed query processor to choose a

3The area code for Morristown, NJ.

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 45

specific data source based on quality considerations, in addition to data avail-

ability. Several researchers have recently explored this idea. Martinez and Ham-

mer [MH05] propose to associate a predefined set of quality measures to biological

data sources, and to expose them as part of an integrated data model. Naumann

et al. [NUJ99,Nau02b,Nau02a] go one step further, by proposing a quality-driven

query processing architecture where multiple quality dimensions are taken into

account while processing a query over heterogeneous information systems. The

approach is based on the assumption that data providers can compute quality

values for their data, at various levels of granularity, and can expose them to the

query planner as part of the data model. A similar approach is found in [MAA04],

where the use of utility functions is advocated for the purpose of resolving incon-

sistencies across multiple databases. We recognize a similar line of reasoning in

the DaQuincis data broker for cooperative information systems [SVM+04]; here

the authors make the assumption that the quality of semi-structured data, and

specifically of XML documents, can be fully described by associating a “quality

element” to each data element. From here, the authors proceed to describe a

data broker that makes use of the quality metadata to perform source selection

at query time. Finally, in our own work [ABBMed] we have addressed the related

problem of decomposing a query over multiple data sources, when a complete

and accurate quality characterization is available and the cost of obtaining the

data from each of the sources is known. We have proposed a brokering algorithm

that computes a cost-optimal complete answer to the query, by assembling partial

answers from the sources under quality constraints.

As we have noted in this brief survey, this type of research (including our own)

relies on the assumption that the necessary quality metadata is available: however

it is not clear how it is generated, when, or by whom. The new approach proposed

in this thesis provides a partial answer to these questions: quality metadata

reflects the users’ specifications, which are given in the form of quality functions.

In this respect, our user-centred approach to quality is a complement to the work

just described, providing an important missing element for its actual applicability

(indeed, to the best of our knowledge, none of the approaches just mentioned is

currently used in practice).

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 46

2.2.5 Living with incomplete and uncertain data

Researchers have been aware of the consequences of incompleteness and incon-

sistency in databases for a long time, initially dealing simultaneously with issues

of completeness, i.e., null values, and of constraint violations [Mor90]. Recent

work by Arenas et al. [ABC99, ABC+03] explores the extent to which one can

rely on inconsistent databases to obtain consistent results to queries. Here the

idea is that when constraints are expressed using a first order language, a repair

is always available, and one can formally define the notion of a consistent answer

on a repaired database, and provide methods for computing such answer.

In addition to exploring the feasibility of automatically repairing an incon-

sistent database, more recent research stems from the assumption that various

types of inconsistency in the data are unavoidable (a recent Dagstuhl seminar,

for example, has been devoted to issues of tolerance to inconsistencies [BHS05b]).

A closely related problem is that of uncertain data: here attributes may be set-

valued, and only some combinations of these values, over a number of attributes,

represent a consistent database state.

One way to address uncertainty is to use probabilistic databases. As Dalvi and

Suciu put it in [DS07]: “We know well how to manage data that is deterministic.

Databases were invented to support applications like banking, payroll, accounting,

inventory, all of which require a precise semantics of the data. In the future we

need to learn how to manage data that is imprecise, or uncertain, and that

contains an explicit representation of the uncertainty.”. Their paper presents

a general paradigm for data with uncertainties. It follows previous work from

the same authors [DS04], which describes a new type of query semantics that is

based on a probabilistic model of the data. Probabilities are internal measures

of imprecision of the data; while users formulate queries using a standard query

language, the system computes the answers, and for each answer it computes an

output probability score representing its confidence in the answer. These scores

can then be used to rank the answers. Among the types of applications that call

for a probabilistic framework, the authors mention the growing importance of

web-scale information retrieval systems, as well as, unsurprisingly, approximate

record matching in the context of information integration.

Another example of current research in this area is the Trio system [Wid05,

BSHW06], developed at Stanford and recently released to the community. Trio

is based on ULDB, an extension to a relational database designed to manage

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 47

uncertain data along with its lineage. When data is uncertain, the database must

represent multiple possible instances, each corresponding to one of the possible

database states. Lineage describes the derivation through which each of these

possible instances of the data is obtained4. The idea pursued in ULDB is that

lineage can be used for understanding and resolving uncertainty. Intuitively,

when users issue queries to an uncertain database, the results will be subject to

uncertainty too. The authors show that lineage is an intuitive mechanism for

helping determine which output is correct in the presence of uncertainty, and

develop a data architecture that supports practical uncertainty management.

Antova et al. also address the problem of efficiently representing uncertain

data, i.e., multiple possible states of the database [AKO07a,AKO07c]. Multiple

worlds originate when each tuple field may have more than one value, i.e., its

actual value is uncertain but restricted to a finite set. Choosing one value for

each uncertain tuple leads to an exponential number of worlds. The idea pursued

in this work is based on the notion of world-set decompositions (WSD), a novel

and compact way to represent the sets of all possible combinations, that makes

it possible to compute queries efficiently on them. In practice, WSDs are decom-

positions of a single world-set relation into several new relations, such that their

cross product is again the world-set relation. The authors have implemented a

DBMS based on this idea, called MayBMS [AKO07b].

In conclusion, we consider both probabilistic models and uncertainty manage-

ment to be potentially relevant to our own work. Although they do not directly

help in the task of quality assessment, their relevance is in providing a repre-

sentation of uncertain quality metadata. Having chosen to define quality using

predictive models on the data seems to lead naturally to a notion of quality that

is intrinsically subject to uncertainty and, in some cases, may be described by a

known probability distribution. We can therefore expect that managing the cor-

pus of quality metadata, i.e., metadata that describes the quality of data, may

require a probabilistic data model and corresponding management architecture.

4The term data provenance could presumably be used as an alternative to lineage, however
the authors never make an explicit distinction between lineage and provenance.

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 48

2.3 Information Quality as data classification

As we have seen in the preceding survey, data management experts and statis-

ticians view errors in the data essentially as complicating factors in solving tra-

ditional data engineering problems, primarily data integration and fusion. Their

efforts are driven mostly by the core data issues faced by data-intensive business

applications, i.e., large scale data warehousing and analysis; and the technical

solutions tend to be rooted in database technology and independent of the data

domain. In other words, the research is driven more by the structure of the data

than by its content, the assumption being that, for the purpose of error detection

and correction, one can only exploit the data semantics that can be found in the

database itself.

This is in contrast to the e-science context, where rich data semantics, i.e.,

metadata, is often available either directly from the data processing environment,

or in the form of independent annotations to the data —it is this surrounding

context that makes data into information. We are specifically interested in two

main forms of such metadata, namely the detailed record of an experiment, often

collected in order to ensure repeatability and verifiability by third parties; and

quality control metadata, computed by data analysis tools as a measure of the

reliability of their output. A typical example of the latter (cited again in the

next chapter) is that of BLAST, a popular sequence alignment algorithm, where

a measure of confidence is associated to each alignment.

The documentary nature of such metadata makes it a valuable asset for quality

assessment purposes. This seems to fit well with the scientists’ approach to quality

assessment, where the goal is ultimately to determine the “fitness of data for use”

in the scientific context. Viewed in this perspective, the quality assessment task

translates into a decision process, where the reliability of scientific data, especially

that produced by external, sometimes uncertified sources, must often be assessed

using indirect forms of empirical evidence, and is therefore subject to uncertainty.

Our model for information quality, presented in the rest of this chapter, is

based on an evidence-based decision process. The evidence consists of a collection

of properties that describe some attributes of the data that the scientists can

observe and measure. The scientists’ task is to select a combination of these

attributes, and to develop a model (normally using statistical techniques) to

estimate the likelihood of errors in the data, given the attribute values. As an

example, consider the problem of assessing whether a collection of microarray

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 49

datasets produced by a certain research group can be safely used by another, and

assume that the available evidence consists of some provenance information, such

as the historical error rates exhibited by the group, as well as the number and

impact factor of their publications. The user’s problem is to determine whether

these two characteristics can be used to predict the absence of errors in the

datasets, and if so, to measure the accuracy of the prediction (i.e., how often the

prediction is correct when observed on datasets of known quality). We formulate

this in abstract terms as the problem of defining a decision model, known as a

classifier, that is able to assign a data element, in this case a microarray dataset,

to one of two classes, “accept” or “reject”, based on a set of underlying data

attributes.

In the next section we begin by introducing a simple, two-way, i.e., accept/re-

ject classification model, and then extend it to multiple classes.

2.3.1 Simple quality classes

Data classification problems, not at all trivial, have been studied extensively in

the context of statistics and data mining (referred to in the following as “Knowl-

edge Discovery”, or KD). In particular, machine learning algorithms have been

developed to automatically or semi-automatically generate classification models

in an inductive fashion, starting from training datasets, i.e., data whose faulty

condition is known. Various types of classification models are available, both from

the literature and as practical implementations [Mit97, WF05]. Some of these,

such as the naive Bayesian classifiers, provide users with a measure of confidence

in the classification; for each class and data element, they compute the probabil-

ity that the element belongs to the class. In some circumstances, this information

can be used to assess the risk associated with poor quality, namely when the cost

of using faulty data can be quantified (for example, some authors have estimated

the cost of using the results of a faulty microarray experiment [BEPG+05]). Other

classification models, known as deterministic, assign the data to the most likely

class, but they do not provide an explicit measure of probability of class mem-

bership; decision trees are a well-known example of this type of classifier. Note

that the outcome of general classifiers is not limited to two classes; the theory

applies to any predefined, finite set of classes.

The idea of using predictive classifiers, regardless of their specific features,

is at the cornerstone of our IQ framework. By using a classification model, we

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 50

translate the scientist’s problem of providing a precise, yet personal definition

of “quality of information”, into a conventional knowledge discovery problem.

Specifically, the quality knowledge engineer is faced with the following tasks: (i)

selecting data attributes to be used as evidence; (ii) defining a classification model

based on those attributes, and (iii) assessing the performance of the model. A

classifier’s performance is a measure of its ability to perform correct classifications

on known test datasets, and is used as an estimate of the expected number of

errors incurred in the classification of a previously unknown dataset. Broadly

speaking, this measure involves observing the number of false positives and false

negatives produced by the classifier on the training set data.

These tasks embody the “inner loop” steps of the IQ lifecycle; they are all

part of the standard KD framework used in data mining, and are well supported

by current technology: by formulating quality definitions as a type of data classi-

fication, we can leverage the large body of theoretical and practical work that is

available from the areas of statistics, knowledge discovery, and machine learning.

Figure 2.3 illustrates our operational definition of IQ as a process based on a

simple classification model, and introduces our notation for the IQ framework

elements.

...Annotation QE(d1)

QE(dn)

Quality Assertionfuntion (lassi�er)
aept rejet

D = {d1 . . . dn}

{d1 . . . dk} {dk+1 . . . dn}

Figure 2.3: Basic acceptability as a binary classification model

Given a dataset D that is to be assessed for quality, the first step is to com-

pute the values for the evidence attributes used in classification, using one or

more annotation functions. The term “annotation” emphasizes that the role of

these functions to associate “quality metadata” with the input dataset. In the

microarray dataset example, these functions are responsible for retrieving the his-

torical error rates on microarray experiments for a given research group, as well

as the list and impact factors of the group’s publications. It is important to note

that we view annotation functions as black boxes; while a variety of processes

can be employed to obtain this information, their exact nature is not exposed to

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 51

the framework. We use the term Quality Evidence to denote the result of quality

annotation, to emphasize the role of these attributes. Note also that, in general,

while each evidence element represents “raw” quality metadata, when taken in

isolation the elements are not sufficient to provide a significant indication of qual-

ity. A value for Hit Ratio, for example, only becomes a useful quality predictor

when combined with other types of evidence as part of a score model.

The second step in the IQ process is to apply the classification model to the

quality evidence. We have coined the term Quality Assertion for these classifiers,

again in an effort to emphasize their role in the process, i.e., to deliver formal,

and yet user-defined assertions on quality properties for the data. The effect of

classification is a binary partition of D, as shown in the figure.

One may observe that, in some cases, a continuous score, rather than a dis-

cete classification, is a more suitable form of quality knowledge. Of course this

is not a limitation, since a score can be mapped to a classification simply by se-

lecting a threshold on the score interval (and, by extension, by selecting multiple

thresholds to obtain a multi-way classification). The issue of threshold selection,

however, raises an important point regarding the distinction between subjective

and objective elements of a quality model: let us discuss this in the context of

our proteomics example.

First of all, note that the structure of the example fits the the IQ framework:

the predictor variables Hit Ratio, ELDP, number of peptides, etc. form a corpus

of quality evidence, and the annotation functions compute the evidence values

using the output of the protein identification algorithm. The Quality Assertion

in this case is represented by the score model. As we know from Section 1.3,

Stead et al. in their paper [SPB06] propose a new type of objective score model

and experimentally demonstrate its performance; they do not, however, give any

explicit indications regarding threshold setting, presumably because this pertains

to the subjective area of personal risk assessment: a low threshold would accept

most of the dataset but increase the risk of introducing false positives, while a high

threshold may be too selective. This does not mean, however, that the threshold

selection is arbitrary: in fact, the very same technique used to demonstrate the

performance of the score on tests data can be used as a guideline. Let us look at

this technique in more detail.

In [SPB06] the performance of the score model is described using a standard

statistical tool known as a ROC curve [Faw06]. Given a ranked test dataset, the

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 52

k-th point on the ROC curve is obtained by plotting the rate of false positives

against the ratio of true positives, relative to the top k data elements. A point

(x, y) with x close to 0 and y close to 1 for a given k shows good performance,

indicating that many true positives are mixed with few false positives among

the top k elements. Thus, the curve effectively represents all possible trade-offs

between benefits (true positives) and costs (false positives) for all thresholds k.

It is important to note that the curves are computed using known test datasets,

therefore the actual performance may differ on the dataset under study. Never-

theless, this tool can be used to make informed decision of a suitable threshold

for data acceptability. As suggested earlier, the threshold setting reflects (an

estimate of) a scientist’s propensity to accept a relatively high cost for a corre-

sponding benefit (a large accepted dataset). Note that the threshold value could,

in principle, be optimized given some cost function, for instance one that asso-

ciates different weights to false positive and false negative errors. However our

IQ framework does not, at the moment, include features to support such an op-

timization step. The important point here is that with this framework we do not

eliminate subjectivity, but rather we find a specific locus for it in the process.

2.3.2 Multi-way quality classification

A binary classifier, which can only predict “accept” or “reject”, is of limited use.

It does not allow us, for instance, to express decision criteria like those involved

in the Fellegi-Sunter model for record linkage (Section 2.2.1), which includes a

third class, namely the uncertainty region5. As another natural example of three-

way classification, let us consider the discretization of the protein hit score model

again. This time, however, we automatically set two thresholds using the sample

mean x and standard deviation s of the scores distribution as a guideline, for

instance by setting the classes to be [m, x− s], (x− s, x+ s), [x+ s, M], where m

and M are the lower and upper bounds of the scores, respectively. We take the

resulting three classes to mean “low”, “close-to-average”, and “high” quality.

To accommodate these additional quality scenarios, we need to allow for multi-

way classifications. We use the term quality classes to denote any predefined,

finite set of class labels used to characterize quality properties of the data, and

we say that data elements that are in the same class are quality-equivalent. Note

5Record linkage can be viewed as a classification problem where the input dataset consists
of all pairs of records from an input collection that contains duplicates.

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 53

however that, with this generalization, the meaning of a quality class is no longer

clear. With our binary classes “accept” and “reject”, the intended meaning of

the class was implicit, and could be left to the intuition, while with three classes

or more this is no longer the case. In record matching, for example, we must

explicitly state that class R means “no linkage status can be established for record

pairs in this class”. Note also that we have so far ignored a natural notion of

ordering among the classes, i.e., the fact that some classes should be preferred to

others. For instance, when the classes are obtained by discretizing a continuous

interval, as in the example above, the order on the score interval maps to a total

order on the corresponding set of classes: “high” is better than “low”. We address

both problems in the rest of this section.

Firstly, we introduce a total order relation among quality classes, defined

by the quality knowledge engineer, as a simple and standard way to express

preferences among the data. In addition to being a natural consequence of using

score models to express quality, note that this is also consistent with commonly

accepted models of consumer behaviour used in microeconomics [Var96]. Here

the decision processes of consumers are modelled by means of a set S, used to

represent the available choices (e.g. of goods to buy), and a partial order ≤ on

S, called a preference relation on S. This relation is used to express the relative

appeal of two elements of S to the consumer. In this model, two elements a and

b such that a ≤ b and b ≤ a are said to be indifferent to each other. Since the

indifference relation is an equivalence, the partial order ≤ induces a partition

on S, so that for any equivalence class in the partition, the consumer has no

preference between any two elements of the class.

We can make a parallel with our quality setting, as follows. Rather than

having an explicit partial order among a predefined set S of goods, we provide

an intensional definition of the quality classes, that can be applied to any input

dataset S – this is our classification procedure. Clearly, this procedure along with

a total order on the classes induces a partial order on S: two elements of S that

are in different classes are ordered according to the order of the classes, while

two elements in the same quality class are not ordered. Conversely, given a fixed

set S and a partial order ≤ on S, it is natural to define a set of classes and a

classification procedure that is consistent with the order.

Regarding the second problem, i.e., the intrinsic meaning of multiple quality

classes, we note that one can easily annotate a class with an informal description

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 54

of its intended meaning. In fact, we could also attempt to associate some type

of formal descriptions to the classes. Regardless of the description, however, the

important point is that the same quality classes may be used in different ways by

different users. One user may, for example, ignore class R in the record matching

model, while another user may associate a particular process to it, i.e., to perform

clerical review of the uncertain record matches. In our user-centric quality model,

we are primarily interested in capturing how a quality class is going to be used

in the context of a user process.

In this spirit, we propose that the meaning assigned to a quality class by the

quality knowledge engineer be limited to the class name, possibly an informal

description, and an order relation. At the same time, we propose to capture the

users’ perspective on the same quality classes, by mapping quality classes to a

new space of actions. Actions represent user processes that can be carried out

on the data using the facilities available from the processing environment. For

example, suppose that a user defines a workflow process that, among other tasks,

performs record linkage using the Quality Assertion function made available by

some knowledge engineer. This user is aware of the three-way classification, and

decides to interpret it as follows: filter out the U pairs, allow the M pairs to

proceed to the next workflow task, and send the R pairs to a dedicated task that

will perform some special processing. We capture this user intention using a

set A = {filter, allow, analyse}, representing an abstraction of the three user

actions, and by establishing a mapping from the quality classes to the actions:

M(C, A) = {M → allow, U → filter, R → analyse}. This scenario is depicted in

Figure 2.4.

...

quality classes −> actions

Annotation QE(d1)

QE(dn)

Quality Assertionfuntion (lassi�er)D = {d1 . . . dn} ...
CkC1

...a1 akA =

Figure 2.4: Multi-way classification with explicit quality actions

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 55

Our goal here is to separate the definition of quality classes, defined indepen-

dently of data usage and embodied by classification models (with the ordering),

from the space of quality-aware data processing, where quality classifications are

used. The assignment of quality classes to actions is the bridge between the two

spaces. This difference between definition and use is central to our model: while

we can often give an interpretation of quality classification that is independent

of any application (a record pair is, after all, a match or a non-match regardless

of the use that we make of it), it is the mapping to actions that reflects the user

perception of the importance of such quality classification on data processing.

To appreciate this point, consider a second, optimistic user who decides to

retain R record pairs (which may be false positives); this user’s preference would

be modelled simply by defining M(C, A) = {M→ allow, U→ filter, R→ allow}.
It is also important to note that the set of available actions is constrained by

the operating environment, in addition to the user preferences. We can easily

see this by placing the same record linkage classification in the context of a

visual data presentation environment, where the universe of actions now includes

hiding or highlighting data elements, or colouring them in different ways. The

user’s interpretation is now given as a mapping of our three classes to these new

actions.

One may observe that in this framework actions are defined purely as a set

of labels, much like quality classes. The difference, however, is that the action

labels have an operational meaning in the context of the user data processing

environment. For example, analyse can be made to correspond to a workflow

processor with an input consisting of the data found in one quality class (namely

R, according to our example mapping). We will return to this important point

when we discuss the translation of user quality preferences to executable quality

processes, in Chapter 5.

2.3.3 Multiple classifications and condition-action map-

pings

So far, the framework we have proposed does not prescribe any particular mech-

anism or language to specify the mapping between classes and actions. In

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 56

fact, we have made the implicit assumption that each quality class is associ-

ated to exactly one action. Two simple observations suggest that this assump-

tion may be too restrictive in practice, and that an explicit mapping mecha-

nism from classes to actions is needed. Firstly, consider an application that

is only interested in the positive matches produced by a record linkage algo-

rithm. For this application, it makes sense to collapse the U and R classes

into one, by associating the same action (eg. discard) to both. While this

can be accomplished by specifying a set of condition-action pairs of the form

M(C, A) = {M → allow, U → discard, R → discard}, we could also write, using

a set expression, M(C, A) = {M→ allow, U ∪ R→ discard}.
The second observation is that, in some cases, it would be natural to use

multiple classifiers in order to express different aspects of quality. We could then

combine their outcome into a single quality classification, and then associate a

quality action to the result. Consider for example a dataset of proteins, where

functional annotation is performed either by expert curators, or is predicted al-

gorithmically. Typically, such a dataset presents a trade-off between accuracy

and timeliness of the annotations – this is because human annotations are more

accurate but take longer to perform the task than automated annotations, that

are subject to errors. In this situation we could have two separate quality classi-

fications, one for timeliness and one for accuracy; the final quality classification

would then be a function of the two (based for instance on a weighted average of

the scores).

We extend the framework defined so far with condition-action pairs to account

for both scenarios. Conditions on classes are set expressions that may involves the

usual union, difference and intersection operators. Given two classifications C1 =

{C11, C12, C13} and C2 = {C21, C22}, for example, we can write the expressions

e1 = (C11 ∪ C12) ∩ C21

e2 = C13 ∩ C22

With these, we define mappings from quality classes to actions as a set of

condition-actions pairs: M(C, A) = {e1 . . . ek} with k ≤ |A|. Figure 2.5 shows

this for a configuration that includes two independent classifiers and the two

expressions e1 and e2 above.

Note that the conditions effectively define a secondary classification on the

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 57

ek

QA1

QA2

e1 a1

C11

C1n

C21

C2m

C1 = {C11 . . . C1n}

M(C1 ∪ C2, A) = {e1 . . . ek}

ak

C2 = {C21 . . . C2m}

Figure 2.5: Multiple classifiers and explicit class-to-actions mapping

data. However, we can no longer assume that these new “quality classes” enjoy

the total ordering property that we have postulated in our earlier definition6.

Thus, these new classes only have a meaning in the context of condition-action

mappings, rather than as quality classes of their own. Since, however, these new

classes are defined not by the quality knowledge engineer, but by the users, this

does not pose any problem in practice.

Note also that this definition of mappings also accommodates the task of

deriving a classification from a score model, in a natural way. Specifically, since

we can use n − 1 thresholds to define a new n-way classification, it makes sense

to allow a mix of conditional expressions that include numerical inequalities on

the score value, with set operators. More importantly, one may use the mappings

to define regular regions in a multi-dimensional space defined by more than one

score model. An example is shown in Figure 2.6, with the expressions:

e1 = (s1 ≥ t12) ∧ (s2 ≥ t22),

e2 = (t11 ≤ s1 ≤ t12) ∧ (t21 ≤ s2 ≤ t22),

e3 = (s1 ≥ t12) ∧ (t21 ≤ s2 ≤ t22)

In summary, by combining score intervals and discrete classification one can

6As a simple example, suppose that C1 ≤ C2 ≤ C3. Then C11 = C1 ∪ C3 and C2 are not
ordered.

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 58

e1

e2 e3

s1t12t11

t22

t21

s2

Figure 2.6: Expressions and corresponding regions in a bi-dimensional score space

write conditions like the following:

e = (C11 ∪ C12) ∩ C21 ∩ ((s1 ≥ t12) ∩ (t21 ≤ s2 ≤ t22))

which involve two classifiers (Figure 2.5) and two score models (Figure 2.6). We

are going to use type of expressions as part of our language for Quality Views, in

Chapter 4.

2.4 Discussion: the IQ lifecycle, refined

We use the IQ lifecycle introduced in Section 1.4.2, and illustrated in Figure 1.1, to

summarize the elements of the IQ paradigm and to preview some of the elements

that will be introduced in the following chapters. A refined version of the lifecycle

diagram that takes into account our definitions appears in Figure 2.7. The role

of the quality knowledge engineer in the inner loop is to contribute new Quality

Assertion functions, as well as corresponding Annotation functions to provide

the required input Quality Evidence. This results in a library of quality function

implementations.

In the outer loop, users of quality knowledge select Quality Assertion functions

that are appropriate for their data types, and compose them into more complex

processes, as discussed in Chapter 4. These processes may include multiple clas-

sification models, and condition-action mappings as described earlier. As a result

of executing one of these processes, therefore, the data is partitioned into quality

classes and the associated actions are performed on each class. Users at this point

may analyse the results, to determine whether there is a need to perform a new

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 59

compilation

modelling

IQ conceptual

model design

model testing

(performance evaluation)

results analysis

data acceptability criteria

analysis of

data

processing

target

datasets

seek additional

quality knowledge

training
dataset

quality−aware processing

integration

quality functions selection

quality view specification Quality functions

implementation

reusable library

of quality functions
QAs

Quality Views

− Quality Assertion functions (predictive models)

− Quality Evidence (predictors)

discovery of quality knowledge

Contribution:

Quality assessment:

exploitation of quality knowledge

Quality functions

QAs

Figure 2.7: The Information Quality assessment lifecycle

iteration around the loop, or to seek additional quality knowledge.

We can view the model elements in Figure 2.8, where we make a further

distinction between long-lived “quality commodities”, that are the result of a KD

engineering effort, and the definition of acceptability criteria as actions on the

quality classes, that reflect the preferences of the different users of those quality

functions.

Both these aspects involve iteration and experimentation; the Qurator work-

bench described in the rest of this thesis is designed to reduce the human effort

involved in their definition. In particular, the next chapter presents a conceptual

model that formalizes the framework elements, while Chapters 4 and 5 describe

a process model for the execution of the steps above, and its realization as a

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 60

...
QA2

QE(d1)

QE(dn)

funtionsquality annotation raw qualitymetadata
of quality knowledgewith data proessingDynami integration

ek

QA1 e1 a1

C11

C1n

ak

ssore
C21

C2m

D = {d1 . . . dn}

AF 1

AF 2

Quality Assertion funtions
Long-lived, reusable quality knowledge ommoditiesquality knowledge engineering quality knowledge exploitation

quality ations

Figure 2.8: Summary of quality processing and modelling options

workflow, respectively. Finally, in Chapter 6 we will discuss our the Qurator

workbench supports the tasks in the outer loop of this lifeycle.

At this early stage, meanwhile, we can justify the framework design on the

basis of the two arguments of flexibility and reusability of its elements. Re-

garding flexibility, we observe that this structure offers scientists a spectrum of

quality modelling options, ranging from the minimal to the fully personalized,

so that some trade-offs between complexity and accuracy are available. While

sophisticated users may define all of the elements above, the model also offers a

reasonable default behaviour (for example, the default set {“accept”, “reject”}
of quality classes, with corresponding standard interpretation) to less demanding

users, who can test simple quality hypotheses with limited effort.

The second argument concerns the reuse of other scientists’ definitions: hope-

fully, the classifiers created by the quality knowledge engineer to operate on cer-

tain data types, along with the corresponding annotation functions, can be made

available to other members of their scientific community who deal with similar

datasets. The reuse argument – of abstract quality functions, of their implemen-

tations, and of quality processes that make use of those functions, is central to

the thesis and will be made precise in the following chapters.

To conclude, we summarize the distinctive features of our approach that make

CHAPTER 2. MODELLING QUALITY KNOWLEDGE 61

it stand out from those surveyed earlier, namely that (i) it is designed to capture

the users’ own definitions of quality properties, and is therefore inherently exten-

sible, and (ii) it enforces a clear separation between objective quality assessment

and the the subjective importance associated to quality in the context of data

processing. As we have seen, we can use the model to capture the semantics of

traditional quality assessment techniques, such as record matching.

Chapter 3

Semantic Modelling of

Information Quality concepts

In the previous chapter we have proposed a simple paradigm to represent quality

knowledge in terms of data classification. Here we address the problem of how

this knowledge can be described to scientists in such a way that they can use it

to specify quality processes. We approach the problem by proposing an original

conceptual model for Information Quality. The IQ model includes an extensible

classification of the types of data for which quality assessments can be made, and

an extensible classification of quality indicators, as well as of quality functions

that are computed using the indicators. It also includes a taxonomy of abstract

quality properties, such as those discussed earlier, i.e., correctness, accuracy, etc.,

as well as a number of additional concepts that will be presented in detail below.

We begin by arguing that a semantic framework, i.e., an ontology, is appro-

priate for the IQ model (Section 3.1). We then present the ontology in detail

in Section 3.2, emphasizing our axiomatic approach to the definition of quality

concepts. Finally, in Section 3.3 we show that this approach is valuable as a way

to enforce consistency constraints on the IQ concepts and their relationships, and

thus provides a formal foundation for user-defined extensions. In the following

chapters we are going to build upon the IQ model, to provide effective tools in

support of the various steps of the IQ lifecycle.

62

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 63

3.1 Rationale for semantic modelling

The choice of the modelling framework for the conceptual IQ model, articulated

also in [PME+06], has been driven mainly by practical requirements. Two key

requirements are extensibility, i.e., the ability for domain experts to introduce

new concepts that represent personal definitions of quality features, and the ca-

pability to share those definitions with other members of a community. These

two elements provide the foundation for an incrementally growing body of qual-

ity knowledge. On the other hand, if we are to build upon the IQ model to offer

effective tools to users, it is clear that this evolution should progress in some

principled way. Thus, a third requirement is the support for some kind of for-

mal consistency for instances of the model, and its enforcement using automated

techniques.

While one may argue in favour of traditional frameworks like ER and UML,

we have instead opted to explore the potential of semantic modelling, mainly for

its promise of flexibility, as well as support for logic-based specification and auto-

mated reasoning. As a practical consideration, the increasing adoption of ontolo-

gies as a standard way of modelling complex domains means that we can leverage

a substantial body of research knowledge and practical expertise in this area. Fur-

thermore, the standardization of the OWL DL language for the Semantic Web has

spurred the development of a variety of tools for ontology design and specification

(among the most popular are Protege from Stanford (protege.stanford.edu)

and Swoop, formerly developed at University of Maryland and now an open source

project (code.google.com/p/swoop), as well as for automated reasoning (Pellet,

for example (pellet.owldl.com)).

A further important requirement for the IQ model is its ability to drive the

semi-automated generation of software components that implement some of the

concepts, specifically Quality Assertion functions. This feature is important for

the support of rapid prototyping of quality functions as part of the IQ lifecycle.

Indeed, model-driven component generation and composition has long been a

goal in Software Engineering, to which Semantic Web technology has given fresh

momentum. Our approach to component generation follows in the track of current

applications of Semantic Web technology to service description, and is based

on some minimal semantic annotation of service interfaces, from which some of

the service implementation can then be automatically derived. As we will show

in Chapter 6, describing quality functions as abstract concepts in a semantic

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 64

model provides suitable input to the software generation process; this will lead

to practical support for the implementation of Quality Assertions as services.

A further point in favour of semantic modelling for our purposes concerns the

back-end data management support for instances of semantic data. By choosing

to model data and quality indicator types (i.e., Quality Evidence) as concepts

in an ontology, we need to make sure that the instances of those concepts, i.e.,

the actual data elements and indicators values, can be properly represented, as

well. The distinction between concepts and instances here is similar to that

between a logical database schema and the data; concept instances are typically

stored in a database using an RDF model,1 a W3C standard. The RDF model

views data elements as triples that are connected to form a graph. Although not

as mature as relational databases, RDF data management technology can now

manage volumes of data of the order of many millions of triples with response

times that are almost comparable to those of relational databases [AMMH07]; this

is a sufficiently scalable and robust data management infrastructure for Qurator.

3.2 An ontology for Information Quality

The IQ model formalizes the IQ paradigm of the previous chapter. It consists

of two sets of concepts and relationships among concepts, namely (i) quality

concepts that are independent of any data and application domain, and thus

define the core ontology structure; and (ii) domain-specific concepts, which can

be user-defined and which extend the core in an incremental way. We refer to

the core as the Information Quality Upper Ontology (IQUO). The term upper

ontology is widely used within the Semantic Web community to denote a high-

level semantic model that is reusable and extensible over multiple application

domains. In this section we present the IQUO along with examples of user-

defined extensions, with reference to our main proteomics example.

The main concepts in the ontology reflect the IQ paradigm, and include:

• a taxonomy of the types of data to which quality assessment can be applied;

• a taxonomy of types of Quality Evidence, i.e., types of metadata that can

be used as quality indicators;

1RDF: http://www.w3.org/RDF/

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 65

• a collection of Annotation functions that compute Quality Evidence meta-

data for the data;

• a collection of Quality Assertions functions that compute quality values

from Quality Evidence.

The upper ontology includes top-level classes for these taxonomies of concepts.

In addition, it also includes elements of the software environment where the data

is processed, namely the software tools used by e-scientists. To see why these

are useful, note that many bioinformatics tools compute results with some degree

of uncertainty, for example a BLAST program used to perform a partial match

between gene or protein sequences. These programs often associate a measure of

confidence to the result, e.g. the “e-value” computed by BLAST indicates the

likelihood that a significant overlap is seen between two biologically unrelated

sequences (for a valid match, we expect this to be a very small number) [APS03].

If the e-value is used as Quality Evidence, then we also want to capture the fact

that the e-value is computed by BLAST as part of our model. This is relevant

knowledge that is legitimately part of the model, to the extent that it tells users

of the ontology that BLAST is a good source of quality indicators that other

experts have used to make quality-based decisions on the data.

The ontology is defined using a particular Description Logic (DL), i.e., one of

a family of logic formalisms for knowledge representation. Although Description

Logics have been known for many years in the logic community, they have recently

gained new popularity as the formal way of representing concepts within the

Semantic Web framework [FvHH+01a,Hor02,BHS05a]. In particular, the OWL

language has been proposed as a W3C standard for encoding a particular DL,

denoted “OWL DL”, using a Web-friendly, XML-based syntax [HPSvH03].

The IQ ontology is written in OWL DL. With this design choice, we can benefit

from a substantial body of theoretical and practical research carried out in the

Semantic Web context. On the theoretical side, automated reasoning on concept

subsumption can be performed on OWL DL ontologies, for which decidability

and complexity results are available. On the practical side, a number of software

implementations of automated reasoners, ontology engineering tools and best

practices are now available, through the growing Semantic Web community.

The IQ ontology follows in the tracks of recent efforts to provide semantic

models for a variety of scientific domains, as a way to enable “semantically-

aware” e-science applications. These models vary in their complexity, ranging

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 66

from controlled vocabularies, characterized by simple hierarchical class struc-

tures, to full-fledged OWL DL ontologies where logic axioms are used to define

complex concepts. Controlled vocabularies tend to contain a large number of

concepts that comprehensively describe a particular scientific domain; their pur-

pose is to facilitate the systematic annotation of data in their domain, as well as

the automated interpretation of existing annotations. Notable examples are the

Gene Ontology (www.geneontology.org), MESH (Medical Subject Headings)

maintained by Medline (www.nlm.nih.gov/mesh), the MGED ontology developed

by the Microarray Gene Expression Data Society (www.mged.org) [WPCea06],

and the numerous controlled vocabularies at the Proteomics Standards Initia-

tive, PSI (www.psidev.info). The OBO initiative (Open Biomedical Ontolo-

gies, www.obofoundry.org) maintains a comprehensive index of ontologies in the

biomedical domain.

At the opposite end of the spectrum we find the myGrid ontology [WSG+03a],

designed to provide a controlled vocabulary of terms used in the bioinformat-

ics domain. The myGrid ontology is mainly geared towards the semantic de-

scription of bioinformatics services. It is logically separated into two distinct

components, the service ontology and the domain ontology. The domain on-

tology acts as an annotation vocabulary including descriptions of core bioin-

formatics data types and their relationships to one another, while the service

ontology describes the physical and operational features of web services, such

as their inputs and outputs. myGrid was originally written in the DAML+OIL

language [FvHH+01b], a precursor to OWL, and makes extensive use of logic

axioms to define complex concepts. For instance, we can write axioms to state

that “every protein structure record must have at least one identifier, which is

a protein structure record id”, or that “something is a protein family id if and

only if it is an identifier of a protein family record”.

The IQ ontology is closer in structure to the myGrid ontology than to a con-

trolled vocabulary, in that logic axioms are used to define constraints on a small

collection of top-level concepts, and domain-specific concepts are added only when

needed, in an incremental way. These constraints are necessary in order to ensure

that user-defined extensions of the IQUO do not disrupt the ontology structure.

As we will see in the next section, this can be stated formally as a property of

logic consistency of the ontology with respect to the axioms, and can be checked,

with some extent, using automated reasoning.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 67

Constructor Syntax
universal concept >
bottom concept ⊥
concept subsumption C1 v C2

concept equivalence C1 ≡ C2

concept intersection C1 u C2

concept negation 6= C
value restriction ∀R . C
existential quantification ∃R . C
atmost cardinality restriction ≤ nR
atleast cardinality restriction ≥ nR
exactly cardinality restriction = nR
qualified atmost cardinality restriction ≤ nR . C
qualified atleast cardinality restriction ≥ nR . C
qualified exactly cardinality restriction = nR . C

Table 3.1: OWL DL constructors (partial list)

3.2.1 OWL DL terminology and notation

We now provide a brief overview of the OWL DL language and abstract notation

that will be used to describe the IQUO. For brevity, this only includes the op-

erators that are required to understand the material in the rest of this chapter.

Additional details, as well as a definition of the formal semantics of a number of

Description Logics operators, can be found in [BCM+03].

OWL DL is based on concepts, or classes, denoted C and roles, i.e., binary

relations among classes, denoted R. An individual o may be a member of one or

more classes, denoted o ∈ C. A suite of constructors allows constructed classes,

i.e., complex concepts and roles, to be built recursively from simpler ones. The

following constructed class is often cited as a typical use of OWL DL constructors:

Woman u ∃ hasChild . Person

This defines the class of all mothers, i.e., individuals of class Woman who are also

in the relation hasChild with at least one Person. Here Woman and Person are

atomic concepts. We denote generic atomic concepts with A, B etc.

Table 3.2.1 shows the syntax of some of the most commonly used OWL DL

constructors. A full reference table, complete with the semantics of the construc-

tors, can be found in [HPSvH03]. The formal semantics of OWL DL is based on

an interpretation I that consists of a non-empty set ∆I , called the interpretation

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 68

domain, and an interpretation function which maps every atomic concept A to a

set AI ⊆ ∆I , and every atomic role R to a binary relation RI ⊆ ∆I ×∆I . The

interpretation of complex constructs is defined recursively from that of simpler

constructs. As an illustration, the interpretation for the construct shown in the

previous example is the following:

(Woman u ∃ hasChild . Person)I = WomanI ∩ (∃ hasChild . Person)I

and

(∃ hasChild . Person)I = {x ∈ ∆I | ∃ y.〈x, y〉 ∈ hasChildI ∧ y ∈ PersonI}

Note in particular that >I = ∆I and ⊥I = ∅.
Next, we introduce terminological axioms, of the form:

C1 v C2 (inclusion axiom)

C1 ≡ C2 (equivalence axiom)

These axioms describe how concepts are related to each other. Equivalence

axioms are often used to provide new names for constructed classes (which are

otherwise anonymous). A set T of terminological axioms is called a terminology,

or a TBox. Here is an example of TBox:

Man ≡ Person u ¬Woman

Woman ≡ Person u ¬Man

Mother ≡ Woman u ∃ hasChild . Person

Father ≡ Man u ∃ hasChild . Person

Parent ≡ Father t Mother

Some OWL DL operators are derived from others, but are sufficiently common

to deserve their own syntax (which is, therefore, simply syntactic sugar). Among

these are constructs that define the domain and range of a role R, defined as

follows:

dom(R) = C1 iff ∃R . > v C1

range(R) = C2 iff > v ∀R . C2

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 69

For example, let R = hasPart, C1 = car. If the following inclusion axiom holds:

∃ hasPart . wheel v car (3.1)

(read as: “anything that has a wheel as one of its parts is a car”), then car is

in dom(hasPart). Viceversa, if car is in dom(hasPart), then by definition (3.1)

holds. Similarly, C2 is the range of R if and only if y ∈ C2 for all pairs 〈x, y〉 ∈ R.

Note that we could have defined range() equivalently, using the inverse relation of

R; however the definition we have given here is less restrictive, in that it applies

to versions of the OWL language that do not include the inverse operator.

Similar derived constructs, with definitions omitted for brevity, are also intro-

duced to indicate that an object property is symmetric, functional, inverseFunc-

tional, or transitive (see [HPSvH03] for details).

We say that an interpretation I satisfies an inclusion axiom C1 v C2 if CI1 ⊆
CI2 , and that it satisfies an equality axiom C1 ≡ C2 if CI1 = CI2 . If T is a TBox,

then I satisfies T if I satisfies every element of T . If I satisfies an axiom (resp.

a TBox), then I is a model for the axiom (resp. the TBox). Finally, two axioms

are equivalent if they have the same model.

A knowledge representation system based on DL can perform several types of

inference tasks on a TBox T . The most important task is to determine whether,

given T and a new concept C, adding C to T leads to a contradiction. In logical

terms, there is no contradiction if we can find a model I of T such that CI is a

nonempty set. A concept C with this property is satisfiable with respect to T
and unsatisfiable otherwise. A second inference task is to test whether a concept

is more general than another concept; this is the subsumption problem. Formally,

a concept C1 is subsumed by a concept C2 with respect to T if CI1 ⊆ CI2 for every

model I of T . In this case we write T |= C1 v C2.

The inference mechanism provided by existing DL systems checks for the

subsumption of concepts. It can be shown [BCM+03] that this is sufficient to

prove satisfiability, as well:

C is unsatisfiable ⇐⇒ C is subsumed by ⊥

C1 is subsumed by C2 ⇐⇒ C1 u ¬C2 is unsatisfiable

As an example, in the TBox above the concept Woman u Man is unsatisfiable, i.e.,

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 70

we can prove that T |= Woman u Man v ⊥. In this case we say that Woman and Man

are disjoint. Also, if we define P ≡ ≥ 1 hasChild, then T |= P ≡ Parent.

A number of specific implementations of DL reasoners are available, for exam-

ple Pellet2, used as part of the Qurator workbench. In particular, given a concept

C, the reasoner will infer all concepts C ′ such that C v C ′3. The subsumption

reasoning functionality that is available in practice makes OWL DL a particularly

appealing choice of semantic language for the IQ conceptual model. Indeed, as

we will see in the rest of this chapter, we are going to exploit this functionality to

verify that user-defined extensions to the IQUO do not introduce contradictions

into the model. This is important for any extensible ontology that depends on

incremental user contributions for its success and, ultimately, for its uptaking by

the community.

3.2.2 Modelling class constraints as axioms

With the OWL DL notation in place, we can now present the IQ ontology in

more detail. In doing this, we are going to describe the axiomatic modelling style

that we have adopted for it, and argue that it is well-suited for this type of user-

extensible ontology. The following description, made by an e-scientist, reflects

our running example in proteomics and is an example of a complex scenario that

we would like to model using the IQ ontology:

“Imprint is a type of bioinformatics tool that performs protein identi-

fication on peak list data obtained through Peptide Mass Fingerprint-

ing (PMF) technology. Its output is a “protein hit list” of elements,

and is the result of a partial match. As such, among other items

each of its elements contains (i) a protein ID, expressed as a Uniprot

accession number; (ii) the extent of the match (Coverage); and (iii)

the number of peptides in the peak list (Peptides Count). We have

provided a quality characterization of the elements in the hit list by

taking a number of raw quality indicators, including Coverage and

Peptides Count, and combining them into a function, named PIS-

coreClassifier. This function is a classifier that assigns each item in

2Pellet: http://pellet.owldl.com/ (freely available as a Java program).
3Reasoners also perform inference on the ABox, i.e., a set of individuals for the classes

defined in the TBox. We are going to ignore this functionality here, since the IQ ontology
defines a TBox but not an ABox.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 71

the list to a particular quality class, by looking at combinations of

values for the raw indicators. It uses a predefined set of class labels,

named PIScoreClassification.“

Figure 3.2.2 provides a reference illustration for the IQUO. We are going to

introduce the concepts and relationships shown in the figure throughout the rest

of this section.

We begin by introducing the semantic types that describe the data for which

quality assessments are made. These are atomic concepts, structured into a class

hierarchy with the Data Entity class, denoted DE for brevity, as its root. The hi-

erarchy is incrementally extensible with new user-defined classes. As mentioned,

the idea of using ontologies to describe data types for the bioinformatics domain

has been pioneered by the myGrid ontology, cited earlier, which includes a taxon-

omy of data artifacts that are produced and consumed by bioinformatics services.

We have shown in [MPE+05] how the DE taxonomy of the IQ ontology can be

integrated with the data domain part of the myGrid ontology.

In the example, we use the data entity class ImprintHitEntry to denote the

collection of all protein identifiers that form the output of the Imprint protein

identification tool, and we have ImprintHitEntry v HitEntry v MIAPEEntity v
DE. MIAPE (the acronym stands for “Minimum Information About a Proteomics

Experiment”) is used in the context of proteomics by the Human Proteome Or-

ganization (HUPO, www.hupo.org) and provides format and content guidelines

for describing proteomics experiments. Thus, in the IQ ontology a MIAPEentity

is a generic “umbrella” class to be extended with data entites that are associated

to the MIAPE guidelines. We have extended this class with a generic concept for

HitEntry, i.e., an entry in a hitlist produced by a protein identification tool. As a

further extension, ImprintHitEntry is specific to any such output that is produced

by the Imprint tool (as opposed to other tools, like Mascot for example).

Next, we introduce DataCollection, a top-level class used to describe type-

uniform collections of data, as well as the entity-in-collection property, with

domain DE and range DataCollection, used to specify which data entities are part

of which collection. With these, we may now model the first part of our scenario,

namely that ImprintHitEntry is part of collection PI HitList v DataCollection.

Having modelled ImprintHitEntry and PI HitList as classes, we cannot simply

assert that property entity-in-collection (which is a binary relation) holds

between them, because properties in DL hold between individuals, not classes.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 72

F
ig

u
re

3.
1:

M
ai

n
cl

as
se

s
an

d
p
ro

p
er

ti
es

in
th

e
In

fo
rm

at
io

n
Q

u
al

it
y

U
p
p
er

O
n
to

lo
gy

.
A

n
ar

c
la

b
el

p
fr

om
cl

as
s

D
to

R
is

in
te

rp
re

te
d

as
d
om

(p
)

=
D

,
ra

n
g
e(

p)
=

R
.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 73

Thus, we have two main options. We can either model ImprintHitEntry and

PI HitList as individuals, rather than classes, (i.e., ImprintHitEntry ∈ DE rather

than ImprintHitEntry v DE), and then assert the relation between them. Alter-

natively, we may use OWL DL constructors to represent the relationship as a

class-level constraint, using axioms. If we choose the the second option here (this

choice will be justified shortly), we may write:

ImprintHitEntry v ∃ entity-in-collection . PI HitList (3.2)

ImprintHitEntry v ∀ entity-in-collection . PI HitList (3.3)

DE u DataCollection v ⊥ (3.4)

We read the first axiom as “any data element of type ImprintHitEntry must be

part, among other things, of some collection of type PI HitList”, while the second

reads “if a data element of type ImprintHitEntry is part of any collection, then

that collection is of type PI HitList”4.

As we can see, the combination of these two axioms ensures that any

ImprintHitEntry data is part of some collection, which can only be of type

PI HitList. Note that this axiom-based modelling style follows naturally from

our choice to represent domain-specific concepts as classes. Had we opted to

model domain-specific concepts as individuals, we would have had an instance of

the entity-in-collection relation, but no axioms. Each of the two options has

its advantages and consequences and, in this case, there is no definite rule that

we can follow to choose either of the two options. However we argue that, for a

domain-extensible ontology, the axiom-based modelling style is preferrable.

The argument is based on three main observations. Firstly, that individ-

uals cannot be further extended, an obvious limitation in our case. Secondly,

that by using classes throughout, the role of individuals can be reserved for ob-

jects in the data space, i.e., actual data elements. An individual UniprotXYZ ∈
ImprintHitEntry is a specific data element that is part of the actual output from

a specific invocation of some instance of an Imprint tool. Reserving the role

of individuals to “things” in the space of actual data leaves the domain expert

free to extend the ontology class hierarchies indefinitely, to model concepts that

4Rector et al. provide a simple introduction to the intepretation of OWL DL operators and
of constructed classes in [RDH+04]). The third axiom ensures, quite naturally, that DE and
DataCollection are disjoint, i.e., data types do not overlap with data collection types.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 74

are increasingly more domain-specific. Consistently with this view, an individ-

ual aPI HitList ∈ PI HitList is a particular dataset that is the result of some

execution of an actual Imprint tool (which, as we will see, is itself modelled as

an individual of some other class, namely Imprint). Thus, we could legitimately

write 〈UniprotXYZ , aPI HitList〉 ∈ entity-in-collection to represent a rela-

tion between instances, that holds in the data space. Note that, in addition to

data, this distinction between classes and individuals applies to functions, as well.

In Section 3.2.3 we propose to model quality functions as classes; consequently,

the corresponding individuals are actual software components that realize the

functions, typically as services.

Thirdly, and perhaps more interestingly, class-level axioms are effectively con-

sistency constraints on the ontology that can be checked automatically using

subsumption reasoning. To illustrate this important point, consider the following

axiom:

X v ∃ entity-in-collection . ImprintHitEntry (3.5)

where X is some new user-defined class. When we add this axiom to

the TBox consisting of (3.2-3.4) and dom(entity-in-collection) = DE,

range(entity-in-collection) = DataCollection, a DL reasoner makes the fol-

lowing inference:

ImprintHitEntry v (DE u DataCollection)

due to the range constraint. However, this contradicts (3.4), indicating an incon-

sistent ontology.

This simple example shows how reasoning may help detect user errors when

updating the ontology (namely, that X can only be a data collection, not a data

entity). Note that detecting an inconsistency is a special case of inferring the

most specific subsumption relationship for a class (i.e., X v ⊥). In general, we

can use subsumption reasoning to obtain a classification of classes that are not

explicitly placed within any hierarchy. Unlike with other information models, this

is possible and acceptable when using ontologies, exactly because we can count

on the axioms to infer all subsumption relationships automatically. For example,

if we had written (3.5) as

X v ∃ entity-in-collection . DataCollection

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 75

the reasoner would have inferred X v DE due to the domain constraint. We

will present a further use of reasoning in Section 3.3, where we define a more

complete TBox that allows a reasoner to infer logical associations between user-

defined quality functions and abstract quality dimensions such as those discussed

in the previous chapter.

Note that our proposed use for individuals also fits well with the natu-

ral meaning of a data collection, i.e., that of a database. Let us, for ex-

ample, introduce the class ArrayExpress v DataCollection. ArrayExpress

(www.ebi.ac.uk/arrayexpress) is a well-known repository for microarray data

maintained by the EBI. This new class therefore represents the collection

of all possible deployments of an ArrayExpress database; an individual, say

mainArrayExpress ∈ ArrayExpress, denotes a specific database instance (for ex-

ample, the instance available at www.ebi.ac.uk/arrayexpress). Consistent with

our distinction, the class ArrayExpressEntity denotes the type of all possible

ArrayExpress data elements, whereas “P2E-MEXP-641”, the identifier for an ac-

tual experiment stored in the EBI database, is an individual: P2E-MEXP-641 ∈
ArrayExpressEntity. Thus, the relation 〈P2E-MEXP-641 , mainArrayExpress〉 ∈
entity-in-collection may hold. These individuals, however, are not part of the

ontology, because they belong to the dynamic data space rather than to the log-

ical model. The set of all possible relation instances is instead captured by the

two axioms:

ArrayExpressEntity v ∀ entity-in-collection . ArrayExpress

ArrayExpressEntity v ∃ entity-in-collection . ArrayExpress

Having established the distinction between classes and individuals, we will fol-

low the axiomatic approach systematically in the rest of the IQ ontology. Property

contains-data-entity provides a further example of this approach. It is used

to model a part-of relationship among data entities, i.e., types that represent

compound data structures (i.e., their domain and range are both DataEntity).

Returning to our scientist’s statement at the beginning of the section, we can use

this property to model ImprintHitEntry as a complex type, consisting of Mass,

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 76

Coverage, and UniprotEntity (a Uniprot identifier):

ImprintHitEntry v ∃contains-data-entity . Mass

ImprintHitEntry v ∃contains-data-entity . Coverage

ImprintHitEntry v ∃contains-data-entity . UniprotEntity

Together, these axioms are interpreted as “any ImprintHitEntry must contain,

among other things, some Mass individual” (resp. Coverage, UniprotEntity). It

is important to be aware of the different semantics implied by combinations of

these axioms. The reasonable assumption that the three components are distinct,

for example, must be stated explicitly as follows:

Mass u Coverage u UniprotEntity v ⊥

Also, note that the axioms above state conditions that are necessary but not

sufficient: a compound structure that contains each of the three data entities need

not be an ImprintHitEntry. Stating a sufficient condition requires an additional

equivalence axiom, i.e.:

ImprintHitEntry ≡ ∃contains-data-entity . (Mass t Coverage t UniprotEntity)

Finally, an individual of ImprintHitEntry may contain data entities of some other

type. To exclude this possibility we must add a universal class restriction:

ImprintHitEntry v ∀contains-data-entity . (Mass t Coverage t UniprotEntity)

Choosing an appropriate level of detail for the model is an ontology engineer-

ing issue, for which only guidelines and “best practice” examples, rather than

theoretical results, are available [GPFLC04]. The rest of the IQUO design, dis-

cussed in the remainder of this section, has been driven by the opportunity to

exploit automated reasoning both to infer new knowledge that expert may con-

sider useful, and to provide consistency guarantees on user actions. Examples of

these applications are presented in Section 3.3 and in Section 4.4 of Chapter 4,

respectively.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 77

As a preview of the material ahead, we show a summary of the IQUO concepts

and their properties in Table 3.2.2. The rest of this chapter provides a detailed

account of these concepts.

Table 3.2: Summary of object properties in the IQUO
Property Domain Range
entity-in-collection DataEntity DataCollection
contains-data-entity Data Entity Data Entity
analysis-tool-based-on-
function

Data Analysis Tool Data Test Function

assertion-based-on-
evidence

Quality Assertion Quality Evidence

hasClassificationModel ClassificationQA ClassificationModel
input-of-annotator Data Entity Annotation Function
annotator-has-output Annotation Function Quality Evidence
QP-from-QA Quality Property Quality Assertion

3.2.3 Quality metadata and quality functions

We continue our overview of the IQUO by introducing the Quality Evidence

class, QE for short, also in Figure 3.2.2 to model metadata that can be computed

from the data and the data processing environment. An example of a user-defined

hierarchy of Quality Evidence is Coverage v PFMMatchReport v PIMatchReport v
QualityEvidence. Note that Coverage has already been introduced earlier, not as

a kind of Quality Evidence but rather as a Data Entity. This is not an inconsis-

tency; rather, it reflects the situation, common in practice, where a component

of a data compound, Coverage in this case, is itself used as a piece of evidence to

establish the quality of the entire compound, namely ImprintHitEntry. We will

return to this point briefly in Section 3.2.5.

Continuing with Quality Evidence, we must now specify how subclasses of

QE represent quality annotations, and how, in turn, these are used by Qual-

ityAssertion functions to compute the actual quality values upon which the user

quality actions are based. To this end, we model functions as first-class citizens

in the ontology. This design choice has two types of consequence. On the one

hand, it presents the potential problem that functions can be sub-classes of other

functions, i.e., f1 v f2, thus requiring an explicit semantics for function sub-

classing. Shortly, we will present a simple axiomatization that is consistent with

the standard Object-Oriented interpretation of function specialization. On the

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 78

other hand, this design choice allows us to describe aspects of the interface of

those functions using OWL DL axioms; this gives us an opportunity for formal

verification of some function composition properties. This is an important aspect

of using quality functions in practice: as we will see in Chapter 4, quality func-

tions are used as building blocks for Quality Views, i.e., processes obtained by

composition of quality functions, which compute multiple quality classifications

from the data.

One may note that relevant work has already been done on defining Semantic

Web Services (SWS), i.e., services whose interfaces and, to some extent, inter-

nal behaviour are described using ontology concepts [MDBL07]. It is a common

tenet of the SWS community that this will pave the way for large-scale service

discovery and, subsequently, their automated composition into more complex ser-

vices. Regarding this, we make two observations. First, while providing a rich

description of the purpose of services is important to facilitate their discovery,

we note that the type of application domain that quality functions, and therefore

their possible incarnation as services, apply to (that of information quality) is

quite restricted, probably making a full-fledged semantic discovery architecture

unnecessary. And second, most current proposals regarding the semantic descrip-

tion of service behaviour are focused on the particular syntax used to describe

the service’s interface, for example WSDL-S (now SAWSDL [VS07a]), or OWL-S.

Although quality functions are indeed eventually mapped to Web Services, their

semantic description should be independent of this assumption, which is indeed

not required in our case.

We now describe how quality functions are introduced in the IQ model, and

how class subsumption and other OWL DL operators are used to define the

semantics of function specialization.

The first step is to add two new class hierarchies to the IQUO, AF and QA,

for the Annotation and Quality Assertion functions respectively. For example,

Imprint Annotator v AF and PIScore Classifier v QA. Consistently with our

earlier definition of Quality classification of data (Section 2.3), we further distin-

guish between two types of QA functions, those that compute a numerical score,

SQA v QA for “Score QA”, and those that assign class labels to data, CQA v QA, i.e.,

“Classification QA”. Furthermore, ontology class ClassificationModel accounts

for all possible class labelling that are available to CQA functions. Any subclass

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 79

of ClassificationModel defines a set of labels, as an enumeration of individu-

als, for example PIScoreClassification: {low PI Score, close to avg PI Score,

high PI score}. Every CQA function is associated with exactly one classification

model, so that the labels assigned to data elements during IQ assessment are all

consistent with the model. This constraint is once again defined axiomatically,

using a pattern similar to those shown earlier.

3.2.4 Modelling signatures of functions

As the next step, we cast our existing data and metadata classes as types that we

can use to describe function signatures, as follows. Let DE denote the collection

of all Data Entity classes, and letQE and CM denote the collections of all Quality

Evidence and Classification Models, respectively. We use σ and τ to range over

the types of the arguments and return values of functions: σ, τ ∈ DE∪QE∪CM.

With this notation, a generic function f with n input parameters that returns an

m-tuple of elements has the following signature:

f : σ1 × · · · × σn → τ1 × · · · × τm (3.6)

In particular, an Annotation function af has one input (a data element) and a

m-tuple output:

af : σ → τ1 × · · · × τm, (3.7)

af v AF, σ ∈ DE , τi ∈ QE , 1 ≤ i ≤ m

In contrast, a QA function qa has n + 1 inputs (the data element and n annota-

tions), and a single output:

qa : σ0 × σ1 × · · · × σn → τ, (3.8)

qa v QA, σ0 ∈ DE , σi ∈ QE , 1 ≤ i ≤ n, τ ∈ CM

The OO principles of function (i.e., method) polymorphism can be summarized

by the following two rules:

1. if f has a signature as in (3.6), then it must accept an input consisting of

an n-tuple 〈x1 . . . xn〉 of type σ′1 . . . σ′n, with σ′i v σi for each i;

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 80

2. If function f ′ specializes f , then the type of each of its input parameter is a

a sub-type of the corresponding parameter of f , and the type of the result

is sub-type of those of f (and possibly of higher cardinality). Formally, let

f be defined as in (3.6), and

f ′ : σ′1 × · · · × σ′n → τ ′1 × · · · × τ ′k, k ≥ m (3.9)

If f ′ v f , then σ′i v σi for 1 ≤ i ≤ n, and τ ′j v τj, 1 ≤ j ≤ m.

To model these rules in the IQUO, we introduce the following properties5:

• DE-input-of with domain DE and range AF

• AF-has-output with domain AF and range QE

• QE-input-of with domain QE and range QA

• CQA-has-cm with domain CQA and range CM

Then, for an Annotation function af as in (3.7), the following axioms are added

to the ontology:

σ ≡ ∃ DE-input-of . af (3.10)

af v ∃ AF-has-output . τi, 1 ≤ i ≤ m (3.11)

where σ v DE, τi v QE. (3.10) defines a necessary and sufficient condition, namely

that af has one single input, which is σ, while (3.11) states the necessary condition

that τi is an output of af —but note that af may have a multi-valued output.

As an example, here are the axioms for the ImprintAnnotation function:

ImprintHitEntry ≡ ∃ DE-input-of . ImprintAnnotation (3.12)

ImprintAnnotation v ∃ AF-has-output . PeptidesCount (3.13)

ImprintAnnotation v ∃ AF-has-output . Masses (3.14)

(the other output axioms are similar and omitted for brevity).

These axioms are consistent with properties (1) and (2) above, regarding the

polymorphism for signatures:

5The different choices of domain and range for different properties, reflected in their names
(e.g. has-output vs. input-of), has to do with the need to perform automated inference,
and will become clear in the next section.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 81

• regarding (1), let σ′ v σ. If σ v ∃ DE-input-of . af , then it follows

immediately that σ′ v ∃ . DE-input-of . af , i.e., af accepts input of type

σ′;

• regarding (2), observe that if af ′ v af , and σ′ v ∃ . DE-input-of . af ′,

then σ′ v ∃ . DE-input-of . af . And because ∃ DE-input-of . af v σ, then

σ′ v σ.

It is also easy to see that if af v ∃ AF-has-output . τ , i.e., af returns value of

type τ , and τ v τ ′, then af v ∃AF-has-output . τ ′ also holds.

The axioms for QA functions are similar to those for Annotation functions:

σi v ∃ QE-input-of . qa, 1 ≤ i ≤ n (3.15)

qa v ∃ CQA-has-CM . τ (3.16)

3.2.5 E-science services as a source of quality indicators

We now elaborate on the case, briefly touched upon in Section 3.2.3, of a

DataEntity class, such as Coverage, that is also a kind of Quality Evidence.

This situation is common when the data entity is the output of some e-science

service. This is typically the case for values computed by predictive tools like

Imprint or Mascot that associate a measure of confidence, i.e., a score, with their

prediction. For instance, as mentioned earlier, well-known algorithms for gene

or protein sequence alignment, like BLAST, provide a statistical estimate of the

probability that the resulting alignment occurs by chance (the e-value).

Thus, the output from these algorithms is modelled naturally as a compound

data structure consisting of the data that is the subject of the quality assessment,

as well as some quality evidence. In the IQUO we acknowledge this situation by

introducing class Data Analysis Tool (DAT for short). Imprint and MASCOT,

for example, are two DATs:

Imprint v PMFMatchAnalysisTool v PIAnalysisTool v DataAnalysisTool

MASCOT v PMFMatchAnalysisTool v PIAnalysisTool v DataAnalysisTool

With this class, however, we cannot properly tell the difference between Imprint

and Mascot: they are both a kind of PMFMatchAnalysisTool. To allow for a finer

description of these tools, we also introduce class Data Test Function (DTF) to

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 82

represent some functionality or algorithm, so that a DAT can be described as a

composition of simpler DTFs. Consider for example the DTF PMFMatchFunction,

a subclass of Data Test Function that represents the common function of pro-

tein identification on peptide peaklists obtained by Protein Mass Fingerprint-

ing (PMF). We can state that Imprint and MASCOT each include a version of

PMFMatchFunction, as follows:

Imprint v ∃ analysis-tool-based-on-function . Imprint Match

MASCOT v ∃ analysis-tool-based-on-function . MASCOT-PMFMatch

with Imprint Match v PMFMatchFunction and MASCOT-PMFMatch v
PMFMatchFunction. With these axioms and the new property

analysis-tool-based-on-function between DataAnalysisTool and Data Test

Function (see also Figure 3.2.2 on page 72), we have now clarified the similarities

and differences betweeen Imprint and MASCOT, namely that they include similar

functionality, but require a different implementation of that functionality. In

practice, we use DTFs to describe a few, selected features of a DAT that are

relevant as a source of Quality Evidence.

Furthermore, we use property requires-input-parameter to capture the input

type of these tools:

Imprint v ∃requires-input-parameter . PeptidePeaklist (3.17)

MASCOT v ∃requires-input-parameter . PeptidePeaklist

and PeptidePeaklist v MIAPE Entity, a type of proteomics data entity. Depend-

ing on the amount of knowledge that we want to capture regarding a certain tool,

a domain expert may use additional axioms to describe stronger properties, for

instance:

Imprint v ∀requires-input-parameter . PeptidePeaklist (3.18)

The combination of (3.17) and (3.18) is interpreted as “Imprint requires an input

parameter of exactly one type, namely a peptide peaklist” (i.e., it won’t accept

any other type of input, and the peptide peaklist is required). Finally, observe

that some DATs can compute Quality Evidence values, because we allow a DAT

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 83

to be a subclass of some Annotation function6.

To summarize, we have introduced class hierarchies to account for the fact that

bioinformatics tools may compute both data and quality metadata. By adding

appropriate axioms on these classes, we may describe the relationship between

different tools, by enumerating some of their common elementary functionalities,

and identify the specific types of quality metadata they produce.

3.3 Further role of reasoning in the IQ ontology

Our use of reasoning so far has been to guarantee that user extensions to the

IQUO do not result in logical inconsistencies (an indication of modelling errors).

In particular, we have made the implicit assumption that users may introduce

new classes and axioms, but not new properties, as these form the “backbone”

of the ontology. As a complete example of these extensions, Table 3.3 provides

a summary of the user-defined classes and concepts that capture the example

scenario proposed at the beginning of the previous section. A corresponding

visual rendering of the relevant class hierarchies is shown in Figure 3.27.

We now present a different application of reasoning, that is made possible by

our axiomatic approach. In the introductory chapter we have briefly mentioned

a number of quality dimensions, for example Currency, Completeness, and Accu-

racy, that the data management community has adopted as a reference framework

for Data Quality. Some of these dimensions are defined in abstract terms: the

accuracy of a value v for example is defined in terms of the degree of similar-

ity between v and a reference value v′, which is considered correct. A specific

definition of Accuracy contains a parameter, the similarity function.

In the IQ model presented so far, these dimension concepts do not seem to

have a role. Indeed, we have been arguing that scientists should be able to

provide different definitions of quality depending on the data types and context

of use, rather than by relying on abstract quality dimensions. Nevertheless, we

also recognize that those quality dimensions may represent a useful common

vocabulary that can facilitate the classification of user-defined quality properties.

In this section we demonstrate on a practical example that the IQ ontology can

be used to establish such a classification. In order to do this, we are going to (i)

6In OWL DL, classes may have multiple parents.
7The color-coding in this and in the following figures is an artifact of the protege tool used

to produce it, and has no particular meaning.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 84

T
ab

le
3.

3:
S
u
m

m
ar

y
of

ax
io

m
s

fo
r

th
e

Im
p
ri

n
t

p
ro

te
om

ic
s

ex
am

p
le

I
m
p
r
i
n
t
H
i
t
E
n
t
r
y
v

D
a
t
a
E
n
t
i
t
y

D
a
ta

M
a
s
s
v

D
a
t
a
E
n
t
i
t
y

U
n
i
p
r
o
t
E
n
t
i
t
y
v

D
a
t
a
E
n
t
i
t
y

M
a
s
s
v

Q
u
a
l
i
t
y
E
v
i
d
e
n
c
e

M
a
s
s
e
s
v

Q
u
a
l
i
t
y
E
v
i
d
e
n
c
e

Q
u
a
li
ty

E
v
id

en
ce

C
o
v
e
r
a
g
e
v

Q
u
a
l
i
t
y
E
v
i
d
e
n
c
e

P
e
p
t
i
d
e
s
C
o
u
n
t
v

Q
u
a
l
i
t
y
E
v
i
d
e
n
c
e

I
m
p
r
i
n
t
H
i
t
E
n
t
r
y
v
∀
e
n
t
i
t
y
-
i
n
-
c
o
l
l
e
c
t
i
o
n

.
P
I
-
H
i
t
L
i
s
t

D
a
ta

a
n
d

d
a
ta

co
ll
ec

ti
o
n
s

I
m
p
r
i
n
t
H
i
t
E
n
t
r
y
v
∃c

o
n
t
a
i
n
s
-
d
a
t
a
-
e
n
t
i
t
y

.
M
a
s
s

C
o
m

p
o
u
n
d

d
a
ta

st
ru

ct
u
re

s
I
m
p
r
i
n
t
H
i
t
E
n
t
r
y
v
∃c

o
n
t
a
i
n
s
-
d
a
t
a
-
e
n
t
i
t
y

.
U
n
i
p
r
o
t
E
n
t
i
t
y

I
m
p
r
i
n
t
A
n
n
o
t
a
t
i
o
n
v

A
n
n
o
t
a
t
i
o
n
F
u
n
c
t
i
o
n

A
n
n
o
ta

ti
o
n

fu
n
ct

io
n
,
th

ei
r

in
p
u
ts

a
n
d

o
u
tp

u
ts

I
m
p
r
i
n
t
H
i
t
E
n
t
r
y
≡
∃
D
E
-
i
n
p
u
t
-
o
f

.
I
m
p
r
i
n
t
A
n
n
o
t
a
t
i
o
n

A
n
I
m
p
r
i
n
t
H
i
t
E
n
t
r
y

is
,
a
m

o
n
g

o
th

er
th

in
g
s,

th
e

in
p
u
t

to
I
m
p
r
i
n
t
A
n
n
o
t
a
t
i
o
n

I
m
p
r
i
n
t
H
i
t
E
n
t
r
y
v

(∃
i
s
-
o
u
t
p
u
t
-
o
f
-
D
A
T
.
I
m
p
r
i
n
t
)

A
n
I
m
p
r
i
n
t
H
i
t
E
n
t
r
y

is
,
a
m

o
n
g

o
th

er
th

in
g
s,

th
e

o
u
tp

u
t

o
f
so

m
e
I
m
p
r
i
n
t

to
o
l.

I
m
p
r
i
n
t
A
n
n
o
t
a
t
i
o
n
v
∃
A
F
-
h
a
s
-
o
u
t
p
u
t

.
P
e
p
t
i
d
e
s
C
o
u
n
t

M
u
lt

ip
le

o
u
tp

u
ts

o
f
I
m
p
r
i
n
t
A
n
n
o
t
a
t
i
o
n

I
m
p
r
i
n
t
A
n
n
o
t
a
t
i
o
n
v
∃
A
F
-
h
a
s
-
o
u
t
p
u
t

.
M
a
s
s
e
s

I
m
p
r
i
n
t
A
n
n
o
t
a
t
i
o
n
v
∃
A
F
-
h
a
s
-
o
u
t
p
u
t

.
M
a
s
s

I
m
p
r
i
n
t
A
n
n
o
t
a
t
i
o
n
v
∃
A
F
-
h
a
s
-
o
u
t
p
u
t

.
C
o
v
e
r
a
g
e

I
m
p
r
i
n
t
v

P
M
F
M
a
t
c
h
A
n
a
l
y
s
i
s
T
o
o
l
v

D
a
t
a
A
n
a
l
y
s
i
s
T
o
o
l

I
m
p
r
i
n
t

is
a
n

A
n
a
ly

si
s

T
o
o
l

I
m
p
r
i
n
t
M
a
t
c
h
v

D
a
t
a
T
e
s
t
F
u
n
c
t
i
o
n

I
m
p
r
i
n
t
v
∃a

n
a
l
y
s
i
s
-
t
o
o
l
-
b
a
s
e
d
-
o
n
-
f
u
n
c
t
i
o
n

.
I
m
p
r
i
n
t
M
a
t
c
h

I
m
p
r
i
n
t

is
b
a
se

d
,
a
m

o
n
g
st

o
th

er
th

in
g
s,

o
n

fu
n
ct

io
n
I
m
p
r
i
n
t
M
a
t
c
h

P
e
p
t
i
d
e
P
e
a
k
l
i
s
t
v

d
a
t
a
E
n
t
r
i
t
y

p
e
p
t
i
d
e
-
p
e
a
k
l
i
s
t
v

(∀
e
n
t
i
t
y
-
i
n
-
c
o
l
l
e
c
t
i
o
n

.
P
I
E
x
p
e
r
i
m
e
n
t
D
a
t
a
C
o
l
l
e
c
t
i
o
n

)
p
e
p
t
i
d
e
-
p
e
a
k
l
i
s
t

ca
n

o
n
ly

b
e

p
a
rt

o
f

co
ll
ec

ti
o
n

P
I
E
x
p
e
r
i
m
e
n
t

D
a
t
a
C
o
l
l
e
c
t
i
o
n

I
m
p
r
i
n
t
v
∃r

e
q
u
i
r
e
s
-
i
n
p
u
t
-
p
a
r
a
m
e
t
e
r

.
P
e
p
t
i
d
e
P
e
a
k
l
i
s
t

I
m
p
r
i
n
t
,
a
m

o
n
g
st

o
th

er
th

in
g
s,

re
q
u
ir

es
in

p
u
t
p
a
ra

m
et

er
P
e
p
t
i
d
e
P
e
a
k
l
i
s
t

a
n
d

n
o

o
th

er
ty

p
e

o
f
p
a
ra

m
et

er
I
m
p
r
i
n
t
v
∀r

e
q
u
i
r
e
s
-
i
n
p
u
t
-
p
a
r
a
m
e
t
e
r

.
P
e
p
t
i
d
e
P
e
a
k
l
i
s
t

P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r
v

Q
u
a
l
i
t
y
A
s
s
e
r
t
i
o
n

Q
u
a
li
ty

A
ss

er
ti

o
n
s

P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r
v

(∃
a
s
s
e
r
t
i
o
n
-
b
a
s
e
d
-
o
n
-
e
v
i
d
e
n
c
e

.
C
o
v
e
r
a
g
e
)

P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r
,

a
m

o
n
g
st

o
th

er
th

in
g
s,

is
b
a
se

d
o
n

m
u
lt
ip

le
ty

p
es

o
f

ev
i-

d
en

ce
P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r
v

(∃
a
s
s
e
r
t
i
o
n
-
b
a
s
e
d
-
o
n
-
e
v
i
d
e
n
c
e

.
M
a
s
s
)

P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r
v

(∃
a
s
s
e
r
t
i
o
n
-
b
a
s
e
d
-
o
n
-
e
v
i
d
e
n
c
e

.
M
a
s
s
e
s
)

P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r
v

(∃
a
s
s
e
r
t
i
o
n
-
b
a
s
e
d
-
o
n
-
e
v
i
d
e
n
c
e

.
P
e
p
t
i
d
e
s
C
o
u
n
t
)

P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r
v

(∃
h
a
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n
M
o
d
e
l

.
P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
c
a
t
i
o
n
)

P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r

h
a
s

ex
a
ct

ly
o
n
e

ty
p
e

o
f

cl
a
ss

ifi
ca

ti
o
n

m
o
d
el

,
P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
c
a
t
i
o
n

P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
e
r
v

(∀
h
a
s
C
l
a
s
s
i
f
i
c
a
t
i
o
n
M
o
d
e
l

.
P
I
S
c
o
r
e
C
l
a
s
s
i
f
i
c
a
t
i
o
n
)

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 85

Figure 3.2: Partial view of the class hierarchy for the Information Quality ontol-
ogy, with concept for the Imprint example

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 86

add axiomatic definitions for abstract quality dimensions to the IQUO, and (ii)

use a DL reasoner to automatically infer that some user-defined quality properties

of data are in fact a specialization of those quality dimensions. A preliminary

version of the material presented in this section can be found in [MPE+05].

We proceed incrementally. The first step is to extend the IQUO with the

new top-level QualityProperty class, along with a number of sub-classes that

reflect, in part, the taxonomy presented in Chapter 2 (Figure 3.3). For the sake

of illustration, we are only going to provide a definition for the Accuracy class.

The same modelling pattern used in the example, however, can be applied to

other dimensions as well. Note also that the taxonomy includes a domain-specific

class, PI-acceptability v QualityProperty; this is the only class in the hierarchy

that is user-defined and not part of the IQUO. We are going to show that, by

suitable modelling of domain classes for the proteomics example, we can infer

that PI-Acceptability v Accuracy, i.e., that the scientist’s effort in producing

personal quality definitions results in a specialization of a known dimension. We

argue that adding this newly acquired information to the ontology is useful in

terms of reuse of quality knowledge, because it provides an answer to queries such

as, “what types of Accuracy-related quality functions have been defined for the

proteomics domain?”.

The second step is to establish a relationship between the axiomatic quality

properties and the operational quality definitions. As we recall, these definitions

consist of Quality Evidence types and Quality Assertions. Correspondingly, we

add two new features to the ontology.

First, we introduce a new collection of Quality Characterization classes,

i.e., Confidence-QC, Specificity-QC, Reputation-QC, etc, and a new property:

has-QC (“has Quality Characterization”), with domain Quality Evidence t
DataTestFunction and range Quality Characterization. We are going to de-

fine the “Accuracy” property in terms of these new, intermediate concepts. The

goal is to provide scientists with a way to associate explicit quality characteri-

zations to their own QE types, as well as to the families of software tools that

compute QE values. For example:

PIMatchReport v ∃ has-QC . Confidence-QC

associates a quality characterization to a user-defined QE type. Specifically, the

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 87

Figure 3.3: Part of the generic Quality Properties classes

axiom states that anything that is a PIMatchReport must have a quality charac-

terisation Confidence-QC.

Second, we introduce a new property QP-from-QA (a shorthand for “Qual-

ity Property from Quality Assertion”). Since we know from Section 3.2.3 how

to link Quality Assertion classes to their QE input, this is all we need to

close the gap between the “user level”, consisting of concrete quality functions,

and the generic ones consisting of abstract quality properties. Thus, we can

now define PI-Acceptability in terms of a Quality Assertion class, in this case

PIScoreClassifier, as follows:

PI-Acceptability v ∃ QP-from-QA . PIScoreClassifier (3.19)

Intuitively, with this axiom we are stating that the abstract quality property that

describes the “acceptability” of a data element can be measured in practice us-

ing the PIScoreClassifier Quality Assertion function. (note that the existential

restriction indicates that the same property may be additionally defined in terms

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 88

of other Assertion functions, as well). In other words, the PI-Acceptability

property reflects the specific “fitness for use” criteria that is defined by the

PISCoreClassifier Assertion.

Our third step is to create new constructed classes that represent QE types

that have the same quality characterization. For example:

ConfidenceEvidence ≡ QualityEvidence u (∃ has-QC . ConfidenceQC)

is the class of all and only the Quality Evidence types that also

have a ConfidenceQC quality characterization (similarly, we could define

ReputationEvidence, etc. using the same pattern). Intuitively, we can inter-

pret ConfidenceQC as a “label” associated by users to items of quality metadata,

to indicate that such metadata is used to measure the confidence in the value

of the underlying data. For example, a sequence alignment program like blast

may produce a sequence, along with a value (the e-value) to indicate the level of

confidence in that sequence. In this case, we interpret the e-value as a piece of

Quality Evidence that has a confidenceQC characterisation in terms of quality.

The axiom above introduces an explicit ConfidenceEvidence class to represent

the set of all such QE types. A more complete version of the same axiom follows.

In this version, we allow for the possibility that software tools that produce QE

values, in addition to the values themselves, can also be tagged with a specific

quality characterisation:

ConfidenceEvidence ≡

QualityEvidence u (∃ is-output-of-DAT . (∃ has-QC . ConfidenceQC))

t

QualityEvidence u (∃is-parameter-of . (∃ has-QC . ConfidenceQC))

t

QualityEvidence u (∃ has-QC . ConfidenceQC)

Note that we can use anonymous constructed classes in axioms, for example to

specify “any class that is output of any DAT that has a Confidence Quality

characterization”.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 89

With these definitions, a reasoner infers the following class subsumption rela-

tionships:

PIMatchReport v ConfidenceEvidence, (3.20)

MassCoverage v ConfidenceEvidence, (3.21)

PMFMatchRanking v ConfidenceEvidence (3.22)

Using these new classes we can now provide a formal definition of the Accuracy

property. Consider the following axiom:

Accuracy ≡ (∃ QP-from-QA .

(∃ assertion-based-on-evidence .

(SpecificityEvidence t ConfidenceEvidence))) (3.23)

This defines Accuracy as a quality property that corresponds to any QA that is

based on any QE with a quality characterization of either Specificity or Confi-

dence. It is important to clarify that this is only one of many possible definitions

of Accuracy, and that it is not our goal to offer a definitive view on specific quality

dimensions. Rather, the point here is that the IQ ontology is sufficiently expres-

sive to allow this type of definition to be given in a formal way, so that it can be

used to make interesting automated inferences on user-defined classes. Indeed,

we may finally prove that

PI-Acceptability v Accuracy (3.24)

Intuitively, the proof proceeds as follows. From

PiScoreClassifier v ∃ assertion-based-on-evidence . MassCoverage

and (3.21) we derive

PiScoreClassifier v ∃ assertion-based-on-evidence . ConfidenceEvidence

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 90

From this and (3.19), it follows that

PI-Acceptability v (∃ QP-from-QA .

(∃assertion-based-on-evidence . ConfidenceEvidence))

which is the definition of Accuracy (3.23).

Figure 3.4: Inferred hierarchy for the PI-Acceptability class

Figure 3.4 shows a new version of the ontology fragment of Figure 3.3, after the

reasoning process.8 In conclusion, we have shown how the axiomatic definition

of complex concepts in the IQ ontology can be leveraged to perform automated

classification of user-defined classes. In this case, the effect of of the classification

is to describe operational definitions of quality in terms of a general framework

for quality dimensions.

8The evidence-template class is simply a “container” class where we collect all the class
definitions for quality characterization.

CHAPTER 3. SEMANTIC MODELLING OF IQ CONCEPTS 91

3.4 Summary and conclusions

In this chapter we have presented an ontology of Information Quality concepts.

We have described the IQ upper ontology (IQUO), and shown how our proteomics

example can be modelled by extending the IQUO with domain-specific concepts.

We have also demonstrated value to users by showing how we can systematically

use OWL DL axioms in the ontology to define consistency constraints, and how

to exploit OWL DL reasoning to enforce the constraints. We have further shown

how user-defined quality dimensions can be automatically classified as part of a

IQUO taxonomy of dimensions, drawn from traditional Data Quality literature.

In the next chapter we build upon the IQ ontology to define Quality Views,

an abstract process model for computing quality features. The ontology provides

a semantic interpretation of Quality Views, opening the way to the definition of

consistent Quality Views and to an algorithm for checking consistency.

Chapter 4

Quality Views

A rational man is one who makes a proper use of reason: and this implies,

among other things, that he correctly estimates the strength of evidence. †

In the previous chapter we have described a semantic model for Information

Quality, designed to provide abstract definitions for quality functions, which we

called Quality Assertions (QA). Building upon that model, this chapter is con-

cerned with the composition of Quality Assertions into more complex quality

processes. Our goal is to automate, as much as possible, the process of comput-

ing Quality Assertions on user datasets, in the context of existing data processing

environments, notably dataflows and query processing.

Central to this idea is the notion of a Quality View (QV), i.e., a view on the

data that reflects a user’s personal definition of quality criteria. The term Quality

View was chosen to suggest that a variety of different quality definitions can be

applied to the same data, resulting in multiple views. The information provided

by a particular view allows a user to make informed decisions regarding the

acceptance of data elements during the course of data processing. Informally, a

Quality View is the specification of an abstract process that involves (i) collecting

Quality Evidence values for a dataset, (ii) applying one or more QA functions to

the Evidence to compute quality classes, and (iii) associating quality actions to

the quality classes and performing those actions.

The main research contribution presented in this chapter is a formalization

†A. J. Ayer, Probability and Evidence, 1972, Columbia University Press.

92

CHAPTER 4. QUALITY VIEWS 93

of the Quality View concept. Specifically, we first describe an XML-based sur-

face syntax for the Quality Views language, and then define its formal semantics

in purely functional terms, by presenting a complete QV interpreter written in

the Haskell functional programming language. Then, we define the formal no-

tion of a consistent Quality View, grounded in the Information Quality ontology

presented in the previous chapter. As Quality Views specify a composition of

functions, we need to provide guarantees that the composition is consistent with

the input/output requirements of the functions involved. Consistent views have

the property that all the input requirements for the functions involved are satis-

fied. Thus, consistency is a pre-requisite for computing Quality Views in practice

– the topic of the next chapter. In the last section of the chapter we present a

practical algorithm to support the users in this phase of the lifecycle, by providing

an interactive, visual environment for the specification of QVs with consistency

guarantees. We find that, although the algorithm is based upon the semantic IQ

model, users can be guided in their specification of Quality Views without the

need for any knowledge of ontologies.

The rest of the chapter is organized as follows. We begin with an informal

description of Quality Views in Section 4.1, along with their surface XML syntax

(Section 4.2), and an example QV that defines quality controls on the proteomics

data that is processed by the example workflow. The formal definition of QV

is presented in Section 4.3, where the Haskell interpreter is introduced. Finally,

Section 4.4 gives a definition of Quality View consistency, along with the algo-

rithm for verifying consistency using a DL reasoner, and provides an account of

the user environment for the specification of consistent Quality Views.

4.1 Overview of Quality Views

Informally, a Quality View consists of one or more QA functions, along with the

specification of Annotation Functions (AF) that compute the input values for

each QA, and of quality actions, which indicate what should be done with the

data once the QA values are available. It should be clear from this definition that

the elements involved in a QV, with the exception of actions, are all defined as

part of the IQ ontology. Thus, a QV is essentially the declarative specification

of a process that coordinates the application of functions, i.e., AF and QA, for

which an abstract definition is given in the ontology, followed by a mapping of

CHAPTER 4. QUALITY VIEWS 94

quality classes to actions, and by the execution of the actions.

The rationale for allowing multiple QAs as part of a single QV was discussed

earlier, in Section 2.3. To recall the argument briefly, we noted there that we may

want to compare two slightly different score models to see how they perform on

the same input data. After all, a QA function is a predictive model that assigns

either a class or a score to the data, based on input vectors of attributes (the

QE). Since such assignments are predictive, it is important to be able to compare

their output side by side, on the same data. Users may then decide to use one

of the predictors as a source of quality value, or more generally, they may want

to define a combination of their values. Such combinations can be specified using

actions as part of the Quality View.

As a particular case, one QA function may compute an assertion that is de-

rived from that of other functions within the same QV. Thus, in our library of

functions we have both a PIScore and a PIScoreClassifier: the first computes

the score described in [SPB06], while the second simply performs a discretiza-

tion of the score into classes (i.e., “buckets”) based on the score distribution,

and assigns each data element to one of the classes. Having both functions com-

puted by a single Quality View allows users to view both the raw score and the

classification side by side, facilitating the decision process.

4.1.1 Role of semantics in Quality Views

In addition to providing a definition for the functions involved in a QV, we also

use the semantic IQ model to determine which QV can be applied to which actual

dataset that is part of the data processing environment: this defines the scope

of a QV relative to the space of all possible datasets. More precisely, the scope

is an ontology class DE’ v DE, for instance, HitEntry, and is specified as part of

the QV definition. This is interpreted as “the QV can be computed on any data

element that is an individual of class DE’, or of any of its sub-classes”.

This requires, of course, that actual datasets of interest be associated to ontol-

ogy classes that describe data entities, i.e., that they be semantically annotated.

For example, we must be able to state that a particular dataset that is computed

by some protein identification algorithm consists of elements that are all individ-

uals of the HitEntry class. In general, a process of semantic annotation associates

some element of a conceptual model –ontologies being a popular example, to some

object in a different space, e.g. a data element, a service, or other artifact.

CHAPTER 4. QUALITY VIEWS 95

While creating such annotations may not be a trivial task for the QV de-

signer or the e-scientist, this process is broadly recognized within the Semantic

Web community as a pre-requisite for the semantic analysis of data and ser-

vices [PKPS02, LH03, HZB+]. By requiring a semantic annotation of the data

involved in the workflow (or in query processing), our definition of QV scope

follows in the tracks of an established approach that has found acceptance in

a relevant community. This approach has three important advantages. Firstly,

it improves the chances for QV reusability, because a QV is tied not to a spe-

cific dataset, but rather it can be applied to any dataset whose semantic type

is within the QV scope. Secondly, it decouples the general task of semantically

annotating the data from that of specifying a QV: the QV designer will just

assume that the input data is within the logical scope defined in the ontology,

while a QV user is responsible for associating actual datasets to ontology classes.

Finally, as noted previously, it makes it possible to leverage existing taxonomies

of popular data types for e-science, notably (but not only) the myGrid ontol-

ogy [WSG+03b,WAH+07].

4.1.2 Quality View components

In this section we give an informal description of the QV process, using the IQ

model as a reference. In the following, we assume that each data element that

is the subject of quality assessment, which may be an arbitrary data structure,

has a unique identifier, called a dataref, and that an access path (for example, a

database query) is available to retrieve the element given its dataref. Initially, the

QV takes a finite collection D of datarefs as input, and computes QE annotations

by applying one or more AFs to them. Each AF is identified by a reference to an

ontology class AF′ v AF, and computes QE values for each d ∈ D. A QE type QE′

is itself a reference to an ontology class in the taxonomy rooted at QE: QE′ v QE.

As an example, consider Uniprot accession number Q9JLJ2, a unique

identifier for a protein, as input dataref, and annotation function

ImprintAnnotator, which computes Quality Evidence values of types Mass

and Coverage. The output of ImprintAnnotator looks like the following:

〈Q9JLJ2, [〈Mass, 58855.6〉, 〈Coverage, 14.2〉]〉.
The QE values are then used as input to Quality Assertion functions,

which are again identified using ontology classes QA′ v QA. As men-

tioned, QAs compute, for each data element, either a class label from

CHAPTER 4. QUALITY VIEWS 96

a finite set (called a ClassificationModel in the ontology), or a nu-

merical score. In the example we use a QA called PIScoreClassifier

that takes as input the output of ImprintAnnotator and, for each

pair defined as above, uses the QE annotations to compute a label

(i.e., one element from the set {low PI Score, close to avg PI Score,

high PI Score}), and associates it to the dataref, for instance:

〈Q9JLJ2, [〈Mass, 58855.6〉, 〈Coverage, 14.2〉, 〈PIScoreClassifier, close to avg PI Score〉]〉
In the IQ paradigm presented in Chapter 2, we defined actions as abstract

processes that are associated to quality classes through conditional expressions on

the output of QAs. The expressions that define a mapping from the quality classes

(one for each QA) to the abstract actions are the last part of the QV specification.

To illustrate, consider our default actions, i.e., “accept” and “reject”, based on a

single condition defined on the QE and QA values computed as described above.

The mapping from quality classification to actions might be (Mass > 60000 ∩
PiScoreClassifier 6= ‘‘low PI Score’’) → accept. Note that QE elements are

allowed as part of the condition.

As discussed in Chapter 2, at this point actions are abstract. Their binding

to actual processes depends on the environment where the QV is executed, and

is not specified as part of the QV. When the QV is executed in the context

of a workflow, for instance, the step of the QV that computes the classes-to-

actions mapping may be implemented as a workflow processor that evaluates

the condition and inhibits the output of the “reject” elements. Thus, we have a

logical mapping of classes to actions, defined as part of the QV, and a physical

mapping, defined as part of the QV implementation for a specific data processing

environment. The physical mapping defines the precise behaviour of the “accept”

and “reject” actions. For a QVs that is implemented as part of a query processor,

a new physical mapping for the same logical mapping could be implemented as

an additional selection step within the query plan.

To emphasize this point further, consider an environment where other types of

actions are possible, in addition to “accept” and “reject”. For example, suppose

that a data presentation application makes it possible to highlight data records

differently depending on their quality. In this case, one may use a 3-way classifi-

cation, i.e., {“green”, “yellow”, “red”}, along with the following logical mapping

CHAPTER 4. QUALITY VIEWS 97

conditions, say:

PiScoreClassifier = low PI Score→ red

PiScoreClassifier = close to avg PI Score→ yellow

PiScoreClassifier = high PI Score→ green

Only the logical mapping is specified as part of the QV. The enactment of the

action, i.e., the actual colouring of the data, is done by the physical mapping,

which is specific to the application.

The QV syntax allows for the specification of a generic type of action, called

“n-way Splitter”, involving n conditions [c1 . . . cn] and n + 1 user-defined classes

[cl1 . . . cln+1]. These conditions need not be mutually exclusive, i.e., the Splitter

simply evaluates each ci on a data element d, and assigns it to all cl i for which

ci(d) is true. This semantics is formalized in Section 4.3. The particular case of a

Filter Action type, i.e., a binary classification, is sufficiently common to deserve

its own syntax.

QV parameters

From the description given so far, it would appear that the input to annotation

and QA functions consists only of data elements, or of quality values computed

from the data elements. However, consider a QA that assigns a score to a data

element based on its similarity to other elements in the input dataset, as in record

matching. The similarity function involves a configurable threshold value, which

is not a function of the input data. If we want the algorithm to be configurable

at execution time, then we need to supply the threshold value to the QA as an

actual parameter.

To account for this situation, the QV language allows parameter-passing to

functions, by optionally including a set of formal parameter names as part of

the QV declaration. These parameters are global to the entire QV. In addition,

formal parameter names may also appear within each function declaration in the

QV. This allows functions to use their private parameter names, by declaring how

they are mapped to the global names.

With this additional specification, the input to a QV now includes a set of

actual parameters in addition to the data input. The values are passed on to

each function that has a parameter declaration by binding them to local actual

CHAPTER 4. QUALITY VIEWS 98

parameters using the local-to-global name mapping.

4.2 Quality View syntax

In this section we present the XML syntax of Quality Views in some detail (the

XML schema for the language is depicted graphically in Figure 4.2). In the

next chapter we will see how QVs written in this language are translated into

executable services. The main purpose of this presentation is to give an idea of

the effort required from scientists who decide to specify a new QV. In Section 4.4,

however, we will describe a graphical tool that facilitates the specification task.

Thus, the syntax presented here can be regarded as the output of the tool, and

the input to the QV translator.

4.2.1 XML Elements

The code in Figure 4.1 shows the specification of a Quality View that includes

the QAs designed for our proteomics example. We use variables for the inputs

and outputs of Annotation functions and Quality Assertion functions. Thus,

variable Coverage denotes Quality Evidence values, one for each input dataref,

that represent one of the outputs of ImprintAnnotator and one of the inputs of

PIScoreClassifier. The same variables can be used in the conditions that map

the output of QAs to actions.

One important feature of the QV specification language is that all variables

have a semantic type, i.e., a reference to some class in the IQ ontology. In practice,

the QV consists of XML syntax that is semantically annotated using the ontology.

As mentioned earlier, and explained in detail in Section 4.4, the ability to provide

a complete semantic interpretation of the QV variables makes it possible to define

a formal model of semantic consistency for QVs, and to perform static consistency

validation of a QV using the ontology.

Let us now walk through the QV example in detail. The top element of the

language, <QV>, has an attribute to indicate that this view can be computed on

data of type q:ImprintHitEntry, a reference to a class in the DE taxonomy within

the IQ ontology.1 As mentioned, we assume that appropriate semantic tagging of

datasets of interest has been performed, so that this declaration makes the scope

1Throughout the example, q is a prefix for the Qurator namespace of the IQ ontology.

CHAPTER 4. QUALITY VIEWS 99

Figure 4.1: A Quality View for the proteomics example

<QV name ="QV Imprint" data = "q:ImprintHitEntry">

<Annotator serviceName="ImprintAnnotator"

serviceType="q:ImprintAnnotator">

<variables repositoryRef="ImprintAnnotations">

<var metricName="q:PeptidesCount" variableName="PeptidesCount"/>

<var metricName="q:Coverage" variableName="Coverage"/>

<var metricName="q:Mass" variableName="Mass" />

<var metricName="q:Masses" variableName="Masses"/>

</variables>

</Annotator>

<QualityAssertion serviceName="HR MC PIScore"

serviceType="q:HR MC PIScore"

tagName="HR MC PIScore">

<variables repositoryRef="ImprintAnnotations">

<var metricName="q:PeptidesCount" variableName="PeptidesCount"/>

<var metricName="q:Masses" variableName="Masses"/>

<var metricName="q:Coverage" variableName="Coverage"/>

<var metricName="q:Mass" variableName="Mass"/>

</variables>

</QualityAssertion>

<QualityAssertion serviceName="PIScoreClassifier"

serviceType="q:PIScoreClassifier"

tagName="PIScoreClassifier">

<variables repositoryRef="ImprintAnnotations">

<var metricName="q:PeptidesCount" variableName="PeptidesCount"/>

<var metricName="q:Masses" variableName="Masses"/>

<var metricName="q:Coverage" variableName="Coverage"/>

<var metricName="q:Mass" variableName="Mass"/>

</variables>

</QualityAssertion>

<action name="initial filter action">

<filter xmlns="" mode="noauto" interactive="true">

<variables repositoryRef="ImprintAnnotations">

<var metricName="q:PeptidesCount" variableName="PeptidesCount"

<var metricName="q:Masses" variableName="Masses"

<var metricName="q:Coverage" variableName="Coverage"

<var metricName="q:Mass" variableName="Mass"

</variables>

<expression>((Mass > 100000) and (Coverage < 10)) ||

PIScoreClassifier in "high PI score", "close to avg PI Score"

</expression>

</filter>

</action>

</QV>

CHAPTER 4. QUALITY VIEWS 100

of applicability of this QV unambiguous.

Figure 4.2: Graphical depiction of XML schema for Quality Views syntax

Annotation functions are specified using one or more Annotator elements. The

nested <variables> element declares new variables for the Quality Evidence val-

ues computed by the Annotation functions. In addition to the semantic type, e.g.

q:PeptidesCount, these variables also have a syntactic type, expressed using the

XML Schema type system (www.w3.org/2001/XMLSchema). This type is not men-

tioned explicitly in the specification, because it is associated with the semantic

type and thus it can be retrieved by querying the ontology. Note that, as expected,

the Annotation function itself has a semantic type, namely q:ImprintAnnotator,

a subclass of q:AnnotatorFunction. We discussed the meaning and implications

of function hierarchies in Section 3.2.3.

The specification of Quality Assertions is syntactically similar to that of An-

notation functions, except for the additional tagName, for instance HR MC PIScore,

that represents the computed Quality Assertion value. Note that neither the

semantic nor the syntactic types of this name need to be mentioned. Again,

this is because these are defined as properties of the q:HR MC PIScore class in the

CHAPTER 4. QUALITY VIEWS 101

ontology. Note also that, although the elements used for the QA variables are

the same as those for used for the Annotators, in this case they are interpreted,

without any ambiguity, as the input of the QA rather then its output.

The generic <Action> element admits nested elements for specific action

types. As mentioned in the previous section, the syntax currently supports Split-

ter actions (a particular decision tree with cascading conditions). The example

shows a filter action with an associated conditional expression. The expression

may contain references to any of the variables defined as part of the <Action> el-

ement. Intuitively, we can see the role of variables here: they are bound to values

when Annotation functions are executed, these values are used by QA functions

to compute quality classifications, and their values can be part of Action expres-

sions.

The BNF grammar of the conditional expression language for QV Actions can

be found in Appendix A.

4.2.2 Formal parameters

As noted, our running example does not involve the use of any parameter. There-

fore, we present here a simple additional example.

<QV name ="SomeQV" data = "q:someData">

<param name="p1"/>

<param name="p2"/>

<param name="annotationContext"/>

<Annotator serviceName="someAnnotator"

serviceType="q:someDataAnnotator">

<param localName="context" globalName="annotationContext"/>

etc...

<QualityAssertion serviceName="QAWithParameters"

serviceType="q:someQA"

tagName="QAOutput">

<param localName="x" globalName="p1"/>

<param localName="y" globalName="p2"/>

etc...

CHAPTER 4. QUALITY VIEWS 102

Here, the implementation of QAWithParameters expects actual parameters

named x and y. When this QA is used as part of a QV, the additional mapping

from local names to global names ensures that the correct actual parameters at

the QV level are bound to the QA local parameters.

4.2.3 Semantic naming constraints

A QV is syntactically valid if it conforms to the XML schema shown in figure 4.2.

In addition, however, we need to define constraints on the names of the variables

that appear in the QV. The purpose of these constraints is to ensure that the QV

can be mapped to a process model with a well-defined semantics. Although these

are semantic constraints, they are presented here because they can be checked as

part of traditional static language analysis. This is in contrast to the semantic

consistency of a QV, discussed in Section 4.4.

Informally, the following constraints on variable names are defined:

1. the sets of output variables for each Annotator must be mutually disjoint;

2. the set of input variables to a QA must be a subset of the union of all

output variables over all Annotators;

3. the set of variables that form the scope of an Action expression must be a

subset of the union of all output variables over all Annotators, and of all

output tag names over all Quality Assertions.

These constraints ensure that no Annotators may override each other’s values,

when computed as part of the same QV, and that an Action expression may only

predicate on declared variables.

One last constraint involves the use of constant class names in set mem-

bership conditions of the form “var IN {c1, c2, . . . }”, that may appear in Ac-

tion expressions. Such class names (c1, c2, etc.) cannot be arbitrary;

rather they must be defined as part of some classification model in the

IQ ontology. More precisely, all classification models associated with the

QAs included in the QV can be used as literals in the actions expressions.

For example, consider ontology class PIScoreClassifier, which is associated

with class q:PIScoreClassification, a sub-class of q:ClassificationModel, by

way of property q:has-classification-model. Class q:PIScoreClassification

is defined as an enumeration, consisting of individuals “high PI score”,

CHAPTER 4. QUALITY VIEWS 103

“close to avg PI Score”, and “low PI score”. These are all and only the liter-

als c1, c2, ... that may appear in a set membership condition. Note that, unlike

the constraints in the previous list, which can be checked without the use of of

the IQ ontology, this requires access to the ontology. More complex semantic

checks are discussed in Section 4.4.

4.2.4 Additional attributes

The syntax showcased by the QV example above includes a few additional at-

tributes which have not yet been discussed, since they are used only to control the

execution-time behaviour of a QV. Briefly, the mode and interactive attributes

in the action elements determine whether actions should be carried out inter-

actively, under the control of the user, or silently (without interaction from the

user, i.e., in batch mode). In interactive actions, users are allowed to inspect the

runtime values of the QV variables and to edit the conditions associated with the

actions before they are evaluated. This gives users an additional chance, while

the QV is being computed, to experiment with different classes-action mappings,

and to fine-tune them right in the context of the surrounding data processing

environment, i.e., a user workflow.

The repositoryRef attribute in the <variables> element has to do with the

physical allocation of QE values to specific metadata repositories. The persistent

attribute determines the lifetime of the annotations, i.e., whether they should be

deleted from the repository upon completion of the QV execution (this is useful

when the scope and lifetime of annotations are known to coincide with the data

processing that the QV is part of). For example, in our proteomics experiment

the QE values, for instance of Coverage, are computed from the Imprint output.

This means that these values are only valid within the scope of the experiment in

which Imprint is invoked. When Imprint is invoked again, a new set of QE values

must be computed. This makes the metadata non-persistent: they lose meaning

at the end of one experiment execution. By contrast, QE values that annotate

data that is persistently stored in a database, is itself persistent: it is not necessary

to recompute it every time we need to assess the quality of the persistent data.

This idea can be generalized, in the future, by specifying conditions under which

a QE value becomes invalid, and must be recomputed (for example, because the

underlying data has changed).

CHAPTER 4. QUALITY VIEWS 104

4.3 Quality Views Semantics

We move now to the definition of the formal semantics of Quality Views. A QV

can be described as a function that takes a collection of data elements as input,

and computes an assignment of the data elements to quality classes, defined in the

previous section as the output of QV Actions. Here we give a formal definition

of this semantic function, which was described informally earlier, by presenting a

QV interpreter written in the Haskell functional language [HHJW07].

Although the interpreter is designed primarily as a formal specification of QV

semantics, its prototype implementation also provides a testbed that can be used

to experiment with QV language extensions, a topic of current research. The

code has been tested using the Haskell Glasgow Compiler2 [JHH+93].

The complete interpreter code appears in Appendix B.

4.3.1 Environment

The interpreter consists of a composition of functions. A shared data structure

to which all functions have access, the environment, is used to manage the in-

termediate results, i.e., the outputs of functions that are to be used as input to

some other function.

The environment is a matrix with one row for each input data element di,

i.e., a dataref. A cell in row i holds the value of an item of quality metadata

for element di, i.e., a Quality Evidence value or the value of a Quality Assertion.

Thus, the number of columns in the matrix is equal to the number of variables

declared by each Annotation function in the QV, summed over all such functions,

plus one column for each Quality Assertion in the QV. Each column is identified

by its corresponding variable name, along with its semantic type. Here is the

Haskell declaration for this data structure:

data QTriple =

QTriple { _Name :: String, _Class :: URI, _Value :: String }

type QTripleSet = [QTriple]

data EnvRow = EnvRow { d :: URI, qSet :: QTripleSet }

type Env = [EnvRow]

2See also http://haskell.org/haskellwiki/Research papers for an extensive list of papers. The
compiler is freely available at www.haskell.org/ghc.

CHAPTER 4. QUALITY VIEWS 105

where the URI is simply a formatted string. Thus, a QTriple represents the value

of a single cell. Note that the name and semantic type are associated with cells,

rather than with columns, simply as a technical convenience.

A collection of functions is provided to manipulate the environment, namely

to add a QTriple to a row, to add entire rows, to write values into cells, retrieve

rows and cells, and so forth. In particular, fetchAnnotations returns the list of

cells corresponding to a set of input variable names, for a specific dataref:

fetchAnnotations :: Dataref -> [String] -> Env -> [QTriple]

while allQTriples returns an entire row:

allQTriples :: Dataref -> Env -> [QTriple]

and getQTriple returns an individual cell:

getQTriple :: String -> String -> Env -> [QTriple]3

4.3.2 Formal representation of Quality Views

We now present the Haskell definition of a QV, corresponding to the XML syntax

described previously. At the core of the QV specification are the Annotation

functions and QA functions. In Haskell, these are described by the following

types, respectively:

type FormalParamName = String

type ActualParamValue = String

type LocalFormalParam = (FormalParamName, FormalParamName)

type BoundActualParam = (FormalParamName , ActualParamValue)

type Af = Dataref -> [BoundActualParam] -> [QTriple]

and

type QAf = [AnnotatedData]->

[BoundActualParam]->

[(Dataref,[QTriple])]

An Annotation function computes values for some columns in the environment,

for each input dataref and given actual parameters, while a QA takes a list of

3Note that getQTriple returns a list for purely technical reasons. The list is always a
singleton.

CHAPTER 4. QUALITY VIEWS 106

annotations (i.e., a row) and actual parameters, and computes a new QTriple

(a singleton list). Note that these functions do not update the environment

directly: this is the responsibility of the interpreter functions that coordinate

their invocations, as we will see shortly.

Here are some examples of these functions:

af1 = \x -> \plist -> [QTriple

{ _Name = "e1",

_Class = "e1Class",

_Value = (x ++ " e1 annot")},

QTriple { _Name = "e2",

_Class = "e2Class",

_Value = (x ++ " e2 annot")}]

Function af1 computes values for two Quality Evidence variables, e1 and e2.

Similarly:

af2 = \x -> \plist -> [QTriple

{ _Name = "e3",

_Class = "e3Class",

_Value = (x ++ " e3 annot")}]

computes one annotation value, for e3. Here is an example QA function:

qa1 = \ad -> \plist -> [(d, [QTriple

{ _Name = "q1",

_Class = "q1Class",

_Value = "QA1 for "++" d " }]) |

(d, _) <- ad]

Note that a QA takes an entire annotated dataset as input and computes one value

for each dataref in the set (in this fictional example, the QE values are provided

but not used). In these examples, prepared for illustrative purposes only, the

functions do not perform any useful computation. In a realistic implementation,

their actual behaviour would be implemented using external services. In the

workflow implementation of QVs, described in the next chapter, functions are

mapped to workflow processors, which execute by invoking external Web Services.

The following data structures correspond to the QV elements <Annotator>

and <QualityAssertion>, respectively:

CHAPTER 4. QUALITY VIEWS 107

data AnnSpec = AnnSpec { _Af :: Af,

_outputVars :: [String],

_AnnParameters :: [LocalFormalParam] }

and

data QASpec = QA { _QAf :: QAf,

_inputVars :: [String],

_outputVar :: String,

_QAParameters :: [LocalFormalParam] }

which include instances of Af and QAf functions. The following examples use the

functions defined above:

ann1 = AnnSpec { _Af = af1,

_outputVars = ["e1", "e2"],

_AnnParameters = [("p1","p1Local")] }

for AnnSpec, and

_QASpec1 = QA { _QAf = qa1,

_inputVars = ["e1", "e2"],

_outputVar = "q1",

_QAParameters = [("p3","p3")] }

for QA.

Actions are represented by the QTest data structure:

type CondExpr = Dataref -> Env -> Bool

data QTest = QTest {

action :: String,

actionDescr :: String,

cond :: CondExpr }

Field action is the quality class label that is assigned to a dataref when the con-

ditional expression cond evaluates to true, while channelDescr provides a natural

language description of the quality class (this could also be fetched from the on-

tology when needed). This facilitates its interpretation outside the scope of the

QV, but is not used by the interpreter.

CHAPTER 4. QUALITY VIEWS 108

In Haskell, the condition is itself a function of a dataref and the environment,

for example:

_aCond = \d -> \e ->

(_Value (head (getQTriple d "q1" e))

== "QA1 for "++ d)

This condition returns true iff the QA value assigned to variable q1 matches the

string on the right hand side. Here is a QTest that assigns the datarefs that satisfy

the condition to quality class “white”:

_Qtest1 = QTest { action = "action1",

actionDescr = "white",

cond = _aCond}

With these definitions, the entire QV specification is described by the following

data structure:

data QVSpec = QVSpec { _formalParams :: [FormalParamName],

_ann :: [AnnSpec],

_QA :: [QASpec],

_QT :: [QTest] }

The following QV uses the examples that we have seen so far (plus others, similar,

that are not shown for brevity):

testQV = QVSpec { _formalParams = ["p1", "p2", "p3"],

_ann = [ann1, ann2],

_QA = [_QASpec1, _QASpec2],

_QT = [_Qtest1, _Qtest2] }

4.3.3 Functional interpretation of Quality Views

We are now ready to describe the QV interpreter. The top-level function qv:

qv :: [Dataref] -> [ActualParamValue] -> QVSpec -> [DatarefQualityClass]

takes a QVSpec along with its input (a list of datarefs and the actual parameters,

a list of Strings), and computes a list of quality classes, defined by the following

structure:

CHAPTER 4. QUALITY VIEWS 109

type DatarefQualityClass = (Dataref, String, QTripleSet)

where the second element is the quality class label associated to the dataref, and

the third is the list of annotations used in the classification.

The complete interpreter definition follows:

qv _D _actualParams _QVSpec =

let env = initEnv _D (collectVars _QVSpec)

_boundParams = paramBinding

(_formalParams _QVSpec)

_actualParams

in act _D (_QT _QVSpec)

(qAssert _D (_QA _QVSpec) _boundParams

(annotate

_D

(map (\x -> ((_Af x),

(globalToLocalParams

_boundParams

(_AnnParameters x)

)

)

)

(_ann _QVSpec)

) env

)

)

The let construct provides a binding for variables, prior to their use in the

functions following the in keyword. Here it is used to initialize the environment

env and to bind the formal parameters boundParams to the actual parameters.

The composition involving functions annotate, qAssert and act reproduces the

sequence of operations described informally in Section 4.1. A walkthrough of its

definition follows.

Annotate.

The signature for annotate is as follows:

CHAPTER 4. QUALITY VIEWS 110

annotate :: [Dataref] -> [(Af, [BoundActualParam])] -> Env -> Env

Reading the interpreter definition above starting with the innermost expression,

the map creates a list of pairs (Af, actualParameters) by extracting all annotation

specifications of type AnnSpec from the input QVSpec, and associating the actual

parameters to each of them. The annotate function is defined recursively on this

list:

annotate _ [] e = e

annotate _D (h:rest) e = annotate _D rest (annotate1 _D h e)

and

annotate1 :: [Dataref] -> (Af, [BoundActualParam]) -> Env -> Env

annotate1 _D (_Af, _parms) e = multiUpdateEnv

[(d, (_Af d _parms)) | d <- _D]

e

The list comprehension syntax:

[(d, (_Af d _parms)) | d <- _D]

is interpreted as the iterative application of Af to each d in the dataset D. The

environment is then updated with the result (all the rows needed for the full data

set are in the environment).

QAssert

As mentioned, annotate returns an updated version of the environment, which is

then read by the QAssert function. Its signature is the following:

qAssert :: [Dataref] -> [QASpec] -> [BoundActualParam] -> Env -> Env

Note that, while Annotation functions operate on one dataref at a time, QAs

need access to the entire dataset at once. This reflects a typical requirement of

predictive model algorithms (for instance, classifiers), which operate globally at

the dataset level despite the fact that class labels are assigned to individual data

elements.

The function definition is recursive on the list of QASpec functions:

CHAPTER 4. QUALITY VIEWS 111

qAssert _ [] _ e = e

qAssert _D (h:rest) _actualParams e =

qAssert _D rest _actualParams

(qAssert1 _D h _actualParams e)

and

qAssert1 :: [Dataref] -> QASpec -> [BoundActualParam] -> Env -> Env

qAssert1 _D _QASpec _actualParams e =

multiUpdateEnv

(

(_QAf _QASpec)

[(d,

(fetchAnnotations

d

(_inputVars _QASpec) e

)

) |

d <- _D

]

(globalToLocalParams

_actualParams

(_QAParameters _QASpec)

)

)

e

In the list comprehension, datarefs are paired with their annotations by environ-

ment lookup, prior to being fed to the QAf function. The environment is updated

to include the new QTriple computed for each dataref by the QAf function.

QAct.

Finally, the updated environment obtained from the application of Assert is

used by Act, which evaluates the conditional expressions associated to Actions

and assigns datarefs to quality classes:

CHAPTER 4. QUALITY VIEWS 112

act :: [Dataref] -> [QTest] -> Env -> [DatarefQualityClass]

act _D [] e = [(d, "all data", (allQTriples d e)) | d <- _D]

act _D _Tests e = [(d, (channelName aTest), (allQTriples d e)) |

d <- _D, aTest <- _Tests,

(cond aTest) d e == True]

Consistent with the informal semantics specified for Actions in Section 4.1,

conditions are evaluated independently from one another.

Note that the condition is stored as a string within the QTest data structure,

i.e. (cond aTest) where aTest is bound to each of the input Tests (one for each

QTest in the QV). This string is evaluated by applying it (as if it were a function)

to input d. Note also that in this case the recursion is on the list of actions, while

a double iteration takes place within each application of act, namely on each of

the tests for the action, and on each dataref in the dataset.

4.4 Formal consistency of Quality Views

In the previous sections we have presented Quality Views as abstract processes,

obtained by a composition of Quality Evidence and Quality Assertion functions.

Nothing has been said so far, however, regarding the correctness of the compo-

sition. In principle, we could assemble a QV using any combination of functions

from the QE and QA class hierarchies; the semantics defined in the previous section

does not restrict the choice of such functions in any way. This may result in type

mismatches between the actual input to a function, and the input type expected

by the function. In this section, we fill this gap by providing a formal definition

of type compatibility constraints needed by QVs, as well as an algorithm to test

them. When the constraints are satisfied, we say that the QV is consistent. As

we will see in the next chapter, a consistent QV can be successfully translated

into an executable software component that computes the abstract QV process.

To define compatibility constraints, we leverage the axiomatic formulation of

function signatures, proposed in the previous chapter (Section 3.2.3). In particu-

lar, we are going to show that (i) the axioms associated to the DE, AF, QE, and QA

classes are sufficient to give a formal definition of QV consistency; (ii) the type

CHAPTER 4. QUALITY VIEWS 113

compatibility constraints are consistent with the rules for function polymorphism,

and (iii) constraints can be verified using an algorithm based on DL reasoning.

4.4.1 QV consistency constraints

Suppose that we are to specify a QV for input data of type ImprintHitEntry.

One question that the user scientist can pose is, what Annotation functions are

available in the ontology that accept input of this type? The equivalence axiom:

ImprintHitEntry ≡ ∃ DE-input-of . ImprintAnnotation (4.1)

listed as part of Table 3.3 on page 84, provides an answer, by asserting that

ImprintHitEntry is the only input to ImprintAnnotation. Thus, we know that

adding ImprintAnnotation to our QV does not cause any incompatibility be-

tween the expected function input and the input data type. Note that we may

use the same axiom to answer the complementary question: “what are all the

valid input data types for a QV that includes ImprintAnnotation as one of

its Annotation functions?” In other words, what are the data types to which

ImprintAnnotation can be applied? In particular, given both ImprintHitEntry

and ImprintAnnotation, we can verify that the former is a valid input for the

latter.

In this particular example, such verification can be carried out by direct in-

spection of axiom (4.1). We can, however, generalize this to the case where (4.1)

is inferred by DL reasoning, rather than being asserted. Following this intuition,

we can formalize our first QV consistency constraint, as follows.

Definition 1 (DE-AF consistency) Let T be the TBox consisting of all the

axioms in the IQ ontology, and let DE′ v DE, AF′ v AF. We say that DE′ and AF′

are consistent with respect to property DE-input-of, iff

T |= DE′ v ∃ DE-input-of . AF′

We use an example to illustrate the need for proper logical inference, as opposed

to a simple syntactic lookup of axioms in the TBox. Consider the DE and AF

hierarchies in Figure 4.3, with the axioms

DE1 v ∃ DE-input-of . AF1

CHAPTER 4. QUALITY VIEWS 114

DE2 v ∃ DE-input-of . AF2

that is, AF1 takes input of type DE1 and AF2 takes input of type DE2. It follows

immediately from Def. 1 and DE′ v DE1 that DE′ v ∃ DE-input-of . AF1, i.e., AF1

and DE′ are consistent too; note how this conclusion requires an inference step.

In this particular example, one could still work around the need for inference,

by traversing the DE hierarchy from the bottom up. We argue, however, that

this strategy would not be general enough. We will return to this point when

presenting a general algorithm for constraint checking, in the next section.

It is important to note that the definition of QV consistency does not violate

the rules for function polymorphism, given in Section 3.2.3. We repeat them here

for convenience. Let f take input of type σ, let σ′ be a sub-type of σ, and f ′

override f . Then:

1. both f and f ′ take input of type σ′, and

2. f ′ takes input of type σ.

Note that, consistent with these rules, DE′ is not consistent with AF2, since DE′ v
∃ DE-input-of . AF2 does not follow from the axioms.

Furthermore, consider function subclassing: AF1 v AF. According to the poly-

morphism rules, we expect AF to accept input of type DE′. Indeed, this follows

immediately from the general inference pattern (a standard DL inference step):

{(X v ∃ p . Y), (Y v Y ′)} |= X v ∃ p . Y ′

that is:

{(DE′ v ∃ DE-input-of . AF1), (AF1 v AF)} |= DE′ v ∃ DE-input-of . AF

We can use Def. 1 to express our earlier two questions regarding feasible inputs

to an Annotation function, as two complementary consistency problems:

1. (AF consistency given DE:) Let T be the TBox consisting of all the

axioms in the IQ ontology, and DE′ v DE. Find all AF′ v AF such that DE′

and AF′ are consistent with respect to DE-input-of, relative to T ;

2. (DE consistency given AF:) Let T be the TBox consisting of all the

axioms in the IQ ontology, and AF′ v AF. Find all DE′ v DE such that DE′

and AF′ are consistent with respect to DE-input-of, relative to T .

CHAPTER 4. QUALITY VIEWS 115

Proceeding in a similar fashion, we could define consistency between the outputs

of Annotation functions and a set of Quality Evidence types, and between the

latter and the input to QA functions. Observing that these constraints are very

similar to one another, however, it is more convenient to define them as instances

of a general framework involving (i) generic properties and (ii) classes that belong

to the domain and range of those properties. To begin, let us define two comple-

mentary functions, requiredRanges() and domains(), that generalize the domain

and range of a property, as follows.

Definition 2 (required ranges of a property) Let T be the TBox consisting

of all the axioms in the IQ ontology, p a property and C v domain(p). We define

requiredRanges(p, C) to be the set of all classes X such that ∃ p . X subsumes C:

requiredRanges(p, C) = {X v range(p) | T |= C v ∃ p . X}

We have chosen the name requiredRanges to emphasise that this is the set of

all classes that are in the range of p, and furthermote are known to be the target

of property p in the ontology, as opposed to the set of all classes that may be the

target of p.

Definition 3 (domains of a property) Let T be the TBox consisting of

all the axioms in the IQ ontology, property p and C v range(p). We define

domains(p, C) to be the set of all classes X that are subsumed by (∃ p . C):

domains(p, C) = {X v domain(p) | T |= X v ∃ p . C}

Observe that DE-AF consistency (Def. 1) can also be written using

requiredRanges():

DE 2DE ’

DE 1

DE

AF 1

2AF AF 3

AF

⊑ ∃ p . AF1

⊑ ∃ p . AF2

Figure 4.3: Fragments of the DE and AF hierarchies used to illustrate QV consis-
tency constraints.

CHAPTER 4. QUALITY VIEWS 116

Definition 4 (DE-AF consistency by ranges) DE′ v DE and AF′ v AF are

consistent with respect to DE-input-of iff AF′ ∈ requiredRanges(DE-input-of, DE′).

Indeed, we can use domains() and requiredRanges() to provide a general for-

mulation of all three consistency problems listed above, as follows:

Definition 5 (Consistency problems)

Consistency verification: let p be a property, D v domain(p) and R v
range(p). Test whether T |= D v ∃ p . R, i.e., whether R ∈
requiredRanges(p, D);

Find all consistent R given D and p: this amounts to computing

requiredRanges(p, D);

Find all consistent D given R and p: this amount to computing

domains(p, R).

The remaining consistency constraints for Quality Views can now be presented

in terms of this framework.

Definition 6 (AF-QE consistency) AF′ v AF and QE′ v QE are consistent with

respect to AF-has-output iff QE′ ∈ requiredRanges(AF-has-output, AF′).

Definition 7 (QE-QA consistency) QA′ v QA and QE′ v QE are

consistent with respect to assertion-based-on-evidence iff QA′ ∈
requiredRanges(assertion-based-on-evidence, QE′).

To provide a concrete example, the Quality View presented earlier in this

chapter (Section 4.2) is consistent. Indeed, let ImprintHitEntry be the data type

for which the QV is specified. We can easily verify, using the axioms of Table 3.3

at page 84, that ImprintHitEntry and ImprintAnnotation are DE-AF consistent,

ImprintAnnotation is AF-QE consistent with respect to PeptidesCount, Masses,

Mass, Coverage; and PIScoreClassifier is QE-QA consistent with respect to each

of these QE classes.

CHAPTER 4. QUALITY VIEWS 117

4.4.2 Checking consistency

With the definitions given so far, we have reduced the QV consistency problem to

the problem of computing domains() and requiredRanges(). We now show that

computing these functions is a straightforward application of DL reasoning.

Indeed, note that computing domains(p, C) is accomplished directly by query-

ing the reasoner. A query to a reasoner, relative to a TBox T , consists of a concept

C, either atomic or constructed. With this input, the reasoner returns the set of

all the classes C ′ that are subsumed by C, i.e., {C ′ | T |= C ′ v C} (these are also

called the inferred subclasses of C). Thus, to compute domains(p, C) we simply

need to submit a query consisting of the constructed class (∃p . C). For example,

with reference to Figure 4.3, we have domains(DE-input-of, AF1) = {DE1, DE
′, DE2}.

Note that, in general, if C ∈ domains(R) then C ′ ∈ domains(R) for any R and

any C ′ such that T |= C ′ v C.

The algorithm for computing requiredRanges(p, C) is slightly more involved,

since the reasoner does not support this functionality directly. It is tempting to

derive a simple algorithm from the example depicted in Figure 4.3. To compute

requiredRanges(DE-input-of, DE′), we could first check whether there are relevant

axioms of the form DE′ v ∃ DE-input-of . X, and add X to the result. In this

case, we would need to traverse the path from DE′ to the root, repeating the test

at every step. This would yield DE1 v ∃ DE-input-of . AF1, so we would add

AF1 to requiredRanges(). Note that DE1’s ancestors are also part of the result: in

general, if Y ∈ requiredRanges(p, X), then Y ′ ∈ requiredRanges(p, X) for any Y ′

such that T |= Y v Y ′.

The problem with this approach is that it only works with subsumption rela-

tionships that are asserted, rather than inferred. This means that the result will

be correct but, in general, not complete: the algorithm will fail to consider all

relationships C1 v C2, where C2 can be a constructed class, that are not asserted

explicitly in the ontology but can be inferred, i.e., T |= C1 v C2. To clarify this

point, consider the following new axiom:

DE1 v ∃ DE-input-of . (∃ AF-has-output . QE1)

This asserts, legitimately, that DE1 is input to at least one Annotation function

CHAPTER 4. QUALITY VIEWS 118

that has QE1 as one of its outputs. Now let the new class X be defined as follows:

X ≡ ∃ AF-has-output . QE2

and QE2 v QE1. From these three axioms we infer

DE1 v ∃ DE-input-of . X

that is, X ∈ requiredRanges(DE-input-of, DE1). However, the algorithm given

above fails to find this solution.

This is an important point, as it highlights the difference between a semantic

use of the ontology, i.e., one where we consider all relationships that are logi-

cally inferred from the axioms, and a syntactic one, where one only looks are the

ontology schema (i.e., by navigating up and down an asserted hierarchy). The

latter corresponds to using a logical model without axioms, for instance a rela-

tional or semi-structured data model, rather than a full-fledged ontology. Having

argued, in the previous chapter, for a semantic model, the trade-off between the

expressivity of such a model and the computational complexity associated with

its practical use now becomes clear in the context of QV consistency checking.

The following algorithm for requiredRanges() takes inferred relationships into

account. It makes use of domains(), following the observation that, given class C2

and property p, by definition we have C1 ∈ domains(p, C2) iff T |= C1 v ∃p . C2.

Thus, the idea for computing requiredRanges(p, C1) is to descend down the sub-

sumption relationships rooted at range(p); for each class C2 in this hierarchy,

we check whether C1 ∈ domains(p, C2). If this is the case, we add C2 to

requiredRanges(p, C1). The algorithm terminates at the bottom of the class hier-

archy. Note that here we use the inferred hierarchy, i.e., the one containing all

inferred subclassed of C2 —this is computed by querying the reasoner with input

C2. Note also that, if C2 is not in requiredRanges(p, C1), then no descendent of

C2 is in requiredRanges(p, C1), either. We use this property to prune the set of

candidate classes that need to be tested. The algorithm is shown in Figure 4.4.2.

We can easily verify that this algorithm computes the same set

requiredRanges(DE-input-of, DE′) = {AF1, AF} as our syntactic algorithm

above, as expected. In addition, however, it also correctly computes

requiredRanges(DE-input-of, DE1), something that cannot be done with the syn-

tactic approach. Here is a sketch of the algorithm in action when computing

CHAPTER 4. QUALITY VIEWS 119

computing requiredRanges(p, C):
input: property p, class C, TBox T
output: the set {X v range(p) | T |= C v ∃ p . X}

sol = ∅;
Q = ∅; // Queue of candidate solutions
Q.add(range(p)); initialize queue with root of ranges candidates hierarchy
while (Q is not empty) {

candidate = Q.remove();
D = domains(p, candidate);
if (C ∈ D) { // this means C ⊆ ∃p.candidate

sol = sol ∪ {candidate};
Q.add(subclassesOf (candidate)); inferred subclasses

}
}

Figure 4.4: Pseudo-code for the requiredRanges() algorithm.

requiredRanges(DE-input-of, DE1). Here X is defined as in the previous example:

X ≡ ∃ AF-has-output . QE2:

1. Initially, candidate = AF, and D = subclassesOf (∃ DE-input-of . AF) =

{DE1}. Therefore, AF ∈ requiredRanges(DE-input-of, DE1);

2. Next, observe that X ∈ subclasses(AF), hence candidate = X. Since

D = subclassesOf (∃ DE-input-of . AF) = {DE1},

we conclude that X ∈ requiredRanges(DE-input-of, DE1).

In terms of performance, the repeated calls to a reasoner (equal to the number

of inferred subclasses of range(p) in the worst case) are the most expensive steps

in the algorithm. This is a general and well-known issue with axiom-based on-

tologies. Nevertheless, the ontology-driven user interface for Quality View spec-

ification, described in the next section, makes use of this algorithm with good

practical performance, thanks to the small size of the class hierarchies involved.

In particular, since we can use domains() and requiredRanges() to provide sup-

port for all three consistency problems presented in Def. 5, we are able to provide

consistency guarantees to users regardless of the order in which Quality Views

elements are specified.

CHAPTER 4. QUALITY VIEWS 120

4.5 Supporting consistent Quality View specifi-

cation in practice

We have put the theory developed so far into practice, to ensure the consistency

of QVs that are specified by e-scientists. As suggested earlier, domains() and

requiredRanges() can be used both to verify consistency constraints, and to find

ontology classes that can be added to a partially defined QV to make it consistent.

As part of the Qurator workbench, we have implemented a visual environment for

the specification of QVs that provides consistency support using domains() and

requiredRanges(). A screenshot of the QV definition GUI appears in Figure 4.5.

Using the three panes on the left of the figure, users may browse the Data

Entity, Quality Evidence, and Quality Assertions hierarchies, while the panes on

the right display the users’s selections. Suppose that the users want to create a

new QV for the Imprint HitEntry data type, using Quality Evidence types that

have to do with proteomics. They may start by selecting the data type from the

top left pane, and then proceed to select a Quality Evidence type, say HitRatio.

In this case, the system verifies that ImprintHitEntry and HitRatio are consistent,

by finding at least one Annotation function AF′ such that ImprintHitEntry and

AF′ are DE-AF-consistent, and AF′ and HitRatio are AF-QE-consistent. In the

example, ImprintAnnotation fits the requirements. If no such function can be

found, then the system alerts the user of the inconsistency (by highlighting the

selected QE class).

Users, however, may not be familiar with the type of QEs that are available for

the selected data type. In this case, they can request QE recommendations from

the system rather than making a selection. In this case, the system computes the

set of Annotation functions AF′ such that ImprintHitEntry and AF′ are DE-AF-

consistent, and the set of QE′ classes such that AF′ and QE′ are AF-QE consistent.

Again, if either of these is the empty set, an inconsistency is reported (in this

case, the only explanation is that no Annotation functions are available for the

input data type). Finally, one may begin by selecting QE types, and letting the

system determine a set of Annotation functions that compute values of those

types.

We apply the same model to deal with QE-QA consistency. Thus, by pro-

ceeding backwards from QA functions, users may have the system determine the

set of data types on which a fully specified QV can be computed. A further useful

CHAPTER 4. QUALITY VIEWS 121

F
ig

u
re

4.
5:

S
cr

ee
n
sh

ot
of

th
e

Q
u
al

it
y

V
ie

w
v
is

u
al

sp
ec

ifi
ca

ti
on

en
v
ir
on

m
en

t

CHAPTER 4. QUALITY VIEWS 122

usage pattern made possible by the user interface involves the specification of an

input data type, as well as of one or more QA functions. The system in this

case determines whether there exists a consistent combination of Quality Evi-

dence types and Annotation functions such that the selected QA functions can

be computed on the evidence retrieved for the input data.

Note that Annotation functions are not shown anywhere in the interface. This

is done to simplify the specification process, under the assumption that two An-

notation functions that satisfy the input / output requirements are functionally

equivalent, and that either of them can be selected. In the current model we do

not introduce any additional features of these functions that may further differ-

entiate them. By letting users specify data and Quality Evidence requirements,

the system will use any Annotation function that meets those requirements: in

this case, only the result of the system selections is shown to the user. Users

may, however, decide to change these selections. Since any of these changes

may affect consistency, they trigger a re-evaluation of the relevant domains() and

requiredRanges() sets.

Note also that requiredRanges(ED-input-of, DE′) may include multiple

Annotation functions, some of which are subsumed by others. Recall

that, in general, if AF′ ∈ requiredRanges(ED-input-of, DE′) then AF
′′ ∈

requiredRanges(ED-input-of, DE′) for all AF
′′

that subsume AF′. Intuitively, there

is no point in considering all of these functions: by definition, the functionality

provided by the more general ones is also provided by the more specific functions

within the same hierarchy. Therefore, whenever requiredRanges() is computed,

only the most specific functions are retained. In addition, note that some of the

functions included in the same requiredRanges() set may not be in a specializa-

tion relationship, for example AF2 and AF3 in Figure 4.3. All such functions are

retained for the purpose of performing QV consistency checks. By extension, we

apply the same criteria to all other types of classes, other than functions, that are

computed by the GUI using requiredRanges(). For example, HitRatio is retained

as the most specific output of ImprintAnnotator, while QE is not. A complemen-

tary situation occurs with domains(): if C1 ∈ domains(), then C2 ∈ domains()

whenever T |= C2 v C1. Therefore, in this case the most specific classes in the

subsumption relationship are the most informative.

We conclude the presentation of the QV specification interface by noting that

the bottom pane is dedicated to the specification of actions. Here the metaphor

CHAPTER 4. QUALITY VIEWS 123

of “channels” is used to denote quality classes associated to conditions. In par-

ticular, the interface allows for the definition of multiple splitter actions, each

consisting of multiple channels. One condition is associated to each channel. To

facilitate the definition of the conditions, the environment provides a graphical

expression editor where only the variables that have been defined in the QV can

be used. Furthermore, type checking is performed to ensure that any expression

built using the editor is consistent with the scope of variables and with their

types.

To summarize, this visual environment exposes the IQ ontology to QV design-

ers, providing consistency guarantees that facilitate their work without requiring

any understanding of semantic technology.

4.6 Summary and conclusions

In this chapter we have introduced the notion of Quality Views (QV), a speci-

fication of abstract quality processes that combine the functionality of multiple

Quality Assertion functions. QVs are at the core of the IQ model and of the

Qurator workbench; they embody the paradigm of operational quality described

in Chapter 2, in that they use Annotation and QA functions to compute quality

values from the data. We have provided both a simple syntax (based on XML)

and a functional definition of Quality Views, by presenting a complete interpreter

for QVs written in Haskell, a functional programming language.

Although QVs are specified using an XML-based syntax, in the last section

we have described a visual environment for QV specification that hides the XML

syntax from the user altogether. Furthermore, having defined the notion of QV

consistency formally by means of OWL DL axioms, the specification environment

incorporates an algorithm that exploits the functionality of a standard OWL DL

reasoner to perform incremental consistency checks. This greatly facilitates the

user’s task of specifying consistent QVs, i.e., the “quality function selection” of

the IQ lifecycle, by supporting the specification of consistent QVs by hiding from

the user the complexity of the ontology model.

In summary, Quality Views represent a novel approach to modelling quality

from the user perspective, and as such they advance the state of the art in the

specification of personal quality criteria. In the next chapter we will show how

CHAPTER 4. QUALITY VIEWS 124

such formal definition makes it possible to automatically compile QVs into ex-

ecutable software components; this will demonstrate a practical implementation

of the “quality assessment” step of the IQ lifecycle.

Chapter 5

Quality Views as workflows

In the previous chapter we have introduced Quality Views as functions that as-

sociate Quality Assertions to the input data. We now present an automated

translation of QVs into executable software components. Existing e-science in-

frastructures, such as myGrid and other Grid middleware [WAH+07], follow a

service-oriented approach whereby data access and analysis tools are realized as

services, and experiments are defined as a composition of those services. Follow-

ing this view, we are going to translate Quality Views into services, specifically

Web services, so that they can integrate easily within the e-science infrastructure:

once a QV is a service, it can be used as part of an in silico experiment like any

other component, effectively becoming a commodity.

There are several options for compiling a QV into a Web service. Note how-

ever that QVs are themselves simple compositions of more elementary services,

the quality functions. Thus, if we assume that quality functions are implemented

as Web services, then we can generate a QV service from an abstract QV speci-

fication by using service composition operators.

Workflow models provide the operators we need: we can define a QV service

as a workflow, whose elementary tasks include Quality Assertion services, as

well as Annotation services. From the technical standpoint, this choice has the

main advantage that workflow models are described using a high-level, declarative

specification language, making it relatively simple to translate into from a higher-

level language; we call the resulting service a quality workflow. At the same time,

this approach results in a white-box implementation of quality services, that

users with only moderate programming expertise can hopefully understand more

easily than a black-box service implementation (users can also edit and modify a

125

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 126

compiled quality workflow directly, if needed).

One additional advantage of this approach is that workflows can be easily inte-

grated with other workflows using few graph manipulation primitives. This ease

of integration makes it possible to add quality workflows to any e-science exper-

iment that is itself described as a workflow, an increasingly realistic assumption

for the e-science paradigm.

A number of workflow models and execution engines are freely available, both

for the scientific community (e.g. Kepler [LABe05, MBL06], Triana [CGH+06,

TSWH07]) and for the business domain (e.g. BPEL [EBC+05]). In our imple-

mentation we have chosen Taverna (taverna.sourceforge.net), a workbench

for the design and execution of scientific workflows [OAF+04, HWS+06]. The

main consideration that makes Taverna appealing as a specific target is a practi-

cal one. By making it very easy for third-party organizations to add services that

can be used as workflow processors (any distributed Web Service can in princi-

ple become a processor), the Taverna model has gained considerable popularity,

especially within the life sciences community. This makes the choice of Taverna

interesting in terms of potential impact of the technology solutions proposed in

this work.

It is important to note that the choice of workflow technology does not limit

the application of Quality Views to workflow-based experiments: we can still view

a quality workflow as a service (that requires a workflow engine to execute), and

use it as part of any service-oriented computing infrastructure. In Chapter 6 we

provide an example of this “black-box” usage, when we propose quality-enhanced

XML queries. As we will see, the only required computing infrastructure for this

is the ability for an XQuery processor to call an external service.

With this motivation, the focus of this chapter is on the automated transla-

tion of Quality Views into Taverna workflows. We proceed in steps, as follows.

We begin in Section 5.2 with an informal description of the structure of quality

workflows. This is followed in Section 5.3 by the definition of the structural oper-

ational semantics of quality workflows, using the formal model proposed by Turi

et al. [TMR+07]. With this, we can finally define the formal translation rules

from QVs to workflow (Section 5.4). Intuitively, these rules should result in a

workflow that is consistent with the QV semantics given earlier, in Chapter 4.

Indeed, we show this formally in Section 5.5.

Finally, in Section 5.6 we return to the more practical aspects of Quality View

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 127

application, to show how a Quality workflow resulting from the translation process

can be embedded into a pre-existing Taverna workflow, using simple graph editing

primitives. The chapter concludes by presenting the standalone and embedded

Quality workflows for our proteomics running example.

To help illustrate each of these steps, we use an example scientific workflow

that involves our protein identification use case. We begin with a description of

the example, in the next section.

5.1 A scientific workflow for the proteomics ex-

ample

In Chapter 4 we have defined a Quality View that formalizes our proteomics

quality example, first introduced in Chapter 1. The example continues here with

the description of a workflow designed to discover the set of proteins that are

expressed by particular organisms or cells [AM03]. To recap briefly, the lab

technique used to analyze protein spots is peptide mass fingerprinting (PMF). In

PMF, a cell sample is processed in the lab using a mass spectrometer, resulting

in a representation of the proteins contained in the sample as a list of individual

masses, called a peak list. The data-intensive portion of the experiment involves

using the peak list to search a reference database of known proteins. Ideally, the

search returns a list of proteins that are present in the original sample.

As mentioned in the introduction, this type of experiment is subject to var-

ious types of error, which manifest themselves in the presence of false positives

in the list of proteins reported by the match. When this process is part of a

more complex workflow, these errors are likely to propagate to other processes,

possibly leading to misleading results. Consider for example a follow-up in silico

experiment designed to exploit the results of a protein identification process, as

specified by the ISPIDER project [BEF+05] on proteomic data integration. A sci-

entist trying to understand the behaviour of a cell under particular circumstances

performs a PMF experiment, from which many identifications result. Rather than

the identifications per se, however, the scientist is more interested in the functional

roles of the proteins within the cell. The identified proteins are therefore mapped

to descriptions of their biomolecular function, by querying the GOA database,

which links protein accession numbers with terms describing molecular function,

expressed using terms from the Gene Ontology (GO) (www.geneontology.org), a

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 128

standard controlled vocabulary. Thus, in this example data errors introduced at

one step, i.e., false positives, propagate to downstream steps, making the results

of the overall functional analysis swamped by noise.

An implementation of this process as a Taverna workflow, from protein iden-

tification to the functional analysis of those proteins, is shown in Figure 5.1.

Figure 5.1: Example Proteomics Analysis Workflow

In the first step, represented by the “IdentifyProtein” box, a set of peak

lists are retrieved from the Pedro database and used for protein identification,

using the Imprint analysis tool along with some configuration parameters and the

reference protein sequence database. Imprint computes ranked identifications,

along with additional indicators; in our example, we will use Hit Ratio (HR) and

Mass Coverage (MC), which we have already introduced as Quality Evidence

types in the IQ ontology. To recall, HR gives an indication of the signal to noise

ratio in a mass spectrum, and MC measures the amount of protein sequence

matched [SPB06]. Finally, the GOA database is queried to retrieve the functional

annotations for each identified protein. At this point, scientists have the necessary

elements to draw their conclusions to interpret the biological process within the

cell.

The QV defined in the previous chapter provides an abstraction for describing

quality filters that (i) provide an estimate of the likelihood that a protein in the list

is a false positive, and (ii) provide functionality to filter out, either automatically

or interactively, the undesired elements. In the rest of this chapter we will see

how the workflow of Figure 5.1 can be augmented with a “quality sub-workflow”

that represents an executable Quality View.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 129

5.2 Quality workflows

Let us begin with an informal description of quality workflows. First, we briefly

recall the Taverna workflow model. A Taverna workflow consists of a collection

of processors with data and control links among them. Processors may have

multiple inputs and outputs, called ports ; a data link establishes a dependency

between the output port of a processor and the input port of another. A control

link indicates that a processor can begin its execution only after some other

processor has successfully completed its execution. Processors are implemented

either as local Java classes, or as Web Services, with input and output ports that

correspond to the operations parameters defined in the service WSDL interface.

The data that flows over the links is encapsulated within XML messages. The

workflow execution engine, called FreeFluo, schedules the invocation of the service

operations, making sure that the dependencies are not violated, and manages the

flow of data between the processors.

Figure 5.2 shows the result of compiling our example QV (Figure 4.1 in the

previous chapter) into a workflow. This can be viewed as an instance of a generic

Quality workflow that includes three types of processors, corresponding to An-

notation functions, Quality Assertion functions, and Actions, respectively. The

processors are organized into layers, interconnected using data and control links

as shown in the figure. A number of ancillary processors, used to supply constant

values to the main processors, are omitted from the figure to avoid clutter.

To understand this workflow structure and its behaviour1, let us analyse the

operations required during the execution of a QV. Initially, the QV receives an

input dataset along with a set of actual parameters. The FetchParameters proces-

sor is responsible for binding actual parameters values to the formal parameters

names declared as part of the Annotation and Assertion functions.

The next step in the workflow execution is to compute the values of quality

evidence, as required by the Assertion functions. Here we need to distinguish be-

tween short-lived quality evidence that is computed when the quality workflow is

executed, as in the proteomics example; and long-lived evidence that is computed

ahead of time, as in the Uniprot annotation example briefly described in the first

chapter (Section 1.3.2). This is useful when annotations involve long computa-

tions, which may even include user interaction. While the former type requires

1We will see in Section 5.5 that the workflow behaviour is consistent with the functional
description of abstract Quality Views given in Chapter 4.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 130

F
ig

u
re

5.
2:

G
en

er
ic

Q
u
al

it
y

w
or

k
fl
ow

–
F
or

ea
ch

p
ro

ce
ss

or
,
th

e
in

p
u
t

an
d

ou
tp

u
t

p
or

ts
th

at
ar

e
co

n
n
ec

te
d

b
y

li
n
k
s

ar
e

sh
ow

n

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 131

Annotation processors as part of the workflow, the latter type do not, because

evidence is stored ahead of time and persistently in the evidence repository

To account for the possibility that there are no Annotation functions in the

QV, this part of the workflow includes a single fetchAnnotations processor, that

is responsible for reading quality evidence values from a persistent repository. If

there are no Annotation services, then this is all that is needed. When they are

present, Annotation services must write the computed quality evidence values to

the repository. Instead of being connected to the rest of the workflow using data

links, they are all connected using control links to the singleton fetchAnnotations

processor. The control link ensures that the Annotation processors and the

fetchAnnotations processor are executed sequentially. Thus, this workflow con-

figuration implements a multiple writers-single reader pattern where the writer

and reader processors are synchronized by the workflow engine. It is easy to see

that, in this pattern, long-lived annotations are just a special case.

As stated in the preceding chapter (Section 4.2.3), annotation functions are

further subject to the requirement that the Quality Evidence variables managed

by each Annotator be disjoint. This requirement, enforced by the compiler (please

see Section 5.4 below), ensures that Annotators do not override each other’s

values, which would result in inconsistencies.

As a next step in workflow execution, the Quality Evidence values retrieved

by fetchAnnotations are forwarded to each of the QA processors. The execution

of these processors produces the Quality Assertion values, which are then con-

solidated into a single data structure by the ConsolidateAssertions processor.

Note that this data structure is an implementation of the QV environment, as

defined in Section 4.3.

The next and final step in the QV involves Actions. As mentioned in Sec-

tion 4.1, the QV syntax currently supports n-way Splitter Actions, which assign

each data element to one of n possible quality classes. In the Quality workflow,

a Splitter Action is rendered using elementary Filter processors, i.e., 2-way Split-

ters that assign data to classes “accept” or “reject”. Filters are implemented

as Taverna processors that receive the environment and evaluate the conditions

associated to the action. Optionally, at this point, the QV designer may have

indicated that Actions be performed interactively. In this case, the processor

presents the contents of the environment through a graphical interface to the

user, who performs a manual filtering of the data elements.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 132

5.3 Formal syntax and semantics of Quality

workflows

We now formalize the intuitive description just given. In turn, this allows us

to formulate the translation rules of QV into workflows in a precise way (in

Section 5.4), and to show the correctness of the translation process (Section 5.5).

We begin by introducing the formal notation for describing Taverna proces-

sors and workflows, used in [TMR+07]. We then define the specific structure of

quality workflows, by giving composition rules for transforming the inputs into

the outputs. These are both syntax rules, describing data types transformations,

and semantic rules that define the structure of complex workflows in terms of the

structure of its components, inductively 2.

5.3.1 Notation for the Taverna workflow language

The Taverna language is defined using the computational lambda calcu-

lus [Mog91]. The use of lambda calculus is motivated by the fact that the Tav-

erna workflow language can be defined in functional terms, although it uses Web

Services as its building blocks. The use of functional languages to give formal

meaning to workflows is not new; an example is the use of the Haskell func-

tional programming language to give a formal definition of a particular workflow

for the Ptolomey II system [LA03] (a precursor to Kepler). The computational

lambda calculus is obtained by augmenting the lambda calculus with suitable

monads [Wad90,Wad95] to model real-life behaviour of functional programs. The

list operator, mapping a set A to the set L(A) of all lists formed with elements

of the set A, is one such monad.

Types

Taverna represents all domain-specific data types used in bioinformatics applica-

tions as strings. These include complex types such as those represented by XML

documents. We denote the string data type with s. One can construct arbitrarily

nested lists starting from the base types, i.e., L(s), L2(s), etc.3 Taverna also

allows for multiple inputs and outputs, hence products have also to be included.

2We would like to give credit to D. Turi for the definition of the syntax and semantic rules
of the Taverna language.

3We write Ln for n applications of L.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 133

For instance: s × s, s × L3(s), L2(s) × s × s × L(s). We use the special symbol

⊥ when a processor has no output. Formally:

τ ::= s | L(τ) | τ × τ | ⊥

We are going to use σ and τ to denote types. For example, in a Quality workflow

the input dataset is a list of data references, formatted as an XML document,

which is formally represented here as a list of strings, L(s), while the Quality Ev-

idence annotations retrieved by the fetchAnnotations processor are represented

as triples of the form 〈name, class , value〉, of type s× s× s, denoted s3.

Contexts

A context Γ defines the unbound typed input variables of a processor, and, by

extension, of a workflow. It is described as a list of (typed) inputs:

Γ ≡ x1 : σ1, . . . , xn : σn

where x1, . . . , xn are input variables of type σ1, . . . , σn. Given context Γ above,

we write Γ, x : σ to denote the context x1 : σ1, . . . , xn : σn, x : σ. Contexts can be

empty, i.e., n can be 0. We write Type(xi) = σi to denote the type of variable xi.

For example, we can write D : L(s) to denote the typed input dataset to our

Quality workflow, and annot : s× s× s for the output of the fetchAnnotations

processor.

Workflows and Processors

To represent workflows we use the following sequent notation:

Γ ` W : τ (5.1)

where variable W denotes a generic workflow, context Γ represents the workflow’s

input variables, and the output of W is of type τ . Function Type is extended

naturally from variables (i.e., workflow inputs) to workflow outputs. Thus, in

(5.1), Type(W) = τ . A workflow consists of a composition of processors, obtained

by linking the outputs and inputs of the component processors. We will use

sequent calculus to describe the composition rules for quality workflows. The

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 134

calculus is based on axioms of the form

Γ ` p : τ

Note that the axiom involves one particular processor p, for example the following

axiom:

D : L(s) ` fetchAnnotations : s× s× s (5.2)

defines a processor fetchAnnotations with input D, a list of strings, and three

string outputs, represented by the product types. Note also that a processor is a

special case of a workflow.

Finally, the axiom:

` foo : s

denotes a processor with no input, i.e., a constant value of type string. We use

the convention that the name of the processor is also the value of the output, i.e.,

the output of the foo processor is the string “foo”.

Syntax rules and Structural Operational Semantics

We describe workflows using type inference and semantic rules. Type inference

rules define the input and output types of workflows obtained by application of

some composition operator. Consider for example the pairing operator 〈P, Q〉,
used to model the concurrent execution of processors P and Q that have no data

or control dependencies amongst them. The typing rule for this operator is the

following:
Γ ` P : σ Γ ` Q : τ

Γ ` 〈P, Q〉 : σ × τ
(5.3)

This rule defines the output type of a workflow obtained by pairing P and Q,

given the output types of P and Q.

The semantics rules for Taverna follow from the general computational lambda

calculus theory [Abr90]. They are structural [Plo81] in the sense that they de-

scribe the structure of complex workflows in terms of their components. It is im-

portant to realize that Taverna processors are black-box functions (implemented

as Web services), therefore we cannot formally describe how the workflow inputs

are transformed into the outputs. Instead, the structural operational semantics

used here gives rules for describing, inductively, the inputs and outputs of a com-

pound workflow, given those of its components. The semantic rules for atomic

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 135

processors are axioms in this theory, and represent the base of the induction.

As an example, and a way to introduce the notation, let us consider the type

inference rule for pairing, above. Its corresponding structural semantic rule is the

following:
P ⇓ u Q ⇓ v

〈P, Q〉 ⇓ 〈u, v〉
(5.4)

We read this rule as follows: if the execution of two workflows P and Q terminates

successfully with outputs u and v, respectively, then the workflow obtained by

pairing: 〈P, Q〉 terminates with output 〈u, v〉. Note that the output value is

consistent with the typing rule (Eq. 5.3).

The general notation used for the semantics is the following. Let P be a

processor defined by the sequent:

Γ ` P : τ

where Γ = x1 : σ1, . . . , xn : σn, x : σ are the input variables. Then

P [v1/x1 . . . vn/xn] ⇓ u denotes the successful execution of P , where each input

variable xi is bound to value vi, and u is the output value. Furthermore, the rule

requires the workflow to be closed, that is, all the input variables must be bound.

Note also that we expect to have a 1-1 correspondence between type and

semantic rules, and that the output specified by the semantic rule must be con-

sistent with the expected type.

Rather than describing all composition operators and their corresponding

rules here, we are going to introduce them as needed, during the course of our

description. However, as a reference, Table 5.1 (adapted from [TMR+07]), sum-

marizes all the syntax and semantic composition rules for the Taverna language.

5.3.2 Quality workflows processor types

To begin the description of quality workflows, let us recall the definition of the

core data types used by the workflow, given in Section 5.2. A dataset D is a

list of strings (references to data, or datarefs): D : L(s). Data annotations are

triples of the form 〈name, class , value〉, of type s× s× s = s3. Thus, we use type

s × L(s3) to represent the association of annotations to a dataref. For example,

〈d, 〈C, q:coverage, 32.5〉〉 denotes an annotation with name C, type “q:coverage”

(a reference to an IQ ontology class) and value 32.5, associated to dataref d.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 136

T
ab

le
5.

1:
S
u
m

m
ar

y
of

T
av

er
n
a

sy
n
ta

x
an

d
st

ru
ct

u
ra

l
se

m
an

ti
cs

C
om

p
os

it
io

n
ru

le
S
y
n
ta

x
S
em

an
ti

cs

P
ai

ri
ng

Γ
`P

:σ
Γ
`Q

:τ
Γ
`〈

P
,Q
〉:

σ
×

τ
P
⇓u

Q
⇓v

〈P
,Q
〉⇓
〈u

,v
〉

P
ro

je
ct

io
n

Γ
`P

:σ
×

τ
Γ
`f

s
t
(P

):
σ

Γ
`P

:σ
×

τ
Γ
`s

n
d
(P

):
τ

P
⇓〈

u
,v
〉

f
s
t
(P

)⇓
u

P
⇓〈

u
,v
〉

s
n
d
(P

)⇓
v

Si
m

pl
e

co
m

po
si

ti
on

Γ
`P

:σ
Γ
,x

:σ
`Q

:τ
Γ
`l

e
t

x
←

P
i
n

Q
:τ

P
⇓u

Q
[u

/
x
]⇓

v
l
e
t

x
←

P
i
n

Q
⇓v

It
er

at
iv

e
co

m
po

si
ti

on
Γ
`P

:L
(σ

)
Γ
,x

:σ
`Q

:τ
Γ
`l

e
t

x
←

P
i
n

Q
:L

(τ
)

P
⇓~u

{Q
[u

i
/
x
]⇓

v
i
} i

=
1
..

|~u
|

l
e
t

x
←

P
i
n

Q
⇓~v

W
ra

pp
ed

co
m

po
si

ti
on

Γ
`P

:σ
Γ
,x

:L
(σ

)`
Q

:τ
Γ
`l

e
t

x
←

P
i
n

Q
:τ

P
⇓u

Q
[[
u
]/

x
]⇓

v
l
e
t

x
←

P
i
n

Q
⇓v

F
la

tt
en

in
g

Γ
`P

:L
2
(τ

)
Γ
`f

l
a
t
t
e
n
(P

):
L

(τ
)

P
⇓[

[w
1
1
,.
..
,w

1
m

],
..
.,
[w

n
1
,.
..
,w

n
m

]]
f
l
a
t
t
e
n
(P

)⇓
[w

1
1
,.
..
,w

ij
,.
..
,w

n
m

]

C
ro

ss
pr

od
uc

t
Γ
`P

1
:L

(σ
1
)

Γ
`P

2
:L

(σ
2
)

Γ
,x

1
:σ

1
,x

2
:σ

2
`Q

:τ
Γ
`l

e
t

x
1
n

x
2
←

P
1
n

P
2
i
n

Q
:L

2
(τ

)

P
1
⇓~u

P
2
⇓~v

{Q
[u

i
/
x
1
][
v

j
/
x
2
]⇓

w
ij
}i

=
1
..

n
j
=

1
..

m
|~u
|=

n
|~v
|=

m

l
e
t

x
1
n

x
2
←

P
1
n

P
2
i
n

Q
⇓[

[w
1
1
,.
..
,w

1
m

],
..
.,
[w

n
1
,.
..
,w

n
m

]]

D
ot

pr
od

uc
t

Γ
`P

1
:L

(σ
1
)

Γ
`P

2
:L

(σ
2
)

Γ
,x

1
:σ

1
,x

2
:σ

2
`Q

:τ
Γ
`l

e
t

x
1
�

x
2
←

P
1
�

P
2
i
n

Q
:L

(τ
)

P
1
⇓~u

P
2
⇓~v

|~u
|=
|~v
|
{Q

[u
i
/
x
1
,v

i
/
x
2
]⇓

w
i
} i

=
1
..

|~u
|

l
e
t

x
1
�

x
2
←

P
1
�

P
2
i
n

Q
⇓

~w

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 137

We use three types of processors in Quality workflows, namely Annotation,

Quality Assertion, and Actions. A generic Annotation processor A is defined

by the sequent:

D : L(s) ` A : L(s× L(s3)) (5.5)

A computes a list ~a of annotations for each input dataref d ∈ D, and associates

them to d, resulting in the pair 〈d,~a〉. The corresponding semantic rule is:

A[~d/D] ⇓ [〈d1, ~a1〉, 〈d2, ~a2〉 . . .] (5.6)

where each ~d = [d1, d2 . . .] and ~ai is of type L(s3).

A generic Quality Assertion processor QA takes input y of type L(s×L(s3)),

i.e., a list of datarefs, each with an associated list of annotation triples. Formally:

y : L(s× L(s3)) ` QA : L(s× L(s3)) (5.7)

with semantics:

QA[~w/y] ⇓ ~v (5.8)

As we can see, the output is structurally identical to the input. However, the

output value ~v is obtained by appending to each input annotation list in the input

~w one new Quality Assertion triple.

The definition of Action processors deviates slightly from the one given in

Section 5.2. We model the output ports as logical quality classes (of type s), and

define a generic Quality Test, QTk, k : 1 . . . r, each responsible for assigning a

dataref d to one quality class, as follows:

w : s× L(s3) ` QT k : s× s (5.9)

with the following semantics:

QT k[〈d,~a〉/w] ⇓ 〈d, c〉 (5.10)

where c is a quality class label. Note that the result of applying r independent

Quality Test processors is a list of lists of class-labelled datarefs, for instance

[〈d1, “accept”〉, 〈d2, “reject”〉] and [〈d1, “green”〉, 〈d2, “red”〉] (so that d1 is both

“accept” and “green”, etc.).

In addition, we define one further processor, called Merger, to account for

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 138

the fetchAnnotation as well as the AssertionConsolidation Taverna processors.

Merger consolidates multiple lists of annotation triples, each computed by a dif-

ferent annotation processor for the same input dataset, into a single list of anno-

tations:

x1 : s× L(s3) . . . xn : s× L(s3) ` Merger : s× L(s3)

Note that we are going to assume the use of data links between Annotators and

fetchAnnotation, rather than control links; this is consistent with the last remark

in the previous section, i.e., that control links in Taverna can be implemented

using only data links.

5.3.3 Composition rules for quality workflows

The axioms given above define processor types. A specific quality workflow con-

sists of a composition of processor instances described by these types, and cor-

responding to Quality View functions. In this section we give the syntax and

structural semantic rules for quality workflows.

Let us assume that the Quality View includes n Annotation functions, m

Quality Assertion functions, and r condition-action pairs. We denote these as Ai,

i : 1 . . . n; QAj, j : 1 . . . m; and QTk, k : 1 . . . r, respectively. As a further matter

of notation, we use curly brackets to denote a collection of multiple processors of

the same type that take part in the same rule, for example:

{xi : σ ` Pi : τ}i:1...n

denotes n structurally identical processors. Similarly, the following semantic rule:

{Pi[vi/xi] ⇓ yi}i:1...n

denotes the execution of the n processors, with the corresponding variable bind-

ings. We also write ~x as a shorthand to denote a value of type list.

Merging Quality Evidence annotations

As suggested above, we use a Merger processor to account for the fetchAnnotation

function. In the following rule, we model a data link from each of the n Annotation

processors, to the singleton Merger processor. For this, we use a combination of

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 139

two operators, iterative composition and dot product. Let us define these

first.

The iterative composition operator is used to compose two workflows P with

output L(σ) and Q, where Q’s input includes x : σ. Note the cardinality mismatch

between the output of P , a list, and the input of Q. The following syntax rule:

Γ ` P : L(σ) Γ, x : σ ` Q : τ

Γ ` let x← P in Q : L(τ)
(5.11)

is interpreted using an iteration, as follows: each value in the output list of P in

turn is bound to input x of Q, and Q is then executed. At the end of P ’s output

list (with elements of type τ), we have a complete output, of type L(τ).

The corresponding semantic rule defines the relationships among the values.

Let P terminate with output ~u = [u1, . . . , un], and vi be the output of Q when

its input variable x is bound to ui. Then, the output of let x ← P in Q is

~v = [v1, . . . , vn]. Formally:

P ⇓ ~u {Q[ui/x] ⇓ vi}i=1..|~u|

let x← P in Q ⇓ ~v
(5.12)

The second operation required for Merger is the dot product. Its syntax rule

is as follows:

Γ ` P1 : L(σ1) Γ ` P2 : L(σ2) Γ, x1 : σ1, x2 : σ2 ` Q : τ

Γ ` let x1�x2 ← P1�P2 in Q : L(τ)
(5.13)

We see that this is an application of the previous operator: since P1 and P2

produce list types, Q is executed repeatedly on this input in order to produce the

final list of type L(τ). Consider the corresponding semantic rule:

P1 ⇓ ~u P2 ⇓ ~v | ~u |= | ~v | {Q[ui/x1, vi/x2] ⇓ wi}i=1..|~u|

let x1�x2 ← P1�P2 in Q ⇓ ~w
(5.14)

Here we take one element from each of the two inputs, namely ui and vi, bind

them to Q’ input variables x1 and x2, and execute Q; we repeat this for the length

of the input lists (note that we require that their lengths be the same).

With these operators we can now write the rules for the Merger operator. This

is the syntax rule:

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 140

{D : L(s) ` Ai : L(s× L(s3))}i:1...n x1 : s× L(s3) . . . xn : s× L(s3) ` Merger : s× L(s3)

D : L(s) ` let x1� . . .�xn ← A1� . . .�An in Merger : L(s× L(s3))
(5.15)

Each element in the output of each Annotation processor is a pair

〈dataref, annotations〉. We also assume that the datarefs appear in the same

order in each of these lists. This means that, at any one iteration, Merger will

process all annotations for the same dataref: each input xi is bound to one ele-

ment 〈d,~ai〉 for some d, and Merger coalesces all annotations a1 . . . an for that d.

The semantic rule defines this behaviour:

{Ai[~d/D] ⇓ ~ai}i:1...n Merger[〈dj,~a1〉/x1, 〈dj,~a2〉/x2 . . .] ⇓ 〈dj,~a
′
j〉

(let x1� . . .�xn ← A1� . . .�An in Merger)[~d/D] ⇓ [〈d1, ~a′1〉, 〈d2, ~a′2〉 . . .]
(5.16)

We write WF1 to denote the workflow resulting from this composition, up to this

point.

Computing Quality Assertions

WF1 is then composed with a QA processor QA, using a simple composition op-

erator. This operator is a simpler version of iterative composition, which applies

when there is no type cardinality mismatch among the outputs and inputs of

connected processors, as illustrated by the following rules:

Γ ` P : σ Γ, x : σ ` Q : τ

Γ ` let x← P in Q : τ
(5.17)

and
P ⇓ u Q[u/x] ⇓ v

let x← P in Q ⇓ v
(5.18)

WF1 is composed with QA using the following rules:

D : L(s) ` WF1 : L(s× L(s3)) y : L(s× L(s3)) ` QA : L(s× L(s3))

D : L(s) ` let y ← WF1 in QA : L(s× L(s3))
(5.19)

and
WF1[~e/D] ⇓ ~w QA[~w/y] ⇓ ~v

(let y ← WF1 in QA)[~e/D] ⇓ ~v
(5.20)

where ~v = [〈d1,~a
′′
1〉 . . . 〈dm,~a

′′
m〉] includes the new annotations computed by QA.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 141

Merging of Quality Assertion values

Assuming that we have m processors QA1 through QAm, let PQAh
, h : 1 . . . m

denote each of the m workflow fragments resulting from the application of this

composition to each QAk. The next step involves merging the outputs of all these

workflow fragments, again using the Merger processor seen earlier. These are the

corresponding rules, where the semantics of the involved operators should now

be clear.

{D : L(s) ` PQAh
: L(s× L(s3))}h:i...m x1 : L(s3) . . . xm : s× L(s3) ` Merger : s× L(s3)

D : L(s) ` let x1� . . .�xn ← PQA1� . . .�PQAl
in Merger : L(s× L(s3))

with semantics:

{PQAh
[~d/D] ⇓ ~vh}h:i...m Merger[〈d,~aj〉/xj}j:1...m] ⇓ 〈d,~a〉

(let x1� . . .�xm ← PQA1� . . .�PQAm in Merger)[~d/D] ⇓ ~v
(5.21)

Similar to the previous use of Merger, ~v is the input dataset where each element

is associated to its corresponding annotations.

Performing Quality Tests

As a final step the resulting workflow, denoted WF2, is composed with each of

the r Quality Test processors QT1 . . . QTr using iterative composition:

D : L(s) ` WF2 : L(s× L(s3)) w : s× L(s3) ` QTk : s× s

D : L(s) ` let w ← WF2 in QTk : L(s× s)
(5.22)

The corresponding semantics is:

WF2[~d/D] ⇓ ~v QTk[〈di,~a
′
i〉/w] ⇓ 〈di, ci〉

(let w ← WF2 in QTk)[~d/D] ⇓ [〈d1, c1〉, . . . 〈dm, cm〉]
(5.23)

This step yields a set of k : 1 . . . r independent workflows, denoted WF3,k:

WF3,k ≡ D : L(s) ` let w ← WF2 in QTk : L(s× s)

Since these workflows are independent, the final outputs from the entire quality

workflow can be obtained by pairing. Assuming w.l.o.g. r = 2, this is written:

D : L(s) ` WF3,1 : L(s× s) D : L(s) ` WF3,2 : L(s× s)

D : L(s) ` 〈WF3,1, WF3,2〉 : L(s× s)× L(s× s)
(5.24)

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 142

with corresponding semantics:

WF3,1[~d/D] ⇓ [〈d1, c11〉, 〈d2, c12〉 . . .] WF3,2[~d/D] ⇓ [〈d1, c21〉, 〈d2, c22〉 . . .]
〈WF3,1, WF3,2〉[~d/D] ⇓ 〈[〈d1, c11〉, 〈d2, c12〉 . . .], [〈d1, c21〉, 〈d2, c22〉 . . .]〉

(5.25)

where the two sets of class labels {c11, c12 . . . } and {c21, c22 . . . } are independent

from each other.

5.4 Translating Quality Views into Quality

workflows

We use the formal definition of Quality workflows to specify translation rules from

Quality Views to Quality workflows. This is now straightforward, as it amounts

to showing a simple mapping from the surface XML syntax for QVs, given in

Section 4.2, and the formal syntax given here.

Annotator: An <Annotator> construct takes the form:

<Annotator type="sc">

<variables>

<var variableName="var 1" metricName="cl1" />

<var variableName="var 2" metricName="cl2" />

<var ... />

</variables>

</Annotator/>

where sc is a reference to an ontology subclass of AF. This maps to a pro-

cessor Asc defined in (5.2):

D : L(s) ` Asc,V : L(s3) (5.26)

The set V = {var 1, var 2, . . . } is mentioned explicitly as part of the processor

name. This makes it clear that the requirement of disjointness of variable

sets among Annotation processors can be enforced by static analysis, i.e.,

that Vi ∩ Vj = ∅ for any two Ai,Vi
, Aj,Vj

.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 143

We use the variables’ declarations to further specify the semantics given in

Eq. 5.6, as follows:

Asc[~e/D] ⇓ [〈var 1, cl1, val1〉, 〈var 2, cl2, val2〉, . . .]

Note that now the variable names and classes in each annotation triple are

explicitly specified in the output.

QualityAssertion : A QA construct of the form

<QualityAssertion type = "sc" tagName="q">

<variables>

<var variableName="var 1" metricName="cl1" />

<var variableName="var 2" metricName="cl2" />

<var ... />

</variables>

</QualityAssertion>

corresponds to a QA processor:

y : L(s× L(s3)) ` QAsc,V,q : L(s× L(s3)) (5.27)

where sc is a reference to an ontology subclass of QA, V = {var 1, var 2 . . . } is

the set of input variables, and q is the name of the output variable. Again,

the semantics is a refinement of (5.8):

QAh[~w/yh] ⇓ ~vh

where ~vh includes the new annotation for variable q. Formally, let ~w =

[〈d1,~a1〉 . . . 〈dm,~am〉]. Then

~vh = [〈d1,~a
′
1〉 . . . 〈dm,~a′m〉]

where a′j = aj · up(〈q, sc, v〉) (here up wraps an element a to a one-element

list [a], and “·” is list concatenation).

Splitter Action. The specification of this type of action takes the form:

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 144

<action>

<split>

<variables>

<var variableName="var 1" metricName="cl1" />

<var variableName="var 2" metricName="cl2" />

<var ... />

</variables>

<channel name="o1">"expr 1"</channel>

<channel name="o2">"expr 2"</channel>

</split>

</action>

This construct maps to a set of Taverna processors of type QT, according to

the syntax (5.9), one for each channel:

w : s× L(s3) ` QTexprk,V,ok
: s× s (5.28)

where V = {var 1, var 2 . . . } is the set of variables, exprk is a valid string

in the expression language specified in Appendix A, and it only contains

variables in V .

The corresponding semantics is:

QTk[〈d,~a〉/w] ⇓ c

where: (i) the list ~a of annotations contains triples 〈var i, cl i, vi〉 for each

var i ∈ V , and (ii) c = 〈d, ok〉 if eval(exprk[{vi/var i}i:1···|V |]) = true, and

null otherwise.

Filter Action. A Filter is just a simplified version of a Splitter, with only one

condition and implicit quality classes, i.e., “accept” and “reject”. The filter

construct:

<action>

<filter>

<variables>

<var variableName="var 1" metricName="cl1" />

<var variableName="var 2" metricName="cl2" />

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 145

<var ... />

</variables>

<expression>"expr"</expression>

</filter>

</action>

maps to a single Taverna processor of type QT, with syntax and semantics

as described above.

The QV-to-Taverna compiler implements the formal translation rules just

described. More specifically, the translation process consists of the following

main steps:

• performing syntactic and semantic analysis of the QV, to ensure that the

QV is valid according to the definition given in Section 4.2, namely that

(i) the XML syntax conforms to the XML schema defined for QVs, and (ii)

the semantic naming constraints of Section 4.2.3 are satisfied;

• checking the formal consistency of the QV, according to the rules defined

in Section 4.4;

• creating instances of processors of type (5.26), (5.27), and (5.28). This step

makes use of a registry that maps ontology classes for Annotation and QA

functions onto deployed Web Services (i.e., to actual Web Service endpoints)

that provide an implementation of those functions. The registry is a feature

of the Qurator workbench, which is fully described in the next chapter;

• connecting the processors according to the rules defined in Section 5.3. This

includes adding Merger processors as required;

• configuring some of the processors. This involves supplying parameters to

processors, to specify their behaviour during execution. The specific repos-

itory where computed annotations are to be stored, for example, is a pa-

rameter of the Annotator processor (it is specified using the repositoryRef

attribute described in Section 4.2.4). Also, some of the required functional-

ity is obtained by configuring a generic, predefined processor; for example, a

filter with condition c is instantiated by configuring a generic, predefined fil-

tering processor with parameter c. Configuration is achieved in Taverna by

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 146

Figure 5.3: Quality workflow with ancillary configuration processors

adding ancillary processors to the structure described so far in this chapter.

These additional processors simply supply constant values to the proces-

sors at execution time, through dedicated input ports. For completeness,

we show an actual generated Quality workflow with the additional proces-

sors, in Figure 5.3.

5.5 Correctness of Quality workflows

Previously in this chapter, we have alluded to the connection between the seman-

tics of Quality workflows, as an actual implementation of Quality Views, and the

semantics of abstract QVs given as a functional program in the previous chapter.

We are now finally in a position to make this connection formal, by showing that

the QV-to-Taverna translator generates a workflow whose semantics is consistent

with that of abstract QVs. Ideally, this amounts to showing that the following

diagram is commutative:

QV
comp−−−→ WFQVy yexec(WFQV ,D)

fQV ()
eval(f,D)−−−−−→ y

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 147

That is, for any input dataset D, the result y computed by compiling QV into a

Quality workflow WFQV , and executing it on input D, is the same as the result

obtained by applying fQV to D.

Note however that the semantics of fQV and that of WFQV are defined in

different ways: we have a complete functional interpretation of QV , but only

a structural definition for WFQV . As a consequence, we will have to make the

assumption that workflow processors correctly implement their corresponding

quality functions. Under this assumption, we prove functional correctness by

showing that WFQV is structurally equivalent to the QV that it is compiled

from. In order to do this, we must first describe QV using the same structural

semantics that we have used for the workflow. This requires that we first define

the structural operational semantics of the Haskell QV intepreter of Section 4.3,

and then proceed to show inductively the structural consistency between workflow

functions and QV functions.

5.5.1 Syntax and semantic rules for the QV interpreter

To recap, in Section 4.3 we began by introducing an environment data structure,

designed to hold partial quality values during the computation, and then de-

scribed the top-level interpreter function QV. This is a composition of elementary

functions that apply Annotation, Assertion and Action functions to the data,

i.e., annotate, qassert, and act. The main structural difference between the QV

interpreter and the workflow is that describing the interpreter requires modelling

both the function themselves, and the Haskell interpreter functions that apply

those functions to the input data. In particular, the input variables in the inter-

preter, denoted by f , are now bound to quality functions. With this provision,

we now give the syntax and semantics of these elements.

Environment

The environment is defined as the type

env = L(s× L(s3))

As we have seen in the previous section, in the workflow the environment is passed

from processor to processor through the data links in the form of messages: the

environment access functions that we have seen in the QV interpreter have no

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 148

equivalent in the workflow, because they are not exposed as explicit processors.

Annotation functions

The functional definition of a generic Annotation function A in the interpreter is

identical to Eq. 5.5, and corresponds to the following axiom:

D : L(s) ` A : L(s× L(s3)) (5.29)

The interpreter function annotate1 applies A to an input dataset D. We can

use simple composition to model function application, as follows:

D : s ` A : L(s× L(s3)) D : L(s), f : L(s× L(s3)), e : env ` annotate1 : env

D : L(s), e : env ` let f ← A in annotate1 : env

where f is the input variable to annotate1 that binds to annotation function A.

Let ~d = [d1 . . . dm]. The semantics is:

A[~d/D] ⇓ ann annotate1[e0/e][ann/f] ⇓ e′

(let f ← A in annotate1)[~d/D][e0/e] ⇓ e′

where ann = [〈d1,~a1〉, 〈d2,~a2〉 . . .] is the annotation structure computed by A,

e0 is the initial environment, and e′ = e0 · ann is the final environment after

interpretation.

By extension, annotate applies a list of n annotation functions Ai to D:

{D : s ` Ai : L(s× L(s3))}i:1..n D : L(s), f1 : L(s× L(s3)) . . . , e : env ` annotate : env
D : L(s), e : env ` let f1� . . .�fn ← A1� . . .�An in annotate : env

(5.30)

with corresponding semantics:

{Ai[~d/D] ⇓ ann i}i:1...n annotate[e0/e]{[ann i/fi]}i:1...n ⇓ e′

(let f1� . . .�fn ← A1� . . .�An in annotate)[~d/D][e0/e] ⇓ e′
(5.31)

where now ann i = [〈d1,~ai1〉, 〈d2,~ai2〉 . . .] is the annotation structure computed

by Ai, e0 is the initial environment, and e′ = e0 · ann1 · · · . . . annn is the final

environment after interpretation.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 149

Quality Assertions

The functional definition of a Quality Assertion function is similar to the one in

Eq. 5.7, except for the new environment e:

D : L(s), e : env ` QA : env (5.32)

Similar to what we have seen for Annotation functions, the Qassert interpreter

function applies QA to an input dataset D using environment env , which carries

the annotated data. The result is a new version of the environment that includes

the new annotation with the value computed by QAf :

D : L(s), f : L(s3), e : env ` Qassert : env

This application is similar to the case for Annotations. For m QA functions, we

have the rules:

{D : L(s), e : env ` QAi : env}i:1...m D : L(s), f1 : env , . . . fm : env , e : env ` Qassert : env
D : L(s), e : env ` let f1� . . .�fr ← QAf1

� . . .�QAfm
in Qassert : env

(5.33)

and

{QAi[~d/D][e0/e] ⇓ ei}i:1...m Qassert{[ei/fi]}i:1...m ⇓ e′

(let f1� . . .�fm ← QA1� . . .�QAm in Qassert)[~d/D][e0/e] ⇓ e′
(5.34)

Quality tests

Finally, a Quality test is represented by a function QT :

D : L(s), e : env ` QT : L(b) (5.35)

where b = True|False is a boolean type. This function returns a list of boolean

values, one for each input data element.

The QV interpreter function act applies a test QT to the annotated input

data, and assigns a class label to each input data element depending on the

outcome of the test:

D : L(s), T : L(b), e : env ` act : L(s× s× L(s3))

where the list of boolean variables L(t) represents the outcome of the application

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 150

of QT to the input. Note that the test condition is part of the QT function and

is not exposed to the interpreter. Each triple in the result type of act consists of

a dataref with associated label and annotations. The label represents a quality

class to which the data element is assigned. For a single condition, as illustrated

here, we are going to use two quality classes, c1 and c2, corresponding to a true

and false condition, respectively.

The interpreter’s invocation of a set of r test functions on the data is defined

by the following rules:

D : L(s), e : env ` QT : L(b) D : L(s), T : L(b), e : env ` act : L(s× s× L(s3))

D : L(s), e : env ` let t← QT in act : L(s× s× L(s3))
(5.36)

and
QT [~d/D][e0/e] ⇓ ~b act[~b/f] ⇓ ~w

(let t← QT in act)[~d/D][e0/e] ⇓ ~w
(5.37)

where ~w = {〈dj, c1, ej〉|bj = True} ∪ {〈dj, c2, ej〉|bj = False}, l and ej is the set

of annotations associated to dj in the environment.

5.5.2 Correctness

As mentioned earlier in the section, there are two main structural differences

between QVs and workflow functions. Firstly, QV functions define an interpreter,

hence they take functions as parameters and apply them to data, while in the

workflow, functions are first-class processors. And secondly, QV functions use an

explicit environment, while workflow processors rely on data links. Despite these

differences, however, we can still establish a structural correspondence among the

functions. To establish functional correctness, we have to further assume that the

result of executing a processor corresponding to a QV function on some input is

the same as that of interpreting the function on the same input. For example,

for Annotation functions we must postulate that if

Ai[~d/D] ⇓ [〈d1, ann1 〉, 〈d2, ann2 〉 . . .]

and

(let f ← Ai in annotate1)[~d/D][e0/e] ⇓ e′

then in e′ the annotations for each di are precisely anni .

Having made this assumption for the base case, we can show the structural

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 151

correspondance by induction. Observe that the annotate function is structurally

equivalent to the workflow denoted with WF1 in Section 5.3 (Eq. 5.15), namely:

D : L(s) ` let x1� . . .�xn ← A1� . . .�An in Merger : L(s× L(s3))

Since at the beginning of the QV interpretation the environment is empty, we

conclude that the semantics of WF1 is correct.

Moving on to QA processors: y : L(s × L(s3)) ` QAh : L(s × L(s3)) (5.7),

we again observe that they are structurally identical to the functions QAi (5.32),

since env = L(s × L(s3)). As we did for Annotators, here we must again make

an assumption of functional equivalence between each of the QAh processors and

corresponding functions QAi —the details are similar to those shown earlier.

With this assumption, we may conclude that the result of merging m QA

values, denoted earlier by WF2:

D : L(s) ` let x1� . . .�xn ← PQA1� . . .�PQAl
in Merger : L(s× L(s3))

can be obtained by applying the QV function Qassert to m QA functions, starting

from an environment computed by WF1. By structural induction, we conclude

again that the resulting workflow up to this point, denoted with WF2 in Sec-

tion 5.3, is correct.

A similar set of reasoning steps allows us to deal with the Actions layer of the

Quality workflow. To recall, a single QT processor: w : s × L(s3) ` QT : s × s

associates a quality class to a dataref: 〈d, c〉, and is applied to our current workflow

WF2 as follows (5.22):

D : L(s) ` let w ← WF2 in QTk : L(s× s) (5.38)

The corresponding QV function is act, which, as expected, takes tests T as explicit

input parameters (in addition to the environment):

D : L(s), T : L(b), e : env ` act : L(s× s× L(s3))

Note that the output is more general than the equivalent processor, in that it also

includes all annotations. We are again in a situation where the semantics of the

processor is less precise than that of the corresponding function. Recalling that

a different class c is associated to d in the processor depending on the outcome of

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 152

the test, ultimately we conclude by induction that the entire workflow computes

the set of quality classes that would be computed by the QV interpreter on the

same input.

5.6 Embedded Quality workflows

We began the chapter with an illustration of a Taverna Quality workflow (Fig-

ure 5.2), and have now provided the formal machinery necessary to understand

it in detail. The purpose of this workflow structure, however, only becomes clear

when it becomes part of some larger workflow, providing “embedded” quality

controls for it. Note that this is a natural operations to perform on workflows,

because workflow models naturally support the notion of recursive sub-processes.

The problem that we address in this section is how to provide users with

a simple mechanism to specify the integration. Let us begin, as an example,

by analysing the steps required to integrate our example proteomics workflow,

referred to as the host workflow with the quality workflow obtained by compiling

our example QV.

• Locate the processors in the host workflow whose output is in the scope of

the QV. To recall the definition given in Section 4.1, the scope of a QV is

a Data Entity class in the ontology (specified in the <QV> element of the

QV), and it indicates that the QV can be computed on all and only the

collections of datasets that are individuals of the class. For example, if the

scope is HitEntry, then any dataset that is semantically annotated with

class HitEntry or any of its sub-classes, can be used as input to the QV.

Thus, if the output from any of the processors is semantically annotated in

this way, then these processors can be used to provide input to the QV. In

our proteomics example, we assume that the output from identifyProteins

is annotated with class ImprintHitEntry, and is therefore in the scope. Note

that, ultimately, the indication of which data types are eligible to be in the

scope comes from the users, who are responsible for annotating the data in

the workflow4. We refer to the processors that produce these datasets as

quality insertion points.

4If more than one dataset is eligible, for example, it is a users’ choice where the quality
workflow will be embedded.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 153

• Identify whether there is a need for an adaptor processor (also known

as a “shim service” [Hul06]) to convert the output data format of

identifyProteins to the input format of the top-level Quality processor,

namely fetchAnnotations. In this case, the ImprintToQuratorAdapter has

been developed for the purpose. Adapters are linked so that they receive

the output of insertion points in the host workflow.

• Add input links from the insertion points in the host workflow (or from

the adapters, if they are present) to the top-level processors in the Quality

workflow. These top-level processors are fetchAnnotations and each of

the Annotators, i.e., ImprintAnnotator. Note that fetchAnnotations does

require the input dataset: as we recall, this processor does not receive direct

input from the Annotators, to account for the possibility that none exists.

Therefore, it must take its input directly from the host processor.

• The outputs from the Action processors must be connected to some input in

the host workflow. In the case of a simple Filter, one would typically connect

the “accept” output to a processor that can carry out the appropriate action

in the host workflow, while the “reject” output is simply not used. This is

illustrated in the figure, where the “pass” port of initial filter action is

connected to the input data port of Uniprot2GO in the host workflow5. We

reiterate again that while filtering is a common type of action others may

be specified. Using an n-way Splitter, for example, leaves the designer free

to use any of the available n+1 output ports (including the pass-through

“all” port).

The result of embedding in our example workflows, with the data ports, is

shown in Figure 5.4.

This sequence of steps, which is common to all quality workflows, suggests

that the integration can be carried out automatically, provided that users give

explicit instructions for each of the steps above. To achieve this goal, we have

proposed a simple quality workflow deployment language, described in the next

section, that lets users specify how the integration should be performed. As part

of Qurator, we have implemented a deployment component that interprets the

language and carries out the instructions.6

5The figure only shows the ports that are connected through a data link. Therefore the

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 154

F
ig

u
re

5.
4:

P
ro

te
om

ic
s

w
or

k
fl
ow

w
it

h
em

b
ed

d
ed

Q
u
al

it
y

w
or

k
fl
ow

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 155

5.6.1 Worklow deployment language

The language is based on only two graph-manipulation primitives, namely (i)

adding a data or control link from processor A to processor B, and (ii) add a

processor to the workflow. In addition, the user may specify whether adding a

link from A results in previous outgoing links from A to be retained, or removed.

The latter feature lets users determine whether the quality workflow should

be “intrusive”, by intercepting the flow of the host workflow, or whether it should

be deployed as an additional branch of the host workflow. In the former case the

quality workflow is suitable for filtering data, as in the case shown in our example,

while in the latter it provides new quality-aware output in addition to the output

produced by the host workflow.

Using these simple primitives we can specify embeddings like the one shown

in Figure 5.5. The deployment descriptor that produces the result in the figure,

written in an XML-based syntax, is shown in Figure 5.67. In its definition, note

that a link is defined as a pair

[〈source processor, source port〉, 〈sink processor, sink port〉]

for example [〈initial filter action, Pass〉, 〈Uniprot2Go, in0〉].
We believe the syntax to be largely self-explanatory. Let us now consider the

effect of the overriding attribute in the first <connector> element.

• The output from identifyProteins is redirected to the annotator, through

the new adapter;

• Since Masses, one of the host workflow inputs, is required by

ImprintAnnotator too, in the second <connector> element a link is added.

This link is non-overriding because other processors need the value of

Masses;

• The output from the adapter is routed both to the Annotator

and to fetchAnnotations. The overriding setting is irrelevant here

“reject” port, for example, is not shown.
6Part of this implementation is due to our student, Paul Waring
7The initial <scufl> tag is a reference to the name, Scufl, of the Taverna language. It is

used to indicate that this descriptor should be interpreted in the context of a Taverna workflow.
This leaves open the option to add deployment descriptors for other workflow systems, which
may require a different set of primitives.

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 156

F
ig

u
re

5.
5:

H
os

t
an

d
Q

u
al

it
y

w
or

k
fl
ow

s
an

d
th

e
re

su
lt

of
em

b
ed

d
in

g

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 157

<deployment>

<scufl hostflow="data/workflow/ImprintBaseWorkflow">

<adapter name="Imprint2QuratorAdapter"

scuflProcessor="ImprintOutputAdapter"/>

<connector sourceProc="identifyProteins"

sourcePort="identifyProteinsReturn"

destProc="Imprint2QuratorAdapter" destPort="annotatorInput"

linktype="data" overriding="true"/>

<connector sourceInput="Masses"

destProc="ImprintAnnotator" destPort="Masses"

linktype="data" overriding="false"/>

<connector sourceProc="Imprint2QuratorAdapter"

sourcePort="datarefsDoc"

destProc="fetchAnnotations" destPort="dataRefSet"

linktype="data" overriding="true"/>

<connector sourceProc="Imprint2QuratorAdapter"

sourcePort="ImprintResult"

destProc="ImprintAnnotator" destPort="DataRefSet"

linktype="data" overriding="false"/>

<connector sourceProc="initial filter action"

sourcePort="pass"

destProc="uniprot2GO" destPort="in0"

linktype="data" overriding="false"/>

</scufl>

</deployment>

Figure 5.6: Deployment descriptor for integrating the example Quality View
within the Ispider workflow

since the adapter is a new processor. This is consistent with the

workflow in Figure 5.2, where the dataset input is represented by

fetchAnnotationsInputDataset. As mentioned earlier, fetchAnnotations

uses this input to retrieve annotations from a repository, regardless of

whether any Annotators are also present;

• Finally, the “pass” output from the action processor is wired to the input

port that originally received the output from identifyProteins.

We note a final but important point regarding the semantics of the de-

ployer. When links are removed, some processors may end up without in-

puts or outputs. The deployer automatically removes these processors, as they

no longer contribute to the workflow. This accounts for the disappearance of

processor getACNumbers, which is no longer needed, and of the original input

fetchAnnotationsInputDataset.8

8In fact, the latter is auto-generated by the translator, to make it possible to use the Quality

CHAPTER 5. QUALITY VIEWS AS WORKFLOWS 158

5.7 Summary and Conclusions

In this chapter we have described a realization of abstract Quality Views as

executable Taverna quality workflows, for which we have given a formal syntax

and structural semantics, along with a formal definition of the translation process.

The detailed illustration of the steps involved gives a calibration of the type of

effort expected from scientists who want to deploy quality control features as part

of data processing, when workflows are used to describe in silico experiments. In

particular, by showing that the translation can be automated we support our

claim that the IQ framework is close to the scientist’s intuition when addressing

quality issues.

workflow in “standalone mode”, i.e., without embedding – mostly for testing purposes.

Chapter 6

The Qurator workbench

The lifecycle for Information Quality, proposed in Chapter 2, describes a set of

user tasks designed to make data processing applications in e-science quality-

aware. The research described so far has clarified the extent to which we can

support the users in some of these tasks, namely the specification of consistent

Quality Views and their compilation into executable processes, i.e., worklows,

as well as in their integration as part of other scientific workflows. Having im-

plemented these functionalities as software components, we now aim to design a

more complete suite of components in order to support the users throughout the

entire outer loop of the lifecycle. We call this suite of components, organized into

a software architecture, the Qurator workbench, to emphasize that they provide

an environment for scientists to experiment with personal definitions of informa-

tion quality, and their application as part of data processing. The Quality View

specification tool and compiler are two of the Qurator components.

In this chapter we investigate the challenges associated with the remaining

tasks in the lifecycle, show how they translate into workbench components, and

argue that the Qurator workbench provides support to the entire outer loop of the

lifecycle. For clarity, we reproduce the IQ lifecycle diagram from page 59 here, as

Figure 6.1. In this version of the figure we have numbered the tasks for which we

provide support in the Qurator workbench. In Chapter 3 we have described the

IQ ontology, and how users can contribute to it with domain-specific concepts

(task 2 in the figure); Quality View specification (task 3) has been the topic of

Chapter 4, and its compilation and integration (4 and 5) were addressed in the

previous chapter.

As we have stated early in the introductory chapter, the entire inner loop is

159

CHAPTER 6. THE QURATOR WORKBENCH 160

out of the scope of the workbench. We also have an un-numbered task, namely

the analysis of data acceptability criteria. In this task, scientists make the initial

determination of whether quality controls are needed at all, and at the end of

each iteration around the loop, decide whether the current quality process config-

uration is satisfactory. We regard this as a knowledge-intensive, distinctly human

activity that is out of the scope of the workbench, as well.

compilation

modelling

IQ conceptual

model design

model testing

(performance evaluation)

results analysis

data acceptability criteria

analysis of

data

processing

target

datasets

seek additional

quality knowledge

training
dataset

quality−aware processing

integration

quality functions selection

quality view specification Quality functions

implementation

reusable library

of quality functions
QAs

7

6

5

4

3
2 1

Quality Views

− Quality Assertion functions (predictive models)

− Quality Evidence (predictors)

discovery of quality knowledge

Contribution:

Quality assessment:

Quality functions

QAs

exploitation of quality knowledge

Figure 6.1: The IQ lifecycle as a workplan for the Qurator workbench

In the next three sections of this chapter we are going to address the remaining

tasks that we have not yet discussed, as follows:

implementation of quality functions (task 1): here we address the problem

CHAPTER 6. THE QURATOR WORKBENCH 161

of facilitating the implementation of Quality Assertion functions as Web

services, by partially automating the generation of the service code;

forms of quality-aware data processing (task 6): having described how

Quality Views can be used to make scientific workflows quality-aware, we

extend the result to database query processing, specifically for XML data;

and

analysis of the execution results (task 7): here we argue that, as part of

data and data quality analysis, users should be able to inspect the execution

of a Quality View, in order to determine why a certain classification was

made. We propose the new notion of quality provenance, or provenance

about quality, and we address the problem of collecting and then using

quality provenance.

Finally, in the last section we present our architectural solution for the entire

Qurator workbench, highlighting the purpose of each of its components with

respect to the lifecycle tasks.

6.1 Implementation of quality functions

Quality Assertion functions (quality functions, for short) are implemented as soft-

ware components that can be composed into Quality Views. Since many different

Quality Views may use the same quality functions, one important requirement

for these components is their reusability. We facilitate reusability by stipulating

that, in order to be used within the Qurator workbench, quality functions must

be implemented as Web services, and furthermore, that all such services must im-

plement the same interface. This facilitates the composition process by ensuring

that all quality functions are invoked in the same way.

An important additional benefit of this uniformity is that it offers opportu-

nities for the automated generation of some of the service implementation code.

Of course, a number of Web service toolkits already provide utilities to generate

implementation skeletons from a WSDL interface (the well-known Axis Apache

project is one of them). These utilities, however, are generic in that they do

not make any assumption on the type of messages that are exchanged over the

interface, let alone the service implementation logic. As a result, the generated

CHAPTER 6. THE QURATOR WORKBENCH 162

implementation includes only to the code required to send and receive SOAP

messages, regardless of their content and their intended use.

Quality functions, however, are likely to have a uniform structure, since, after

all, by definition they all compute either a classification or a score model, using

vectors of quality evidence values. Furthermore, the structure of their messages is

known from the common definition of their interface. Based on these observations,

in this section we investigate the opportunities and limits of generating code

specifically for quality functions, when additional information is given regarding

the structure of their messages, and to a limited extent, their internal logic.

Initially, let us consider the case of two quality functions with completely ar-

bitrary logic. Despite their differences, we can assume that their implementation

will have a recognizable common structure, consisting of (i) processing input mes-

sages to retrieve the input quality evidence values, (ii) computing the function

value, and (iii) composing an output message.

Since the message structure is not only common to all these functions, but it

is specified as part of their shared service interface, we can supply helper classes

that transform the external message formats into a predictable internal object

model. We observe that the environment data structure described in Chapter 4

(Section 4.3) is in fact a suitable representation of the function’s input; to recall, it

consists of a collection of attribute vectors, one for each input data element, with

one element for each quality evidence value, plus one element to hold the function

value, i.e., the classification. Thus, we can generate an implementation stub that

includes calls to the helper classes to read and write elements of the environment,

obviating the need for users to write the repetitive and less interesting parts of

the code by hand.

This is already a step further from a generic stub that is completely obliv-

ious to the message structure. If we do not know anything about the function

logic, however, there is not much more that we can do to help the user. By

contrast, suppose that the function implements a classifier using some kind of

software framework, rather than in a bespoke fashion. For example, rather than

implementing the code for a decision tree completely by hand, the quality knowl-

edge engineer may leverage an existing framework from programming machine

learning algorithms. The use of such framework imposes some regularity on the

function code, hopefully giving it a recognizable structure; the idea is to exploit

this regularity to generate as much of the implementation code as possible. In

CHAPTER 6. THE QURATOR WORKBENCH 163

practice, we hope to shift the users’ task from that of programming the function,

to that of providing a sufficiently specific, but higher-level declarative description

of it, that can be used to drive code generation.

To make this idea more precise, let us consider one specific programming

framework for knowledge discovery, namely Weka [WF05]. Weka is an open,

community-contributed Java-based environment that includes an extensible col-

lection of machine learning algorithms for data exploration and model generation.

It caters to three classes of user. The first class includes users who need to anal-

yse their data using pre-defined algorithms through a friendly, graphical interface.

The second class includes developers who wish to incorporate the algorithms as

part of their own application. Finally, the third class includes developers who

contribute new, possibly experimental algorithms to the community as add-on

components to the framework. Quality knowledge engineers belong for the most

part to the first and second class: to these users, Weka provides the means to

iterate around the inner loop of the IQ lifecycle, by training and testing their clas-

sification model without any programming effort. After training, Weka models

can be used to classify a new dataset, either interactively or programmatically,

and they can be saved for future use.

Using Weka to implement quality functions leads naturally to the predictable

program structure that we were hoping for; in fact, executing a Weka model on

a new dataset amounts simply to preparing the dataset to conform to the ex-

pected input format, loading the model into the Weka environment, launching

the execution, and reading the result. Our hypothesis is that we can exploit this

program structure to perform automatic code generation. We propose a three-

step approach to achieve this goal. Firstly, we incorporate into the IQ ontology

a symbolic description of known frameworks, or implementation patterns. Hope-

fully, there are only a limited number of these frameworks, like Weka for example,

for the specific domain of knowledge discovery. Secondly, for each new quality

function, quality engineers should specify that the function will be implemented

using one the frameworks known to the ontology. We will see shortly how this

can be achieved by a simple annotation of the common WSDL interface for qual-

ity functions. Thirdly, a code generator interprets the annotation in order to

produce a stub of the function implementation. By following this strategy, we

expect to find that the more constraining the framework chosen by the user, the

more complete the code in the resulting stub will be.

CHAPTER 6. THE QURATOR WORKBENCH 164

6.1.1 Code generation example

To make our strategy more precise, let us return to the Weka example, where we

assume that the quality engineer decides to implement the quality function using

a well-known decision tree algorithm, C4.5 [Qui93]. At the end of the training

phase, the classifier is available as a model file, say myC4.5-QA. The essential steps

for invoking the model, fairly self-explanatory, are as follows:

// Weka classifier invocation pseudo-code

inputDataset = readDataset(inputDatafile); // input data in Weka format

Classifier model = readModel("myC4.5-QA");

Instances labelledDataset = classify(inputDataset, model);

writeDataset(labelledDataset, outputDatafile);

As it turns out, many Weka algorithms, and in particular all classification

algorithms, can be invoked using exactly the sequence shown above, regardless of

their type (furthermore, most of the established algorithms in the Weka collection

support a common I/O data format, so that, in particular, we can define helper

classes to adapt between the quality service’s message formats and the Weka

data format). These considerations suggest that we can capture the common

code structure as part of a template, where certain parameters account for the

differences amongst its different instances. The following template for the Weka

model defines the implementation of the core quality service operation, denoted

as assertQuality(). The underlined variables in the template are parameters

that get instantiated at code-generation time, rather that at execution time.

CHAPTER 6. THE QURATOR WORKBENCH 165

// Weka template pseudo-code, for illustration purposes only

ServiceOutputMessage assertQuality(ServiceInputMessage inputMessage)

{
inputDatafile = unpackInput(inputMessage,

$evidenceVariables,

$classificationModel);

inputDataset = readDataset(inputDatafile);

Classifier model = readModel($modelFile);

Instances labelledDataset = classify(inputDataset, model);

writeDataset(labelledDataset, outputDatafile);

outputMessage = packOutput(outputDatafile, $outputVariable);

return outputMessage;

}

The values of the underlined parameters become constants in the generated

code. For example, the value for $evidenceVariables consist of a set of labels, like

Masses, Coverage and so forth, that correspond to the input evidence expected by

the classification model, plus the name of the (single) output variable that holds

the class label. Since the quality engineer chooses these names when the model

is defined on the training data, it is natural to have them as constants in the

code. Similarly, the set of class labels is specified at model definition time, and

used again when the model is applied. The second parameter in this template,

$classificationModel, holds the set of class labels. The reference to the model

file, $modelFile, is also a generation-time parameter. Finally, the unpackInput

and packOutput methods encapsulate the Weka-specific I/O transformation.

This detailed example suggests that, if we define a template for Weka-based

quality functions, then all that is needed to instantiate the template are the values

for a few parameters. These values are easy to obtain: $evidenceVariables and

$classificationModel are obtained from the ontology, while $modelFile is the

trained model. A single template, as noted earlier, is sufficient to describe the

code required by the broad set of quality functions that implement Weka-defined

classifiers. In the next section we propose a generalization of this idea, which will

result in the three-steps approach to code generation that we have anticipated

earlier.

CHAPTER 6. THE QURATOR WORKBENCH 166

6.1.2 Annotating functions for code generation

The Weka template is only one of several that we can define as part of the Qura-

tor workbench. Another is the “classifier QA” template, which we can use to

generate implementation skeletons for the more generic case of arbitrary classifi-

cation functions that have a shared WSDL interface as their only known common

feature. The collection of available templates is extensible: should quality engi-

neers decide to use a new framework, we can define one or more templates to

capture the programming patterns that it requires (more than one template may

be required, e.g. the invocation sequence for a Weka algorithm that is not a

classifier may be different from the one shown in the previous example). Clearly,

frameworks that can be captured using a small number of templates will be the

most beneficial.

We refer to a collection of quality functions that share the same template as

a family. The “Weka family” and the “classifier QA” family are two examples.

Code generation for a new quality function involves two steps. Firstly, quality

knowledge engineers associate the function to a family. Secondly, they annotate

each function’s WSDL interface with the required values for the corresponding

template’s parameters. The code generator instantiates the template using the

annotations to bind the parameters to their values.

To define families, we use the IQ ontology and more specifically the QA hi-

erarchy of function classes introduced in Section 3.2.3. In the upper ontology,

we define the new class QA-family, and the new property QA-in-family having

domain QA and range QA-family. Each class in the QA-family hierarchy has an

associated code generation template. For example, the two families mentioned

above are represented by the classes:

WekaFamily v QA-family, and

ClassifierFamily v QA-family

We adopt the same axiomatic approach used in Chapter 3 to assert the associ-

ation between a QA class and a family in the ontology. For example, for class

ClassificationQA v QA (the “umbrella” class for all classification quality func-

tions) the axiom

ClassificationQA v ∃ QA-in-family . ClassifierFamily

CHAPTER 6. THE QURATOR WORKBENCH 167

associates to ClassificationQA the family represented by ClassifierFamily,

which therefore becomes the default family for all classification quality functions

(in particular, PISCoreClassifier is now a member of the family). Crucially, the

hierarchical nature of the QA functions makes it possible to override this default.

Let us suppose that the engineer defines an alternate version of the PI classi-

fier, let us call it PIClassifier-1 v ClassificationQA, and decides to provide a

Weka-based implementation for it. The following axiom:

PIClassifier-1 v ∃ QA-in-family . WekaFamily

associates PIClassifier-1 to the WekaFamily, rather than to the

ClassifierFamily. Figure 6.2 summarizes this configuration, also adding

the RankingFamily to represent code that computes score models rather than

classifications1.

QA−in−family

Figure 6.2: QA functions and related families

The quality knowledge engineer can use these new ontology classes to specify

that a new quality service, say the service corresponding to PIClassifier-1,

belongs to a certain family, and therefore it should be implemented using the

corresponding template. There are several ways to record this information so

that it can be used by the code generator. We adopt the approach, popular

in the area of Semantic Web services, to annotate the WSDL interface of the

service with references to classes in an ontology. We argue that this is a sensible

approach to use in our case, since the IQ ontology includes a symbolic definition

both of the function classes, and of the quality evidence that they require as input.

1The arrows on some of the class ovals indicate that they have sub-classes that are not
shown.

CHAPTER 6. THE QURATOR WORKBENCH 168

As we have seen earlier, the latter is needed to provide values to the template

parameters.

More specifically, we adopt the annotation conventions defined by

SAWSDL [VS07a], an extension to WSDL that was recently proposed as a W3C

standard (www.w3.org/2002/ws/sawsdl/). Stemming from the observation that

WSDL describes Web service interfaces at a purely syntactic level, SAWSDL

defines mechanisms by which service designers can add semantics to WSDL ele-

ments, in a principled way. Many of the concepts in SAWSDL are based on its

precursor WSDL-S (www.w3.org/Submission/WSDL-S/), also a W3C submission.

As explained in recent tutorials [She07,VS07b], SAWSDL extends the WSDL 2.0

standard [CMRSW06] by means of two new types of attributes. The first, called

modelReference, is used to specify the association between a WSDL or XML

Schema component and a concept in some semantic model. The second, called

schemaMapping, is used to specify bi-directional mappings between the Type

Definitions that appear in the WSDL specification, and ontology classes. Using

modelReference to annotate a WSDL operation specification will suffice for our

purposes. The following example, taken from [VS07b], illustrates its use:

<wsdl:operation name="order"

sawsdl:modelReference=

http://www.myontology.org#RequestPurchaseOrder">

<wsdl:input element="OrderRequest"/>

<wsdl:output element="OrderResponse"/>

</wsdl:operation>

The modelReference attribute represents an annotation that associates the

semantic concept http://www.myontology.org#RequestPurchaseOrder, a class

in the ontology defined by the namespace http://www.myontology.org, to the

order operation.

In our case, the WSDL specification for quality functions exports a single

operation, called assertQuality, as shown earlier in the Weka template example.

Using the simple annotation mechanism just described, we can associate quality

function classes to this operation:

CHAPTER 6. THE QURATOR WORKBENCH 169

<wsdl:operation name="assertQuality"

sawsdl:modelReference=http://www.qurator.org:#PIClassifier-1">

<wsdl:input element="assertionRequest"/>

<wsdl:output element="assertionResponse"/>

</wsdl:operation>

Interestingly, the current literature on SAWSDL cited above suggests auto-

matic service discovery, composition and integration as the main beneficiaries of

semantic Web service annotation. Using annotations to automate the genera-

tion of Web service implementation code, as we do, seems to be a more novel

application.

Once the quality engineer has produced a SAWSDL specification from the

shared WSDL interface, the code generator performs the following operations,

illustrated in Figure 6.3:

Custom

SAWSDL

Shared

WSDL

Code generator
family templates

reference to

quality function class

function −> family

function −> evidence

Function implementation

stub

references

Update ontology

Annotate WSDL

retrieve template parameters

input

retrieve template

Figure 6.3: Semantic annotation of QA functions and code generation

• Parse the modelReference attribute associated to the assertQuality oper-

ation in the SAWSDL specification;

• Inspect the ontology in order to retrieve the additional semantic information

associated with the quality function, i.e., (i) the function’s family and (ii)

the quality evidence types along with the classification model, if available

(recall that the quality evidence types are associated to the quality function

class in the ontology). These are used as values for the parameters2;

2Note that some of the parameters, such as $modelFile in our example, are user-supplied
rather than being automatically retrieved from the ontology.

CHAPTER 6. THE QURATOR WORKBENCH 170

• instantiate the code template associated to the family, by replacing the

parameters with their values.

Note that it may be necessary to navigate through the ontology schema to

retrieve the function’s family. In the case shown in Figure 6.2, for example,

PIScoreClassifier’s family is that of its parent, ClassificationQA.

6.1.3 Conclusions

In summary, we have proposed a simple algorithm to support users in task (1)

of the IQ lifecycle, shown later in Figure 6.1. The algorithm is implemented

as the “QV code generator” component of the Qurator workbench, shown in

Section 6.4, Figure 6.12. The algorithm exploits the predictable structure of

quality functions in order to automatically generate a code skeleton for the Web

services that implement those functions. By doing this, we have shifted the user’s

focus from the service implementation to a higher-level specification from which

the implementation can be generated. Having defined the IQ ontology earlier on,

we have been able to achieve this goal by adding semantic annotations to the

shared WSDL specification of the quality functions. The annotation is simple to

perform (it amounts to a single new attribute), and yet it is sufficient, as we have

seen, for the code generator to retrieve all the information required to instantiate

a code template.

6.2 Quality-aware data processing

The second of the three remaining tasks identified at the beginning of the chapter

concerns ways to make data processing quality-aware. In the previous chapter

we have shown how we can add quality controls to workflows, using the Taverna

workflow management system as an example. Here we argue that the applicability

and usefulness of the Quality View concept extends beyond workflow processing,

and specifically that it can also be applied to database query processing.

In this section we study this idea in detail for the case of XML data. Specif-

ically, we are going to address the problem of specifying and executing XML

queries that involve the computation of quality metadata and its use for the pur-

pose of data selection. To motivate the choice of XML data as the object of this

investigation, we observe that XML is commonly used to describe complex and

CHAPTER 6. THE QURATOR WORKBENCH 171

highly structured scientific experiments, for instance in transcriptomics and in

proteomics (using the guidelines issued by the MGED society and by the HUPO

initiative, respectively, as mentioned in our earlier discussion of Chapter 3). In-

deed, a large number of these documents are stored in public repositories, such as

PRIDE (www.ebi.ac.uk/pride) and PedroDB [KMGa04], and can be retrieved

using XQuery.

We are going to show how Quality Views can be used to address the prob-

lem. Furthermore, we also propose a slight syntactic extension to the XQuery

language, denoted QXQuery, which makes it easier for query designers to specify

the invocation of Quality Views in the context of an XML query. The mate-

rial presented here also appears in [EMS+07]. Before presenting our approach in

detail, we review related work in this area.

6.2.1 Related work

The idea of enhancing traditional query processing with quality features is not

entirely new. Most of the existing proposals, however, belong to the class of

quality applications that we have called provider-centric in the introduction to

this thesis, namely, those based on the assumption that the data provider is able

to compute some form of quality metadata and associate it to the data. Once

this is done, exposing the metadata at the level of the query language is then a

relatively simple matter.

The literature offers both domain-specific and domain-agnostic versions of this

approach. The work of Martinez and Hammer [MH05], for example, applies to

biological data sources. The authors propose to extend a semi-structured data

model in order to accommodate metadata regarding the quality of data stored in

the sources. They define a fixed set of quality measures, such as Stability, Density,

and a few more, which in their view are useful to assess the overall relevance

of biological data sources. Once the provider defines procedures for computing

these measures, these are exposed as part of the data model, hence they are

available for querying. A similar idea, in the area of geo-spatial information

systems, is developed by Mihaila et al. [MRE00]; here the goal is to expose

quality metadata to the query language (a slight variant of SQL), in order to let

users select appropriate sources in web information systems.

Domain-agnostic, quality-aware data architectures are more general, as ex-

pected. The DaQuincis system [SVM+04], for example, is based on the idea that

CHAPTER 6. THE QURATOR WORKBENCH 172

for a semi-structured data model, such as an XML schema, one can describe the

quality of each element in a document, by matching it to a sibling “shadow”

element. When this is done systematically over the entire schema, this approach

results in a complete shadow quality document that has the same structure as the

underlying data document (the resulting data model is called D2Q, for “Data and

Data Quality” model). One advantage of this idea, discussed in [MSC04], is that

XML data and its metadata can be queried together. In the context of coopera-

tive information systems, this model accommodates fine-grain quality information

computed, for each source in the system, by a dedicated “Quality Factory”. Un-

der this assumption, users who wish to retrieve data from the cooperative system

may express quality requirements, which a Quality Broker translates into queries

on the D2Q model. The result, ideally, is a selection of cooperative sources that

conforms to the quality requirements.

Regarding the provider-centric approaches exemplified by these efforts, we

question the main assumption that providers have the means, or the motivation,

to compute sound and complete quality metadata. To repeat one of the main

observations made in Chapter 2, we note that under this assumption users must

understand and accept the quality metrics defined by the provider; and further-

more, quality-aware queries can only operate on those metrics. We have argued

at the beginning of the thesis that this approach limits the usefulness of current

information quality architectures. Indeed, in addition to lamenting its lack of

flexibility, users may also find it difficult to trust the quality metadata advertised

by the provider. This is because there is no incentive for a provider to acknowl-

edge that some of its data is of low quality, much in the same way as any sellers

would not easily recognize the limitations of their products; and at the same time,

it is difficult for users to independently test the validity of the provider’s quality

claims, unless the origin of the metadata is properly and thoroughly documented.

A more promising approach, in our opinion, is represented by the XQual

language [BE04]. XQual is based on user-defined quality dimensions (chosen,

however, from amongst a fixed pool of dimensions by setting their relative pri-

orities) and on user-specified contracts ; these define constraints over the chosen

dimensions, that the query evaluator should satisfy if possible. The IQ con-

tracts of XQual are significant because they are an early attempt to allow con-

sumers of information to define their IQ preferences in a declarative and machine-

manipulable form. By contrast, we argue that, consistently with our user-centred

CHAPTER 6. THE QURATOR WORKBENCH 173

quality model, the users who issue the queries should have complete control over

the type of quality assessment that is performed on the data. In the rest of this

section we illustrate how we achieve this goal using Quality Views.

6.2.2 Technical approach

Our approach is based on the observation that, if a data element can be described

using one of the semantic types known to the IQ ontology (i.e., as a sub-class of

Data Entity), then we can potentially use Quality Views to associate quality val-

ues to that data element. As we know, this only requires the definition of suitable

Annotation and Quality Assertion functions. Therefore, if such data elements are

part of an XML document, and if we can use XQuery (specifically, XPath expres-

sions) to refer to those elements, then it should be possible to compute a Quality

View on that data. Furthermore, if we can express the association of quality val-

ues to data elements using XML, then we can use XQuery to seamlessly query the

quality metadata along with the original XML data. Conveniently, this is indeed

the case for our current implementation of Quality Views: they take an XML

document containing a list of datarefs as input, and return an XML document

containing the computed quality values (we can view this as an XML represen-

tation of the environment data structure that we have repeatedly described, for

example in Section 6.1). Furthermore, note that quality workflows, i.e., the re-

sults of a Quality View compilation, can be viewed generically as services: they

can be invoked through a well-defined interface, as long as a runtime environment

(the Taverna workflow engine, in this case) is available. To the extent that we

can interface an XQuery engine with a workflow engine, therefore, we can make

use of Quality View services from within a query.

We argue therefore that our existing Qurator infrastructure is sufficient for

our purposes. To make this intuition precise, let us consider an XML document

taken from the PRIDE repository, mentioned earlier. Here is a fragment of the

document:

CHAPTER 6. THE QURATOR WORKBENCH 174

<DBSearch>

<username>David Stead</username>

<id date>2003-06-02</id date>

<DBSearchParameters>

(...)

</DBSearchParameters>

<ProteinHit>

<masses matched>5</masses matched>

(...)

<Protein>

<accession number>6957.1</accession number>

<gene name>CDC48 (by homology to S. cerevisiae)</gene name>

<organism>Candida glabrata</organism>

<description>microsomal protein of (...)</description>

</Protein>

</ProteinHit>

</DBSearch>

Our specific goal is to write an XQuery that return the accession numbers

found in the document (exemplified by the underlined element), at the same time

filtering the result according to some quality values associated to the accession

numbers. These quality values are computed using a Quality View. As a starting

point we use the following simple XQuery, that returns a list of triples of the form

〈 accession number, experimenter’s name, experiment date〉:

<html>

 {
let $inputDoc := "PSF1-ACE2-CG.xml"

for $d in doc($inputDoc)//DBSearch

return

accession number: {data($d/ProteinHit/Protein/accession number)},
name: {data($d/username)},
date: {data($d/id date)}

}

</html>

Then, we define a QV to compute a PI score for each of the proteins indi-

cated using their accession numbers. This QV, omitted for brevity, is similar to

the one shown in Figure 4.1 on page 99. By incorporating this QV as part of

CHAPTER 6. THE QURATOR WORKBENCH 175

the XQuery above, we will then be able to select a relevant subset of the pro-

teins based on their PI score, or alternatively, based on the discretization of the

score into the three classes computed by PIScoreClassifier, i.e., {“low PI score”,

“close to avg PI Score”, “high PI score”},
Let us suppose that we have compiled this QV into a Taverna workflow. As

suggested earlier, the technical means by which we invoke this QV is by executing

the workflow from the XQuery processor. We have implemented this mechanism

using the Saxon XQuery engine (saxon.sourceforge.net) and its facility for

invoking external functions. As shown in Figure 6.4, the Qurator workbench

maintains a registry of executable Quality Views, that associates their symbolic

name, for instance uri:PedroQV, to a workflow. The Saxon XQuery processor

can request the execution by passing the symbolic name and the input dataref to

the workbench, through an adapter. The workflow is submitted to the Taverna

engine, and finally the results are returned to the query processor.

Taverna workflow engine

Qurator runtime

Saxon−Qurator

adapter

QV resolver /

invocation

QXQuery

precompier

XQuery processor

(Saxon)

QV registry

QV workflow

XQuery

with QV call

QXQuery

Figure 6.4: QXQuery execution model

In the figure we also show a preliminary step where a quality-extended

XQuery, denoted QXQuery, is pre-compiled into a standard XQuery prior to

being executed. This step allows users to specify the invocation of Quality Views

using an intuitive syntax, making the mechanism more friendly to use. While we

defer the description of this aspect until the next section, we observe that the

standard XQuery language, however, is sufficiently expressive to support our in-

vocation mechanism. The query in Figure 6.5, for example, extends the previous

by adding a Quality View invocation (the main enhancements are underlined).

CHAPTER 6. THE QURATOR WORKBENCH 176

declare namespace qvi="java:org.qurator.util.QVInvoker";

<html> {
1: let $inputDoc := "PSF1-ACE2-CG.xml"

2: let $classifiedData := qvi:QVInvoke(

3: qvi:new(),

4: "PedroQV",

5: doc($inputDoc)//ProteinHit/Protein/accession number,

6: ($inputDoc))

7: for $x in $qvResults/enrichedData/EDItem,

8: $d in doc($inputDoc)//ProteinHit/Protein

9: where $x/assertionValue/@AssertionTagValue ="high PI score"

10: and fn:contains($d/accession number, $x/@dataRef)

11: return

12: accession number: {data($d/accession number)},
13: description: {data($d/description)},
14: Hit Ratio: {data($x/annotationValue
15: [@varName="HitRatio"]@varValue)}

}
 </html>

Figure 6.5: XQuery with Quality View invocation and quality-based selection

In the example, the external function invocation appears on line 2.3 The

input dataset required by the QV is constructed by the XPath expression on line

5, which extracts the proteins’ accession numbers from the document.

The result of the QV execution, itself an XML document, is stored in the

variable $qvResults. This new quality document carries the entire contents of

the Quality View environment, where each dataref is associated to a vector of

quality evidence and quality assertion attributes, as prescribed by Qurator. The

for statement on line 7, along with the condition on line 10, effectively computes

a “join” between the input document and the quality document, allowing the

query to construct an output document where the IDs for the high-score proteins

are listed along with any quality evidence values like the Hit Ratio, as shown on

3The namespace qvi is a URI that specifies the Java class to be loaded by the call. This, as
well as the requirement to create a new instance of this class (qvi:new()), is part of Saxon’s
proprietary mechanism for invoking external functions.

CHAPTER 6. THE QURATOR WORKBENCH 177

lines 14-15. Thus, with this mechanism the users are now able both to filter data

elements based on their quality metadata, and to include the metadata itself in

the output, making it available to the invoking environment.

It is important to note that the Xpath expressions used to extract elements

from the quality document are based on a known XML schema, defined as part

of the Qurator framework. The complete schema is depicted graphically in Fig-

ure 4.2 (Chapter 4, page 100). Indeed, such predictability of the quality document

structure is the key to providing a higher-level syntax for invoking Quality Views,

resulting in simpler and more readable XQuery code as explained next.

6.2.3 QXQuery: a syntactic extension to XQuery

One problem with the type of query illustrated above is that their design requires

knowledge both of the XML schema for quality documents, and of the specific

mechanism needed to carry out the Quality View invocation. We note, however,

that these details realize a regular pattern that is common to all quality-enhanced

queries. Here we show how we can exploit this regularity to extend XQuery with

a higher-level syntax that can be translated into plain XQuery prior to execution.

Since the query above already contains all the functionality required to execute

quality-enhanced queries, these extensions are merely syntactic sugar that can be

handled by query pre-processing.

The new syntax is designed to allow query designers to express three main

capabilities: specifying the dataset to be used as input to the QV, invoking the

QV, and accessing its results. For the first two of these capabilities, we propose

a new clause with the following syntax:

<QVClause> ::= using quality view <qualView>

on <PathExpr> with key <PathExpr>

as <VarName>

<qualView> ::= <URI> ’(’ (<ExprSingle> (’,’ <ExprSingle>)*)? ’)’

where the productions <PathExpr>, <ExprSingle> and <VarName> are all defined

by the standard XQuery syntax. The example in Figure 6.6 illustrates its usage.

CHAPTER 6. THE QURATOR WORKBENCH 178

let $inputDoc := doc("PSF1-ACE2-CG.xml")

using quality view "uri://PedroQV"() on

$inputDoc/ProteinHit/Protein

with key /ProteinHit/Protein/accession number

as $qvResults

Figure 6.6: QXQuery fragment

In the example, the <qualView> construct specifies a reference to the qual-

ity view to be invoked by the query, for instance "uri://PedroQV"; this ref-

erence, in the form of a URI, will be resolved by the Qurator QV reg-

istry as described in the previous section. The <PathExpr> construct after

the on keyword is used to indicate the input dataset to which the QV is

applied, in this case the /ProteinHit/Protein document fragment. Within

this fragment, we specify the datarefs with which the QV will associate the

quality values, using the key keyword and a relative path expression, i.e.,

/ProteinHit/Protein/accession number. Finally, we use the as clause to name

a fresh XQuery variable that will hold the resulting quality document. The

QXQuery pre-processor generates the code to produce an external function in-

vocation by interpreting this new clause; the result is the invocation code shown

earlier (lines 2-6).

Let us now see how this QV declaration is used in the context of a full query.

Its effect, as observed, is to create a new variable that holds a reference to a

quality document. A QV clause is therefore similar to one of the other XQuery

clauses that bind values to new variables, namely let and for. When we expand

the syntax of the standard XQuery FLWOR production that accounts for these

clauses, we obtain:

<FLWORExpr> ::= (<ForClause> | <LetClause> | <QVClause>)+

<WhereClause>? <OrderByClause>?

return <ExprSingle>

Note that the only change here from the standard XQuery syntax is the addition

of the <QVClause> non-terminal. A consequence of this addition is that a query can

now contain zero or more quality view clauses, and that they can be interleaved

between arbitrary numbers and combinations of let and for clauses, as necessary

CHAPTER 6. THE QURATOR WORKBENCH 179

to express the query requirements.

As a continuation of the example in Figure 6.6, here is a complete QXQuery:

<html> {
let $inputDoc := doc("PSF1-ACE2-CG.xml")

using quality view "uri://PedroQV"() on

$inputDoc/ProteinHit/Protein

with key /ProteinHit/Protein/accession number

as $qvResults

for $x in allResults($qvResults),

$d in $inputDoc/ProteinHit/Protein/

where hasQuality($x, "PIScoreClassifier") = "high PI Score"

and fn:contains($d/accession number, getDataRef($x))

return

accession number: { data($d/accession number) },
description: { data($d/description) },
Hit Ratio: { data(getAnnotationValue($x, "HitRatio")

} </html>

The user-defined XQuery functions, underlined, provide access to the XML

elements of the quality document, resulting in a query that is functionally equiv-

alent to the XQuery of Figure 6.5. For example, allResults returns a list of

document fragments, one for each input dataref, containing its associated quality

evidence and assertions; it is defined simply as:

define function allResults($x) {

return $x/enrichedData/EDItem

}

We can observe its effect by inspecting the fragment of a result of executing

a QV, given in Figure 6.7. Similarly, hasQuality takes one of these document

fragments and returns its quality assertion values:4

define function hasQuality($item, $tagName) {

return $item/AssertionValue@[AssertionTagValue = $tagName]

}

4Note that this can be easily generalized to a function that returns the value for some input
key.

CHAPTER 6. THE QURATOR WORKBENCH 180

<enrichedData>

<EDItem dataRef="9413.1">

<assertionValue AssertionTagValue="low PI Score"

AssertionTagName="PIScoreClassifier" />

<annotationValue varName="Mass"

varOntType="q:Mass" />

<annotationValue varName="Masses"

varOntType="q:Masses" />

<annotationValue varName="ELDP"

varOntType="q:ELDP" />

<annotationValue varName="Coverage"

varOntType="q:MassCoverage" />

<annotationValue varName="HitRatio"

varOntType="q:HitRatio" />

</EDItem>

(...)

</enrichedData>

Figure 6.7: Example of a quality document fragment

CHAPTER 6. THE QURATOR WORKBENCH 181

6.2.4 Conclusions

To summarize, in this section we have addressed the problem of specifying and

executing XML queries that involve quality metadata. We have shown that we

can achieve this goal by executing Quality Views as part of XQuery processing,

using standard XQuery functionality. In addition, we have presented a simple

syntactic extension to XQuery that makes it easier for users to specify how Quality

Views should be invoked, and how to use their result for data selection.

With this, we have extended our support to the IQ lifecycle (specifically to

task 6 in reference Figure 6.1) to include a new form of quality-aware processing,

namely XML query, in addition to the workflow processing described in the pre-

vious chapter. The component denoted QXQuery pre-compiler implements this

functionality in the workbench, as shown in Figure 6.12 of Section 6.4. In the

next section we address the remaining issue, represented by task 7 in the same

figure, namely the analysis of Quality View results.

6.3 Quality provenance

Analysing the results of a Quality View is the final step in the outer loop of the IQ

lifecycle (task 7 in the reference lifecycle figure). This is where users collect the

results of their experiment, knowing that those results are now viewed through

their chosen “quality lens”. Our goal at this stage is to help users understand

the impact that the additional quality features have had on the data, specifically

by requesting an explanation of why a certain data element has been placed

in a certain quality class (in particular, why it has been accepted / rejected)

during the execution of a certain experiment. Furthermore, users may want to

analyse the quality classification of their data not just on a single experiment,

but for variations of the experiment, obtained for example using different quality

parameters each time (for instance, different action expressions): is a certain

data element consistently rejected, for example, or is its acceptance particularly

sensitive to a quality configuration? These become legitimate questions when

one considers that the point of the outer loop in the lifecycle is to allow users to

rapidly modify and re-deploy Quality Views, leading to the inexpensive generation

of experiment variants.

To address these questions we propose the new notion of quality provenance, or

“provenance of Quality Views”. The term provenance, and more specifically data

CHAPTER 6. THE QURATOR WORKBENCH 182

provenance, has become popular over the past few years to indicate, in a broad

sense, “information that helps determine the derivation history of a data product,

starting from its original sources” [SPG05]. The term has acquired a more specific

meaning in e-science, where provenance is interpreted as a detailed record of an

experiment, defined in such a way that scientists can use it to analyse, validate and

verify the results of the experiment, or to replicate it [GGS+03,ZWG+04]. In this

sense, provenance information is effectively metadata that describes the process

by which information, in this case an experimental result, has been obtained.

Here we address the problem of how to best describe, collect, store and ex-

ploit quality provenance. To set our discussion in the context of current research

and solutions in provenance modelling we begin, in the next section, by introduc-

ing the framework proposed by Simmhan et al., in their recent survey on data

provenance in e-science [SPG05].

6.3.1 Characteristics of provenance

The following characteristics are used in [SPG05]:

Intended use of provenance: Common uses for provenance information in-

clude estimating the quality and reliability of the data (a need highlighted

at the NSF Workshop on Data Management for Molecular and Cell Biol-

ogy [JO04]), and explaining its derivation, for example to justify decisions

that are based on the outcome of a process. We find examples of this

type of applications in specific domains, notably healthcare [KVVS+06].

Other uses include keeping an audit trail of the process for validation pur-

poses [WMF+05], tracking resource usage, and establishing ownership of

data (as well as determining liability in case of data errors);

Types of resources for which provenance is collected: While a complex

process may involve many elementary process components and many types

of data, it is often the case that provenance metadata is only relevant for

some subset of them. A number of workflow processes, for example, only

serve as adapters, to change the format of the data without contributing to

its content. Likewise, some of the data may be less central to the outcome

of an experiment than other. It is therefore important for a provenance

architecture to let users focus on the processes and data types of interest,

and at the right level of detail.

CHAPTER 6. THE QURATOR WORKBENCH 183

Conceptual model for provenance: Recent proposals, notably by the Prove-

nance EU-sponsored project (www.gridprovenance.org), include a

domain-independent conceptual model for provenance that is based on the

notion of p-assertion, an abstract representation of tasks and of the mes-

sages exchanged by the tasks. An alternative approach, embraced mainly

by the myGrid project, advocates the use of Semantic Web technology to

represent e-science provenance [ZWG+04]. In this approach, the elements

of the provenance model are viewed as instances of ontology classes; this

opens the way to the interpretation of provenance metadata using knowl-

edge management techniques, notably Description Logics and automated

reasoning.

Collection and storage models for provenance: Depending on the type of

process, provenance information can be collected manually, i.e., in the form

of an “electronic log book” maintained by scientists, or when the process is

automated, from within the process execution environment itself, as is the

case for Taverna;

Provenance dissemination and analysis: This is the last of the characteris-

tics used in [SPG05]; it describes the means available to the users to access

and analyse provenance information. Here, interesting recent research has

been focusing on how complex workflow provenance models can be pre-

sented to the user. In Zoom*UserViews [CBD06, BBD07], for example,

users may choose to “zoom” in and out of a workflow, i.e., to reveal or hide

its sub-workflows; the system then automatically modifies the provenance

information presented to the user, to be consistent with the chosen level of

abstraction.

We are now going to describe the quality provenance model in terms of these

characteristics.

6.3.2 The Qurator quality provenance model

The goal of quality provenance (its intended use) is to provide users with the

ability to trace quality-based decisions to the quality evidence and functions that

compute the elements used in the decision. It follows that quality provenance is

naturally associated with the input dataset of a Quality View, at the granularity of

CHAPTER 6. THE QURATOR WORKBENCH 184

the individual data element. In our example, we associate provenance metadata

to individual protein identifier. In terms of the IQ ontology, this means that

provenance metadata is associated to classes in the DataEntity hierarchy.

Representing and collecting quality provenance

Although the p-assertion model mentioned earlier may be emerging as a standard

for provenance representation, we have instead chosen a semantic approach for the

quality provenance model, i.e., one where the model elements can be interpreted

using the IQ ontology. This choice makes quality provenance consistent with the

overall Qurator quality model: since the elements of a Quality View are defined

in the ontology, it should be possible, we argue, to use the ontology to describe

the effect of their execution as well. As a consequence of this choice, the model

is expressed using an RDF graph. This has the additional benefit that we can

perform provenance analysis using a declarative query language (i.e., SPARQL),

as discussed in the next section.

Following the semantic approach, we propose a quality provenance model

consisting of two parts. We describe it using an example. The first part, called

the static model, partially describes the structure of a Quality View. The model,

generated by the Quality View compiler, is an RDF graph with two resources,

i.e., the two nodes on the left in the graph of Figure 6.8.5 In this example,

the QV consists of a single Quality Assertion, PIScoreClassifier, and a single

action, called initial filter action. The action resource, at the top, carries

the definition of the action expression; while the QV resource at the bottom is

the root of a graph that describes its input and output variables. Note that each

input variable is itself an RDF resource, consisting of a name (the literal) and a

type, identified by the property rdf:type. As expected, the type is an ontology

class, e.g. q:Coverage, q:Masses, etc. (the QA resource itself has a semantic type,

namely the resource q:PIScoreClassifier).

A dynamic model for quality provenance is an RDF graph that is populated

during each workflow execution, and contains references to the static model. Its

purpose is to capture the values of the variables involved in the workflow, i.e.,

those that appear in the static model, as well as the effect of the actions –also

defined in the static model. Each new execution of the same quality workflow

5These are anonymous nodes, or b-nodes in RDF terms. The ovals in the graph are RDF
resources, while the square boxes are literals, i.e., constant values.

CHAPTER 6. THE QURATOR WORKBENCH 185

Figure 6.8: Static quality provenance model (example)

CHAPTER 6. THE QURATOR WORKBENCH 186

results in the generation of a new dynamic model (for the same static model).

From a technical standpoint, the mechanism for collecting provenance infor-

mation into the dynamic model exploits Taverna’s ability to accept third party

monitoring components and to send notifications to them for a variety of events

that occur during workflow execution. Using this notification pattern, we have

developed a quality provenance module that monitors the activity of individual

processors in the quality workflow, as well as the content of the messages they

exchange. The result is the quality provenance component of the workbench,

shown in Figure 6.12.

Let us describe the dynamic model through an example, considering the RDF

graph shown in Figure 6.9 (we are showing a fragment of the complete model ob-

tained at the end of one single workflow execution), and in particular its leftmost

resources. The resource at the bottom left identifies a workflow execution; each

execution is given a unique identifier (i.e., the resource PP6...) that serves as

a reference for the other nodes, which are related to it through the q:workflow

property. This common reference defines the scope for all the resources associated

with a single execution. It ensures, for example, that we can retrieve the entire

quality provenance graph for one execution independently from that of other ex-

ecutions (using a query with the constraint that the workflow be the same for

all resources returned), while at the same time allowing for queries over multiple

executions, for example “all protein datarefs in class fail”, simply by ignoring the

workflow identifier.

The subgraph rooted at the next resource above the workflow identifier de-

scribes the binding of a variable (Masses, of type q:Masses) to a value (20), within

the context of a workflow execution and for the dataref indicated by the property

q:data item, in this case protein P33B97 (the bindings for other variables and for

other datarefs are omitted for clarity). The graph associated to the top resource

has a similar structure; the binding is relative to the same dataref, but this time

for the output variable of PIScoreClassifier, i.e., the value of the Quality As-

sertion (close to avg score). Finally, the second resource from the top accounts

for the action that was taken during the same execution, on the same dataref

(fail, in this case).

In summary, we use a combination of a single static provenance model, cre-

ated at QV compilation time, and multiple dynamic models, each generated dur-

ing workflow execution, to capture detailed information regarding the execution.

CHAPTER 6. THE QURATOR WORKBENCH 187

Figure 6.9: Dynamic quality provenance model (example)

CHAPTER 6. THE QURATOR WORKBENCH 188

Next, we see how we can use a variety of queries to exploit the model for prove-

nance analysis.

Exploiting quality provenance

As part of the Qurator workbench we offer a programmatic interface for querying

the model, using the SPARQL query language (the emerging W3C standard RDF

query language6). In addition, however, we have also defined a graphical user

interface for common types of provenance analysis, based on a set of pre-defined

queries. Using the interface, users can: focus on a single dataref, retrieving the

variable bindings and its quality classification, as we have seen in the previous

section; visualize the entire set of quality values computed by a QA function over

the entire dataset; visualize the quality classifications of a dataref across a series

of workflow executions; and more.

Figures 6.10 and 6.11 show examples of the interface being used to visualize

the provenance model described in the previous section. In the first figure we use

the interface to trace the assertion values for a single data element, while in the

second, users may select the quality assertion at the top right (Figure 6.11) to

reveal the evidence types that it depends on, along with the assertion value for

each input data element.

6.3.3 Conclusions

In this section we have addressed the problem of analysing the results of Quality

View executions, as defined in task 7 of the IQ lifecycle (Figure 6.1). Our approach

is based on the definition of a narrow-scope, dedicated provenance model for

quality workflows, that we have called quality provenance.

Several broad-scope provenance models have been developed recently (the

Taverna provenance module, for example). Oblivious of the workflow semantics,

these models capture a generic form of provenance, i.e., a trace of the messsages

exchanged by processes. By contrast, the quality provenance model is dedicated

entirely to describing the execution of Quality Views. We have shown in this

section that this limited scope makes the model suitable to answer specific users

questions regarding quality-based decisions taken during the execution of a sci-

entific workflow; the resulting workbench component, denoted quality provenance

6http://www.w3.org/TR/rdf-sparql-query/

CHAPTER 6. THE QURATOR WORKBENCH 189

Figure 6.10: Qurator Provenance GUI - example one

in Figure 6.12 below, fulfills the goal of the “results analysis” task of the lifecycle.

6.4 Summary: the Qurator workbench

At the beginning of the thesis we argued that quality-awareness in data processing

is the result of an experimental process, and we have proposed the IQ lifecycle as

a means to describe such process. Having now completed the presentation of our

technical solutions to support the lifecycle tasks in the outer loop, we conclude

the chapter by presenting the overall Qurator workbench, depicted in Figure 6.12,

and clarify how each of its components support the lifecycle.

As shown in the figure, we make a distinction between Qurator core com-

ponents, on the left side, and user-supplied services on the right. The latter

correspond to Quality Assertion and Annotation functions; their invocation is

coordinated by the Taverna workflow engine. Each of the core components serves

a purpose in the context of the lifecycle, as follows.

• The implementation of Quality Assertion functions, task 1, is supported by

the QV code generator, described earlier in this chapter;

• The exploration and update of the IQ ontology, task 2, is supported by the

CHAPTER 6. THE QURATOR WORKBENCH 190

Figure 6.11: Qurator Provenance GUI - example two

ontology browser and consistency checker, introduced in Chapter 3;

• Quality view specification (task 3) is supported by the homonymous com-

ponent, through a graphical user interface, as described in Chapter 4;

• QV compilation (task 4) is the responsibility of the QV compiler, which uses

the QA registry to resolve the logical names of functions and map them to

user-supplied services (shown on the right). The compiler is discussed in

Chapter 5;

• QV integration (task 5) is again realized by the component with the same

name (see Section 5.6), using user-defined deployment descriptors;

• Regarding quality-aware data processing, the workbench provides both run-

time support for the execution of quality workflows, and compilation sup-

port for the QXQuery extension for XML query, as discussed earlier in Sec-

tion 6.2. Several components contribute to the runtime support: in addition

to the QV registry and the QV invoker, described earlier, the Data Enrich-

ment service is responsible for retrieving quality evidence values from one

or more of the QE repositories, shown at the bottom, according to the asyn-

cronous process pattern described in the preceding chapter (Section 5.4).

To recall, the pattern prescribes that annotation functions, shown in the

user-defined services space, write quality evidence values to the repository,

CHAPTER 6. THE QURATOR WORKBENCH 191

QV

consistency

checker

IQ Ontology

(OWL)

Quality Evidence

repositories (RDF)

QA1

QA2

QE1

QE2

Quality Evidence

services

Quality function

services

...

...

Web Service

invocations

Data enrichment

QV invoker

Taverna

workflow

engine

QV integrator

QV compiler

Ontology

consistency

checker

Ontology

browser

Quality Provenance

collector

QV registry

QA registry

repository

implementation

Quality Views

(workflows)

Core Qurator components

Quality |Evidence API

User−supplied services

update
query

External environment

instance−of

invoke

monitor

references

QV specification toolQV code generator

use

analyser

Quality Provenance*

*

references

Figure 6.12: Qurator workbench architecture. Components with a (*) include a
user interface

to make them available later to the QA functions. The Qurator program-

ming interface makes multiple RDF repositories, used to store the quality

evidence values, accessible to the Data Enrichment service;

• Finally, result analysis (task 7) is supported by the quality provenance

collector and analyser components described in the previous section.

These relationships are summarized in Table 6.13. With the implementation of

the Qurator workbench we have precisely defined the extent to which our user-

centric approach to information quality lends itself to the automated processing of

personalised quality definitions in the context of e-science. In the next, concluding

chapter we identify specific limitations of the model and implementation, and

outline a plan for further progress in this area of research.

CHAPTER 6. THE QURATOR WORKBENCH 192

Lifecycle task Workbench component

Implementation of Quality Assertion
functions as services

QV code generator

Exploration and update of the IQ on-
tology

Ontology browser and Consistency
checker

Quality view specification Quality view specification tool
QV compilation QV compiler, QA registry
QV integration QV integrator

Quality-aware data processing

QXQuery pre-compiler
QV registry, QV invoker
Data Enrichment
Interface to Quality Evidence reposi-
tories

Result analysis Quality provenance collector and
analyser

Figure 6.13: Summary of Qurator workbench support to lifecycle tasks

Chapter 7

Conclusions

Not enough evidence God! Not enough evidence! †

In this chapter we summarize the resarch contributions presented in this the-

sis and discuss lines of further research necessary to help overcome the current

limitations of our work.

7.1 Summary of research contributions

The research described in this thesis has been motivated by the observation that

the assessment of information quality in e-science is an important and largely open

problem. As we noted in the introduction, what makes the e-science proposition

attractive to the scientific community is the large-scale availability of third-party,

public scientific results, and their reusability in further data-intensive scientific

experiments. However, there is a risk that inadequate quality control for these

experiments may lead to erroneus data being released into the public domain,

with potentially damaging consequences to further experiments.

In this thesis we have focused on the role of the user scientists in assessing

the quality of third-party information used in their experiments. Users, we have

argued, view quality assessment as the problem of establishing whether the infor-

mation they need is fit for use in the context of their application. Two elements

†B. Russell, upon being asked what he would reply if, after dying, he were brought into
the presence of God and asked why he had not been a believer. Quote found in the Stanford
Encyclopedia of Philosophy, in the entry for “Evidence”, 2006.

193

CHAPTER 7. CONCLUSIONS 194

contribute in making the users’ determination. Firstly, a model for estimating

the likelihood of errors in the data. Such a model, although objective, is typically

based on some indirect evidence that may be indicative of the presence of errors;

therefore it is predictive, in the sense that the presence of errors in the data can-

not be established with certainty. The second element, distinctly subjective, is

a criterion for data acceptability given the model. Considering the uncertainty

associated with quality prediction, this second element reflects the users’ personal

tolerance to errors, i.e., their propensity to the risk of using faulty data.

These two aspects rarely emerge explicitly as part of e-science experiments,

although some elements of quality control may be present in latent form, for ex-

ample as part of scientific workflows. We have coined the term quality knowledge

to denote the scientists’ latent knowledge about information quality. The research

hypothesis that we have pursued in this thesis is that it is possible, and benefi-

cial, to make quality knowledge explicit, by exposing it as a “first-class citizen”

as part of scientific data processing. The benefit of making quality knowledge

explicit is mainly in its reusability: we envision an incrementally growing library

of user-defined quality functions that can be added with little effort to the users’

data processing evironments as commodity components, making the experiments

“quality-aware”.

In our research we have been exploring the feasibility of this idea. In partic-

ular, we have postulated that the management of information quality follows a

particular IQ lifecycle. We have used the lifecycle both to describe our specific

research objectives, in the introductory chapter, and to summarize our achieve-

ments, in the previous chapter. The lifecycle, illustrated in Figure 6.1, consists of

two interconnected loops. The inner loops involves the discovery of new quality

knowledge. Here quality knowledge engineers define quality functions, the ob-

jective component of the users’ quality model. The loop accounts for the need

to incrementally refine the definition of quality functions, and reflects a typical

iterative process of knowledge discovery. The outer loop involves the use of such

quality knowledge; at its core is the original notion of Quality Views, i.e., pro-

cesses defined as a composition of quality functions, which capture the subjective

aspect of quality by including (i) a particular user choice of functions, and (ii) a

decision process that is based on the function values.

As a result of our research, we have found that we can facilitate the creation

and dissemination of quality knowledge, by defining (i) a conceptual model for

CHAPTER 7. CONCLUSIONS 195

capturing user-defined information quality (IQ) concepts in an incremental way,

and (ii) a software architecture, called the Qurator workbench, for the definition

and execution of Quality Views, and for their integration as part of e-science

experiments. In the previous chapter we have shown how the combination of

these two elements can be used to provide support to various phases of the IQ

lifecycle. In the following we summarize our main contributions in support of this

claim.

Data classification framework and IQ ontology

Regarding the IQ model, in Chapter 2 we have advocated the use of a data

classification framework for representing user-defined quality knowledge. Then,

in Chapter 3 we have explored the use of ontologies to accommodate the symbolic

definition of quality functions; this is aimed at facilitating the task of sharing

and reusing quality functions among members of the community. We have also

found that the logic features of the ontology make it possible to define a rich

axiomatization of IQ concepts. As a result, we have been able to use the ontology

to provide a formal definition of consistency of a Quality View, and we have given

an algorithm for testing consistency.

Quality Views and quality workflows

Regarding the software architecture, in Chapter 4 we have proposed a simple

language for the specification of Quality Views as abstract processes, we have

defined a formal semantics for the language, and we have shown that these Qual-

ity View specifications can be automatically compiled into composite services,

provided that their component quality functions are themselves implemented as

services. To demonstrate this idea, we have chosen to compile Quality Views

into workflows (called “quality workflows” in Chapter 5). Workflows have the

advantage over other types of service, that they can be easily integrated with e-

science experiments, which are often themselves specified as workflows. We have

shown examples of how workflow experiments can be made quality-aware with

little human effort.

In Section 6.2 we have also shown how we can use Quality Views to add

quality-based data selection to query processing, namely to XQuery, exploiting

the implementation of Quality Views as services.

CHAPTER 7. CONCLUSIONS 196

Support for quality function implementation

The specification of Quality Views, their compilation and execution as quality

processes are only three of the phases of the IQ lifecycle that we have demon-

strated support for. In addition, in Chapter 6 (Section 6.1) we have also addressed

the problem of how to turn quality knowledge into an implementation of quality

functions: this is the last phase of the inner loop in the IQ lifecycle, where quality

knowledge engineers release their quality functions to the community. Observing

that these functions follow a regular design pattern, we have shown how the effort

required to generate implementation code for those functions can be partly re-

duced through automated code generation; furthermore, we have made the point

that the amount of automation that can be achieved depends on the users’ re-

liance on particular software frameworks for the implementation of the function

logic.

Definition and support for quality provenance

After the execution of a Quality View process, the last phase of the lifecycle outer

loop involves analysing its results. To model this phase, in Chapter 6 (Section 6.3)

we have proposed the concept of quality provenance, i.e., provenance of a quality

process. Since quality processes make decisions as to whether data elements

should be accepted or rejected, we have argued that those decisions should be

explained and made clear to users after execution. Our quality provenance model

demonstrates how users can track the accept/reject decision made during the

execution of a Quality View, and across a history of executions.

7.2 Limitations and further research

We can improve upon and extend our results in several directions. In this section

we discuss current limitations and propose further research ideas to overcome

those limitations. For this, we are going to use our IQ lifecycle one last time as

a reference framework (please see Figure 6.1 on page 160).

We begin with two complementary issues related to our main body of research,

namely support for the outer loop, and then address more exploratory issues

concerning the inner loop.

CHAPTER 7. CONCLUSIONS 197

7.2.1 Managing uncertainty in quality

Probabilistic classification

The first issue concerns the type of classification computed by our quality func-

tions. So far we have assumed that these functions associate either a class label

or a score with data elements. This, however, may not be sufficient to capture the

inherent uncertainty associated to any predictive model of quality. Indeed, some

classifiers, like Naive Bayes, return the probability that a data element belongs

to a certain class, in addition to the class label. We argue that maintaining an

explicit representation of uncertainty in the quality characterization of the data

can be useful, because it provides additional input to the decision models that

are based on quality: if we interpret the probability of class membership as a

measure of strengh of the classification, we can then use it for example to deter-

mine whether a given quality characterization is significant enough to influence

a decision.

Data management support for uncertain data

The second issue concerns the long-lived association between the data and its

quality, and the further uses that we can make of the quality information beyond

the execution of a Quality View. For example, at the end of a protein identifi-

cation workflow we may decide to save both the results, i.e., the list of identified

proteins, and their score or quality class. To see how maintaining this informa-

tion may be useful, let us recall an observation we made during the course of our

survey on data quality research, in the first part of Chapter 2, regarding certain

approaches to data integration in the presence of errors in the sources. In some

of this work, notably by Naumann et al. [NUJ99,Nau02b], the authors postulate

that integration can be driven by vectors of quality values that are associated

to the data in the various sources, but they seem to underestimate the problem

of how those vectors can be generated in the first place. A similar problem of

maintaining an explicit association between data and quality metadata is also

found in the DaQuincis architecture [SVM+04], as mentioned in the same survey

(on page 36). We can see here how the values computed using quality views may

contribute to solving the problem, by providing values for the vectors.

Further work is required, however, to design an adequate data engineering

solution to store quality metadata. Our recent proposal for a generic metadata

CHAPTER 7. CONCLUSIONS 198

management architecture [MAC+07] can be used as a starting point. One feature

that makes it interesting is that it associates explicit lifetime information to

metadata; using this feature, users may specify that certain events invalidate the

metadata. This may be useful in the case of quality metadata, for example to

indicate that a quality value should no longer be used when the underlying quality

evidence changes.

By combining the two issues discussed here, namely explicit representation of

uncertain quality metadata, and long-lived metadata values, we are faced with the

new problem of a metadata repository with support for uncertainty. The recent

research results mentioned in Chapter 2 (Section 2.2.5) on this topic, namely the

Trio system [Wid05, BSHW06], the MayBMS system [AKO07b] and its related

theoretical results [AKO07a,AKO07c] can be used as a starting point for research

in this direction.

7.2.2 Problems in quality knowledge discovery

We now move on to issues related to the inner loop. As we have stated in our

introductory chapter, in our work we have focused for the most part on the outer

loop of the lifecycle, and have simply assumed that quality knowledge engineers

can create new quality functions when needed. Our only current contribution to

the inner loop consists, as mentioned above, of a scheme for the partial automa-

tion of Quality Assertion implementation code. This leaves open a number of

interesting research problems regarding the creation of new quality knowledge.

Types of quality evidence

The first issue concerns the choice of metadata types that are good candidates

to be used as quality evidence. In the Introduction, and again in Chapter 2, we

have cited the availability of rich metadata as one of the main pre-requisites for

providing a meaningful quality characterisation to complex data types, such as

the results of a scientific experiment. Although we have cited data and process

provenance as possible sources of evidence, we have yet to investigate this in-

tuition in detail. In this realm, one could for example attempt to demonstrate

the effectiveness of pre-defined score models, such as those provided natively by

protein identification algorithms (which are different from the new score model

that we have used in our example, proposed by Stead et al. [SPB06]), or some

CHAPTER 7. CONCLUSIONS 199

combination thereof. Furthermore, anecdotal evidence may suggest, for instance,

a possible correlation between the accuracy of an experiment description and the

accuracy of its actual results, on the grounds that a precise and detailed de-

scription of the experiment is indicative of a reliable process control used by the

experimenters. Also, one may devise measures of overall reputation of a labora-

tory, that could be used as indirect predictors of the accuracy of their results.

More generally, we ask whether we can find interesting predictors of information

quality in process provenance, as acquired during the execution of workflows, or

in the rich description of e-science experiments as part of the submission of the

results to public sites (such as in the case of MIAME and MIAPE).

As we can see, this is a broad and largely uncharted area where the search for

valuable quality knowledge promises to be challenging. We propose to investigate

ways of extending our Qurator workbench in order to support this search.

Cost of quality evidence

Assuming that we have demonstrated the predictive power of certain types of

metadata for quality estimation, we are still faced with the potential problem

that such metadata may not always be available, or that it may be expensive

to acquire. The availability and cost of quality evidence largely determine the

type of quality estimation that we can afford to associate with our experiments,

and the overhead incurred in its computation. While in the use cases presented

in the Introduction, the evidence necessary to compute the score models are

promptly available (from the output of a workflow processor and from a database,

respectively), this may not always be the case. Suppose for instance that we

decide to use some details of an experimental process, such as the parameters

used to configure some equipment, as evidence. Unless the collection of this

information is mandatory according to the experiment description guidelines, it

may well be missing, and it may be costly, or even impossible, to retrieve it

from other sources. These considerations lead to several new research questions.

Firstly, how is the performance of a quality decision model affected by partially

missing input metadata? Current results in the area of knowledge discovery

indicate that some algorithms are more robust than others in this situation (see

for example [Li06,BM03]). In the same vein, under what circumstances can we

use “cheaper” types of evidence as surrogates for other, more expensive ones?

And finally, how can we define a cost model for quality estimation? Would a

CHAPTER 7. CONCLUSIONS 200

formal characterization of the Annotation functions in terms of their cost provide

a valid starting point?

Discovery and implementation of new quality knowledge

Having established what types of potential quality evidence are available, the

next step within the inner lifecycle loop is to design an accurate predictive model.

This problem, as we have suggested early in the thesis, falls in the realm of data

mining and knowledge discovery (KD), a prolific area involving statistic and data

management [HK06]. Since our current Qurator workbench does not include

specific support for the discovery phase, a natural question to ask is to what

extent we can exploit, and possibly improve upon, the body of theoretical and

technological results available from the KD community. We plan to investigate

how these results can be integrated into the workbench, in order to streamline

the quality discovery process as much as possible.

We have described our preliminary investigation into this possibility while

presenting our proposal for the semi-automated generation of quality service im-

plementation code, in Section 6.1. As a concrete use case, we have studied ways

to automatically turn Weka models [WF05] into Quality Assertion services. Our

early results indicate that the semantic information regarding the QV compo-

nents recorded in the Qurator ontology, combined with the semantic annotation

of a generic quality service interface, are sufficient to automate the generation of

an executable quality service that implements a Weka classifier. However, further

work is needed on this topic to provide a general generation mechanism across a

wider range of potential quality classification and score models.

Axiomatization of new quality knowledge

The last responsibility for quality knowledge engineers, after having defined and

implemented a new quality function, is to provide a symbolic representation for

it in the ontology. As discussed in Chapter 3, this involves creating new ontology

classes that extend those defined in the upper ontology, and defining a number

of logical axioms to establish relationships among these classes. The complete

example that we presented in Table 3.3 (page 84) for the proteomics use case

indicates that this may be a non-trivial task that requires specific expertise in

the management of semantic models. Regarding this, in Chapter 3 we have

already made two points. Firstly, that we can exploit automated reasoning on the

CHAPTER 7. CONCLUSIONS 201

ontology to ensure that the result is not an inconsistent collection of axioms; we

have described the potential and the limitations of this approach. And secondly,

that the specification of the set of axioms may proceed incrementally: if any of

the expected axioms are missing, this will typically limit the types of support

provided by the reasoner, but will not result in inconsistencies. In future work

we plan to explore this issue further, to see whether we can support the task of

creating the axioms in any useful way. We propose to consider ontology-aware

user interfaces, specifically looking at open platforms for ontology design, such as

Protege (protege.stanford.edu), as a starting point to achieve this goal.

Appendix A

BNF grammar for Quality Views

Action expressions

(Token definitions omitted)

<expression> : <term> [OR <expression>]

<term> : <fact> [AND <term>]

<fact> : [NOT] <primary>

<primary> : <relComparison> | <idTest> | ”(” <expression> ”)”

<idTest> : <setMembership> | <nullValueTest>

<relComparison> : (<ID>

| <INTEGER LITERAL>

| <FLOATING POINT LITERAL>

| <STRING LITERAL>)

(”<” | ”<=” | ”>” | ”>=” | ”=” | ”=” | ”<>” | ”~” ”=”)

(<ID>

| <INTEGER LITERAL>

| <FLOATING POINT LITERAL>

| <STRING LITERAL>

| <PATTERN>)

<nullValueTest> : <ID> IS [NOT] NULL

<setMembership> : <ID> [NOT] IN <setExpr>

<setExpr> : ”{” <STRING LITERAL> [”,” <STRING LITERAL>]* ”}”

202

Appendix B

Haskell code for the Quality

View interpreter

-- A QV interpreter in Haskell

--- some names for simple types

type URI = String -- should really be a URI...

type Dataref = String

type ActualParamValue = String

type FormalParamName = String

type LocalFormalParam = (FormalParamName, FormalParamName)

type BoundActualParam = (FormalParamName , ActualParamValue)

--- Environment

data QTriple = QTriple { _Name :: String, _Class :: URI, _Value :: String }

type QTripleSet = [QTriple]

-- one row in the env matrix

data EnvRow = EnvRow { d :: URI, qSet :: [QTriple] } deriving Show

type Env = [EnvRow] -- matrix == list of rows

203

APPENDIX B. QV INTERPRETER IN HASKELL 204

------ data model for Annotators

-- Annotator Functions Af map a dataref to a list of QTriples

-- the second arg is a list of actual parameters

type Af = Dataref -> [BoundActualParam] -> [QTriple]

-- an Annotator specification includes an Annotation function

-- and a list of (variable, class) pairs

data AnnSpec = AnnSpec { _Af :: Af,

_outputVars :: [String],

_AnnParameters :: [LocalFormalParam] }

------ data model for Quality Assertions

-- QA functions take a dataref and a list of QTriples and compute a new QTriple

type AnnotatedData = (Dataref, [QTriple])

type QAf = [AnnotatedData] -> [BoundActualParam] -> [(Dataref, [QTriple])]

-- a QA specification includes the QA function and a list of

-- (variable, class) pairs that indicate the evidence

-- that it depends on

data QASpec = QA { _QAf :: QAf,

_inputVars :: [String],

_outputVar :: String,

_QAParameters :: [LocalFormalParam] }

APPENDIX B. QV INTERPRETER IN HASKELL 205

--- Quality View specification

-- a Quality View is a list of Annotators, QA,

-- and QTest plus global formal parameters

data QVSpec = QVSpec { _formalParams :: [FormalParamName],

_ann :: [AnnSpec],

_QA :: [QASpec],

_QT :: [QTest] }

-- QV output

type DatarefQualityClass = (Dataref, String, [QTriple])

------ data model for Actions

type CondExpr = Dataref -> Env -> Bool

-- cond: the conditional expression on the input vars

data QTest = QTest { channelName :: String,

channelAnnotation :: String,

cond :: CondExpr }

type ActionSpec = [QTest]

APPENDIX B. QV INTERPRETER IN HASKELL 206

-- a QV is a function of input data and a QVSpec,

-- which returns a list of lists of datarefs,

-- each list representing one quality class

qv :: [Dataref] -> [ActualParamValue] -> QVSpec -> [DatarefQualityClass]

qv _D _actualParams _QVSpec =

let env = initEnv _D (collectVars _QVSpec)

_boundParams = paramBinding (_formalParams _QVSpec) _actualParams

in act _D (_QT _QVSpec)

(qAssert _D (_QA _QVSpec) _boundParams

(annotate _D (map (\x -> ((_Af x),

(globalToLocalParams

_boundParams

(_AnnParameters x))))

(_ann _QVSpec)) env))

--- Annotations

-- apply Af to each dataref and update the Env with the annotation result

annotate1 :: [Dataref] -> (Af, [BoundActualParam]) -> Env -> Env

annotate1 _D (_Af, _parms) e = multiUpdateEnv [(d, (_Af d _parms)) |

d <- _D] e

-- [String] is a list of actual parameters

annotate :: [Dataref] -> [(Af, [BoundActualParam])] -> Env -> Env

annotate _ [] e = e

annotate _D (h:rest) e = annotate _D rest (annotate1 _D h e)

-- collects all var names from each annotator

collectVars :: QVSpec -> [String]

collectVars _QVSpec = concat [(_outputVars _annSpec) |

_annSpec <- (_ann _QVSpec)] ++

[(_outputVar _QASpec) |

_QASpec <- (_QA _QVSpec)]

APPENDIX B. QV INTERPRETER IN HASKELL 207

--- Quality Assertions

-- one QAssertion takes in data and its annotations and applies a QAf,

-- updating the env

-- to reflect the new QTriple

qAssert1 :: [Dataref] -> QASpec -> [BoundActualParam] -> Env -> Env

qAssert1 _D _QASpec _actualParams e = multiUpdateEnv

((_QAf _QASpec)

[(d,

(fetchAnnotations

d

(_inputVars _QASpec) e)) |

d <- _D]

(globalToLocalParams

_actualParams

(_QAParameters _QASpec)))

e

-- multiple QAssertions

qAssert :: [Dataref] -> [QASpec] -> [BoundActualParam] -> Env -> Env

qAssert _ [] _ e = e

qAssert _D (h:rest) _actualParams e = qAssert _D rest _actualParams

(qAssert1 _D h _actualParams e)

--- Actions

-- perform action tests on the enriched data and associate

-- a channel name to each dataref

act :: [Dataref] -> [QTest] -> Env -> [DatarefQualityClass]

act _D [] e = [(d, "all data", (allQTriples d e)) | d <- _D]

act _D _Tests e = [(d, (channelName aTest), (allQTriples d e)) |

d <- _D, aTest <- _Tests,

(cond aTest) d e == True]

APPENDIX B. QV INTERPRETER IN HASKELL 208

--- Parameters binding

-- binds each global formal parameter name to an actual parameter value,

-- by position

paramBinding :: [FormalParamName] -> [ActualParamValue]-> [BoundActualParam]

paramBinding (x:xs) (y:ys) = (x,y) : paramBinding xs ys

paramBinding [] [] = []

-- maps global actual parameters of the form (globalName, value)

-- to local formal parameters of the form (globalName, localName)

-- to yield (localName, value)

globalToLocalParams :: [BoundActualParam] ->

[LocalFormalParam] ->

[BoundActualParam]

globalToLocalParams g l = [(localName, value) |

(globalName, value) <- g,

(globalName1, localName) <- l,

globalName == globalName1]

--- Environment

-- adds a row to env to account for one data identifier

addRow :: URI -> Env -> Env

addRow x [] = [EnvRow {d = x, qSet = [] }]

addRow x (r:rest) = EnvRow {d = x, qSet = [] } : r : rest

addRows :: [URI] -> Env -> Env

addRows [] e = e

addRows (d:rest) e = addRows rest (addRow d e)

-- add one evidence tuple to one row of the env with the varname but no value

addQTriple :: String -> QTripleSet -> QTripleSet

addQTriple v qSet = QTriple { _Name = v, _Class = "", _Value = ""} : qSet

-- add one evidence tuple to each env row

APPENDIX B. QV INTERPRETER IN HASKELL 209

addQVar :: String -> Env -> Env

addQVar v e = [EnvRow {d = (d row), qSet = (addQTriple v (qSet row)) } |

row <- e]

-- add one evidence tuple to each env row, for each evidence variable name

addQVars :: [String] -> Env -> Env

addQVars [] e = e

addQVars (v:rest) e = addQVars rest (addQVar v e)

-- update each EnvRow identified by a d in Dataref

-- with the corresponding values in the QTriple

multiUpdateEnv :: [(Dataref, [QTriple])] -> Env -> Env

multiUpdateEnv [] e = e

multiUpdateEnv ((d, qTriples) :rest) e = multiUpdateEnv rest

(updateEnv1 d qTriples e)

-- updates the row identified by d with all Qtriples in the second arg

updateEnv1 :: String -> [QTriple] -> Env -> Env

updateEnv1 d (h:rest) e = updateEnv1 d rest (updateEnv d h e)

updateEnv1 _ [] e = e

--- updating the env with a new value

--- eg (updateEnv dataref varname value e)

--- ex updateEnv d QTriple {"ev", "evClass", "value"}

updateEnv :: String -> QTriple -> Env -> Env

updateEnv _ _ [] = []

updateEnv dataref q (h:rest) |

(d h) == dataref =

EnvRow {d = (d h),

qSet = (updateCellSet q (qSet h)) } : rest

updateEnv dataref q (h:rest) |

(d h) /= dataref = h : (updateEnv dataref q rest)

updateCellSet :: QTriple -> [QTriple] -> [QTriple]

updateCellSet _ [] = []

updateCellSet q (cell:rest) |

APPENDIX B. QV INTERPRETER IN HASKELL 210

(_Name cell) == (_Name q) =

QTriple {_Name = (_Name cell),

_Class = (_Class q),

_Value = (_Value q)} : rest

updateCellSet q (cell:rest) | (_Name cell) /= (_Name q) =

cell : (updateCellSet q rest)

-- fetch the QTriples for a list of variables v and for a specific dataref

fetchAnnotations :: Dataref -> [String] -> Env -> [QTriple]

fetchAnnotations d _V e = concat [(getQTriple d v e) | v <- _V]

-- fetch entire row of annotations + quality values for d

allQTriples :: Dataref -> Env -> [QTriple]

allQTriples dataref e = concat [(qSet row) | row <- e, (d row) == dataref]

-- [QTriple] is a singleton. an empty QTriple list indicates

-- no QTriple matching the (data, var) pair

-- getQTriple d v e = [_Name = "v", _Class = "c", _Value = value"]

getQTriple :: String -> String -> Env -> [QTriple]

getQTriple _ _ [] = []

getQTriple dataref var (h:rest) | (d h) == dataref =

[qtriple |

qtriple <- (qSet h) ,

(_Name qtriple) == var]

getQTriple dataref var (h:rest) | (d h) /= dataref = getQTriple dataref var rest

--- env initialization

-- takes list of dataref and a list of variable names and creates the env matrix

--- by the way the env is setup, rows must be added first

initEnv :: [String] -> [String] -> Env

initEnv datarefs vars = addQVars vars (addRows datarefs [])

APPENDIX B. QV INTERPRETER IN HASKELL 211

-- example QVSpec

-- annotations

af1 = \x -> \plist -> [QTriple { _Name = "e1",

_Class = "e1Class",

_Value = (x ++ " e1 annot")},

QTriple { _Name = "e2",

_Class = "e2Class",

_Value = (x ++ " e2 annot")}]

af2 = \x -> \plist -> [QTriple { _Name = "e3",

_Class = "e3Class",

_Value = (x ++ " e3 annot")}]

ann1 = AnnSpec { _Af = af1,

_outputVars = ["e1", "e2"],

_AnnParameters = [("p1","p1Local")] }

ann2 = AnnSpec { _Af = af2,

_outputVars = ["e3"],

_AnnParameters = [("p1","p1"), ("p2","p2Local")] }

-- QA

qa1 = \ad -> \plist -> [(d, [QTriple { _Name = "q1",

_Class = "q1Class",

_Value = "QA1 for "++" d " }]) |

(d, _) <- ad]

qa2 = \ad -> \plist -> [(d, [QTriple { _Name = "q2",

_Class = "q2Class",

_Value = "QA2 for "++" d " }]) |

(d, _) <- ad]

APPENDIX B. QV INTERPRETER IN HASKELL 212

_QASpec1 = QA { _QAf = qa1,

_inputVars = ["e1", "e2"],

_outputVar = "q1",

_QAParameters = [("p3","p3")] }

_QASpec2 = QA { _QAf = qa2,

_inputVars = ["e2", "e3"],

_outputVar = "q2",

_QAParameters = [("p2","p2Local")] }

-- QTest (action)

_channel1Condition = \d -> \e -> True

_Qtest1 = QTest { channelName = "ch1",

channelAnnotation = "red",

cond = _channel1Condition}

_channel2Condition = \d ->

\e ->

(_Value (head (getQTriple d "q2" e)) == "QA2 for "++" d ")

_Qtest2 = QTest { channelName = "ch2",

channelAnnotation = "white",

cond = _channel2Condition}

-- Quality View

testQV = QVSpec { _formalParams = ["p1", "p2", "p3"],

_ann = [ann1, ann2],

_QA = [_QASpec1, _QASpec2],

_QT = [_Qtest1, _Qtest2] }

Bibliography

[ABBMed] A. Avenali, P. Bertolazzi, C. Batini, and P. Missier. Brokering infras-

tructure for minimum cost data procurement based on quality - quantity

models. Decision Support Systems, 2007, Accepted.

[ABC99] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in

inconsistent databases. In PODS, pages 68–79, 1999.

[ABC+03] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spin-

rad. Scalar aggregation in inconsistent databases. Theoretical Computer

Science, 296(3):405–434, March 2003.

[Abr90] S. Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research

Topics in Functional Programming, pages 65–116. Addison-Welsey, Read-

ing, MA, 1990.

[AKO07a] L. Antova, C. Koch, and D. Olteanu. From complete to incomplete in-

formation and back. In SIGMOD Conference, pages 713–724, 2007.

[AKO07b] L. Antova, C. Koch, and D. Olteanu. Maybms: Managing incomplete

information with probabilistic world-set decompositions. In ICDE, pages

1479–1480, 2007.

[AKO07c] L. Antova, C. Koch, and D. Olteanu. World-set decompositions: Expres-

siveness and efficient algorithms. In ICDT, pages 194–208, 2007.

[AM03] R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Na-

ture, 422:198–207, March 2003.

[AMMH07] D. J. Abadi, A. Marcus, S. Madden, and K. J. Hollenbach. Scalable

semantic web data management using vertical partitioning. In VLDB,

pages 411–422, 2007.

[APS03] T.K. Attwood and D.J. Parry-Smith. Introduction to Bioinformatics.

Pearson Education Taiwan Ltd, 2003.

213

BIBLIOGRAPHY 214

[BBD07] O. Biton, S. Cohen Boulakia, and S. B. Davidson. Zoom*userviews:

Querying relevant provenance in workflow systems. In VLDB, pages 1366–

1369, 2007.

[BBS05] M. Bilenko, S. Basu, and M. Sahami. Adaptive product normaliza-

tion: Using online learning for record linkage in comparison shopping.

In ICDM, pages 58–65, 2005.

[BBWG03] M. Buechi, A. Borthwick, A. Winkel, and A. Goldberg. ClueMaker: A

language for approximate record matching. In Procs. 8th International

Conference on Information Quality, ICIQ 2003, Cambridge, Ma, 2003.

[BC07] C. Baker and H. Cheung, editors. Semantic Web – Revolutionizing

Knowledge Discovery in the Life Sciences, chapter Knowledge Discov-

ery for Biology with Taverna. Biomedical and Life Sciences. Springer,

2007.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-

Schneider, editors. The Description Logic Handbook: Theory, Implemen-

tation, and Applications. Cambridge University Press, 2003.

[BDM02] S. Bocs, A. Danchin, and C. Medigue. Re-annotation of genome microbial

coding-sequences: finding new genes and inaccurately annotated genes.

BMC Bioinformatics, 2002.

[BE04] L. Berti-Equille. Quality-Adaptive Query Processing over Distributed

Sources. In Proceedings of the 9th International Conference on Informa-

tion Quality (IQ’04), pages 285–296, Boston MA, USA, 2004.

[BEBS05] L. Berti-Equille, C. Batini, and D. Srivastava, editors. IQIS 2005, In-

ternational Workshop on Information Quality in Information Systems,

17 June 2005, Baltimore, Maryland, USA (SIGMOD 2005 Workshop).

ACM, 2005.

[BEF+05] K. Belhajjame, S.M. Embury, H. Fan, C. Goble, and al. Proteome data

integration: Characteristics and challenges. In Proceedings of UK e-

ScienceAll Hands Meeting, 2005.

[BEPG+05] L.D. Burgoon, J.E. Eckel-Passow, C. Gennings, D.R. Boverhof, J.W.

Burt, C.J. Fong, and T.R.Zacharewski. Protocols for the assurance of

microarray data quality and process control. Nucleic Acids Research,

33(19), 2005.

BIBLIOGRAPHY 215

[BFG+07] P. Bohannon, W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Condi-

tional functional dependencies for data cleaning. In ICDE, pages 746–755,

2007.

[BG05] J. Barateiro and H. Galhardas. A survey of data quality tools. Datenbank-

Spektrum, 14:15–21, 2005.

[BGMY04] M. Bern, D. Goldberg, W.H. McDonald, and J.R. III Yates. Auto-

matic quality assessment of peptide tandem mass spectra. Bioinformatics,

20(Suppl. 1):i49–i54, 2004.

[BHS05a] F. Baader, I. Horrocks, and U. Sattler. Description logics as ontology

languages for the semantic web. In Dieter Hutter and Werner Stephan,

editors, Mechanizing Mathematical Reasoning: Essays in Honor of Jörg

Siekmann on the Occasion of His 60th Birthday, number 2605 in Lecture

Notes in Artificial Intelligence, pages 228–248. Springer, 2005.

[BHS05b] L. E. Bertossi, A. Hunter, and T. Schaub, editors. Inconsistency Toler-

ance [result from a Dagstuhl seminar], volume 3300 of Lecture Notes in

Computer Science. Springer, 2005.

[BKM06] M. Bilenko, B. Kamath, and R. J. Mooney. Adaptive blocking: Learning

to scale up record linkage. In ICDM, pages 87–96, 2006.

[BM03] G. Batista and M.C. Monard. An analysis of four missing data treatment

methods for supervised learning. Applied Artificial Intelligence, 17(5-

6):519–533, 2003.

[Bre99] S. Brenner. Errors in genome annotation. Trends in Genetics, 15(4):132–

133, 1999. Short Communication.

[BS06] C. Batini and M. Scannapieco. Data Quality – Concepts, Methodologies

and Techniques, volume XX of Data-Centric Systems and Applications.

Springer, 2006.

[BSHW06] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom. ULDBs:

databases with uncertainty and lineage. In VLDB ’06: Proceedings of

the 32nd international conference on Very large data bases, pages 953–

964. VLDB Endowment, 2006.

[BT07] S. Cohen Boulakia and V. Tannen, editors. Data Integration in the

Life Sciences, 4th International Workshop, DILS 2007, Philadelphia, PA,

BIBLIOGRAPHY 216

USA, June 27-29, 2007, Proceedings, volume 4544 of Lecture Notes in

Computer Science. Springer, 2007.

[CAB+04] S. Carr, R. Aebersold, M. Baldwin, A. Burlingame, et al. The need

for guidelines in publication of peptide and protein identification data.

Molecular & Cellular Proteomics, 3(6):531–533, 2004.

[CBD06] S. Cohen, S. Cohen Boulakia, and S. B. Davidson. Towards a model of

provenance and user views in scientific workflows. In Leser et al. [LNE06],

pages 264–279.

[CCG+00] F. Caruso, M. Cochinwala, U. Ganapathy, G. Lalk, and P. Missier.

Demonstration of telcordia’s database reconciliation and data quality

analysis tool. In VLDB 2000, September 10-14, 2000, Cairo, Egypt, pages

615–618. Morgan Kaufmann, 2000.

[CCGK07] S. Chaudhuri, B. Chen, V. Ganti, and R. Kaushik. Example-driven de-

sign of efficient record matching queries. In Proceedings VLDB, Vienna,

Austria, Sept. 2007.

[CFG+07] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma. Improving data quality:

Consistency and accuracy. In Procs. VLDB, Vienna, Austria, Sept. 2007.

[CGH+06] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson,

M. Shields, I. Taylor, and I. Wang. Programming Scientific and Dis-

tributed Workflow with Triana Services. Concurrency and Computa-

tion: Practice and Experience (Special Issue: Workflow in Grid Systems),

18(10):1021–1037, 2006.

[CMM03] J. Colinge, A. Masselot, and J. Magnin. A systematic analysis of ion trap

tandem mass spectra in view of peptide scoring. In Proceedings of the

Third International Workshop on Algorithms in Bioinformatics (WADI),

Lecture Notes in Computer Science, Budapest, September 2003.

[CMRSW06] R. Chinnici, J-J. Moreau, A. Ryman, and eds. S. Weerawarana. Web

services description language (WSDL) version 2.0 part 1: Core lan-

guage. World Wide Web Consortium, March 2006. available at

http://www.w3.org/TR/wsdl20.

[CPH+03] M. Cornell, N. Paton, C. Hedeler, P. Kirby, D. Delneri, A. Hayes, and

S. Oliver. GIMS: an integrated data storage and analysis environment

for genomic and functional data. Yeast, 20(15):1291–306, Nov 2003.

BIBLIOGRAPHY 217

[CZS+04] K.K. Challapalli, C. Zabel, J. Schuchhardt, A.M. Kaindl, et al. High re-

producibility of large-gel two-dimensional electrophoresis. Electrophore-

sis, 25:3040–3047, 2004.

[DS04] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic

databases. In VLDB, pages 864–875, 2004.

[DS07] N. N. Dalvi and D. Suciu. Management of probabilistic data: foundations

and challenges. In PODS, pages 1–12, 2007.

[DV01] D. Devos and A. Valencia. Intrinsic errors in genome annotation.

TRENDS in Genetics, 17(8), 2001.

[EBC+05] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price.

Grid service orchestration using the business process execution language

(bpel). Journal of Grid Computing, 3(3-4):283–304, 2005.

[EEV02] M.G. Elfeky, A.K. Elmagarmid, and V.S. Verykios. Tailor: a record link-

age tool box. In Proceedings of the 18th International Conference on Data

Engineering (ICDE 2002), San Jose, CA, Feb. 2002. IEEE Computer So-

ciety.

[EIV07] A. K. Elmagarmid, P. G. Ipeirotis, and V.S. Verykios. Duplicate record

detection: A survey. IEEE Transactions on Knowledge and Data Engi-

neering, 19(1):1–16, Jan 2007.

[EMS+07] S. Embury, P. Missier, S. Sampaio, M. Greenwood, and A. Preece. In-

corporating domain-specific information quality constraints into database

queries. Journal of Data and Information Quality, submitted, Sept. 2007.

[Faw06] T. Fawcett. An introduction to ROC analysis. Pattern Recognition Let-

ters, 28(8):861–874, 2006.

[FB02] D. Fenyö and R.C. Beavis. Informatics and data management in pro-

teomics. Trends in Biotechnology, 20(12 (Suppl.)):S35–S38, 2002.

[FGMA02] M.R. Flory, T.J. Griffin, D. Martin, and R. Aebersold. Advances in quan-

titative proteomics using stable isotope tags. Trends in Biotechnology,

20(12 (Suppl.)):S23–S29, 2002.

[FS69] I.P. Fellegi and A.B. Sunter. A theory for record linkage. Journal of the

American Statistical Association, 64, 1969.

BIBLIOGRAPHY 218

[FvHH+01a] D. Fensel, F. van Harmelen, I. Horrocks, D. McGuinness, and P. F. Patel-

Schneider. OIL: An ontology infrastructure for the semantic web. IEEE

Intelligent Systems, 16(2):38–45, 2001.

[FvHH+01b] D. Fensel, F. van Harmelen, I. Horrocks, D. L. McGuinness, and P. F.

Patel-Schneider. OIL: An ontology infrastructure for the semantic web.

IEEE Intelligent Systems, 16(2):38–45, Mar/Apr 2001.

[GFS+01] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.A. Saita. Declar-

ative data cleaning: Language, model, and algorithms. In Peter M. G.

Apers, Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, Kotagiri Ra-

mamohanarao, and Richard T. Snodgrass, editors, VLDB, pages 371–380.

Morgan Kaufmann, 2001.

[GGS+03] M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis, D. Marvin,

L. Moreau, and T. Oinn. Provenance of e-science experiments - experience

from bioinformatics. In Simon Cox, editor, OST e-Science Second All

Hands Meeting 2003 (AHM’03), Nottingham, UK, September 2003.

[GPFLC04] A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological En-

gineering with examples from the areas of Knowledge Management, e-

Commerce and the Semantic Web. Advanced Information and Knowledge

Processing. Springer, 2004. ISBN: 978-1-85233-551-9.

[HHJW07] P. Hudak, J. Hughes, S. Peyton Jones, and P. Wadler. A history of

Haskell: being lazy with class. In The Third ACM SIGPLAN History of

Programming Languages Conference (HOPL-III), San Diego, California,

June 2007.

[HK06] J. Han and M. Kamber. Data Mining –Concepts and Techniques. Morgan

Kauffman, 2nd edition, 2006. ISBN 10:1-55860-901-6.

[HM07] C. Hedeler and P. Missier. Database Modeling in Biology: Practices and

Challenges, chapter Quality management challenges in the post-genomic

era. Artech House, 2007. In print.

[Hor02] Ian Horrocks. DAML+OIL: a description logic for the semantic web. Bull.

of the IEEE Computer Society Technical Committee on Data Engineering,

25(1):4–9, March 2002.

[HPSvH03] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. J. of Web

Semantics, 1(1):7–26, 2003.

BIBLIOGRAPHY 219

[Hul06] D. Hull. Description and classification of shims in mygrid. Technical

report, University of Manchester, 2006.

[HWS+06] D. Hull, K. Wolstencroft, R. Stevens, C. A. Goble, M. R. Pocock, P. Li,

and T. Oinn. Taverna: a tool for building and running workflows of

services. Nucleic Acids Research, 34(Web-Server-Issue):729–732, 2006.

[HWSG02] W.S. Hancock, S.L. Wu, R.R. Stanley, and E.A. Gombocz. Publishing

large proteome datasets: scientific policy meets emerging technologies.

Trends in Biotechnology, 20(12 (Suppl.)):S39–S44, 2002.

[HZB+] D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens.

Deciding semantic matching of stateless services. In Proceedings of the

Twenty-First National Conference on Artificial Intelligence (AAAI-06)

and Eighteenth Innovative Applications of Artificial Intelligence (IAAI-

06) Conference, pages 1319–1324, Boston, MA, USA, July.

[IGH01] T. Ideker, T. Galitski, and L. Hood. A new approach to decoding life:

Systems biology. Annu. Rev. Genomics Hum. Genet., 2:343–372, 2001.

[JHH+93] S.L. Peyton Jones, C.V. Hall, K. Hammond, W. D. Partain, and

P. Wadler. The Glasgow Haskell compiler: a technical overview. In Pro-

ceedings of Joint Framework for Information Technology Technical Con-

ference, pages 249–257, Keele, March 1993.

[JO04] H. V. Jagadish and F. Olken. Database management for life sciences

research. SIGMOD Record, 33(2):15–20, 2004.

[KMGa04] K. Garwood K, T. McLaughlin, C. Garwood, and al. PEDRo: a database

for storing, searching and disseminating experimental proteomics data.

BMC Genomics, 5(1), Sep 2004.

[KVVS+06] T. Kifor, L. Varga, J. Vàzquez-Salceda, S.Sergio lvarez, and S. Willmott.

EHCR: An EU provenance case study. Technical report, SZTAKI, 2006.

[LA03] B. Ludscher and I. Altintas. On providing declarative design and pro-

gramming constructs for scientific workflows based on process networks.

Technical Report SciDAC-SPA-TN-2003-01, San Diego Supercomputer

Center, 2003.

[LABe05] B. Ludscher, I. Altintas, C. Berkley, and el. Scientific workflow manage-

ment and the Kepler system. Concurrency and Computation: Practice

and Experience, Special Issue on Scientific Workflows, 2005.

BIBLIOGRAPHY 220

[LE05] J. Listgarten and A. Emili. Statistical and computational methods

for comparative proteomic profiling using liquid chromatography-tandem

mass spectrometry. Molecular & Cellular Proteomics, 4(4):419–434, 2005.

[LH03] L. Li and I. Horrocks. A software framework for matchmaking based

on semantic web technology. In WWW ’03: Proceedings of the 12th

international conference on World Wide Web, pages 331–339, New York,

NY, USA, 2003. ACM Press.

[Li06] J. Li. Robust rule-based prediction. IEEE Transactions on Knowledge

and Data Engineering, 18(8):1043–1054, 2006.

[LNE06] U. Leser, F. Naumann, and B. A. Eckman, editors. Data Integration in the

Life Sciences, Third International Workshop, DILS 2006, Hinxton, UK,

July 20-22, 2006, Proceedings, volume 4075 of Lecture Notes in Computer

Science. Springer, 2006.

[LR05] B. Ludäscher and L. Raschid, editors. Data Integration in the Life Sci-

ences, Second InternationalWorkshop, DILS 2005, San Diego, CA, USA,

July 20-22, 2005, Proceedings, volume 3615 of Lecture Notes in Computer

Science. Springer, 2005.

[LSBG03] P.W. Lord, R.D. Stevens, A. Brass, and C.A. Goble. Investigating se-

mantic similarity measures across the Gene Ontology: the relationship

between sequence and annotation. Bioinformatics, 19(10):1275–83, 2003.

[LZRA03] X. Li, H. Zhang, J.A. Ranish, and R. Aebersold. Automated statisti-

cal analysis of protein abundance ratios from data generatted by stable-

isotope dilution and tandem mass spectrometry. Analytical Chemistry,

75(23):6648–6657, 2003.

[MAA04] A. Motro, P. Anokhin, and A.C. Acar. Utility-based resolution of data

inconsistencies. In Felix Naumann and Monica Scannapieco, editors, In-

ternational Workshop on Information Quality in Information Systems

2004 (IQIS’04), Paris, France, June 2004. ACM.

[MAC+07] P. Missier, P. Alper, O. Corcho, I. Dunlop, and C. Goble. Requirements

and services for metadata management. IEEE internet Computing, Spe-

cial issue on Semantic-Based Knowledge Management, Sept. / Oct. 2007.

[MBL06] T. McPhillips, S. Bowers, and B. Ludscher. Collection-oriented scientific

workflows for integrating and analyzing biological data. In Proceedings

BIBLIOGRAPHY 221

3rd International Conference on Data Integration for the Life Sciences

(DILS), LNCS/LNBI. Springer, 2006.

[MDBL07] D. Martin, J. Domingue, M. L. Brodie, and F. Leymann. Semantic web

services, part 1. IEEE Intelligent Systems, 22(5):12–17, 2007.

[ME05] P. Missier and S. M. Embury. Provider issues in quality-constrained

data provisioning. In IQIS 2005, International Workshop on Information

Quality in Information Systems, 17 June 2005, Baltimore, Maryland,

USA (SIGMOD 2005 Workshop), pages 5–15, 2005.

[MEG+06] P. Missier, S. M. Embury, M. Greenwood, A. D. Preece, and B. Jin.

Quality views: Capturing and exploiting the user perspective on data

quality. In VLDB, pages 977–988, Seoul, Korea, September 2006.

[MEG+07] P. Missier, S. M. Embury, M. Greenwood, A. D. Preece, and B. Jin.

Managing information quality in e-science: the qurator workbench. In

SIGMOD Conference, pages 1150–1152, 2007.

[MEH+07] P. Missier, S. Embury, C. Hedeler, M. Greenwood, J. Pennock, and

A. Brass. Accellerating disease gene identification through integrated

SNP data analysis. In Procs. Data Integration in the Life Sciences 2007

(DILS 2007), June 2007, Philadelphia, USA, LNBI. Springer, 2007.

[MGM+07] S. Miles, P. Groth, S. Munroe, S. Jiang, T. Assandri, and L. Moreau. Ex-

tracting causal graphs from an open provenance data model. Concurrency

and Computation: Practice and Experience, 2007.

[MH05] A. Martinez and J. Hammer. Making quality count in biological data

sources. In Berti-Equille et al. [BEBS05], pages 16–27.

[Mit97] T. M. Mitchell. Machine Learning. Mc Graw-Hill, 1997. ISBN 0-07-

115467-1.

[MLV+03] P. Missier, G. Lalk, V. S. Verykios, F. Grillo, T. Lorusso, and P. Angeletti.

Improving data quality in practice: A case study in the italian public

administration. Distributed and Parallel Databases, 13(2):135–160, 2003.

[Mog91] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1):55–

92, 1991.

[Mor90] J. M. Morrissey. Imprecise information and uncertainty in information

systems. ACM Trans. Inf. Syst., 8(2):159–180, 1990.

BIBLIOGRAPHY 222

[MPE+05] P. Missier, A. D. Preece, S. M. Embury, B. Jin, M. Greenwood, D. Stead,

and A. Brown. Managing information quality in e-science: A case study

in proteomics. In ER (Workshops), pages 423–432, 2005.

[MRE00] G. A. Mihaila, L. Raschid, and M. E.Vidal. Using quality of data meta-

data for source selection and ranking. In WebDB (Informal Proceedings),

pages 93–98, 2000.

[MSC04] D. Milano, M. Scannapieco, and T. Catarci. Quality-driven query pro-

cessing of Xquery queries. In CAiSE Workshops (2), pages 78–89, 2004.

[NA04] A.I. Nesvizhskii and R. Aebersold. Analysis, statistical validation and

dissemination of large-scale proteomics datasets generated by tandem MS.

Drug Discovery Today, 9(4):173–181, 2004.

[Nau75] J. Naus. Data quality control and editing. M. Dekker, 1975.

[Nau02a] F. Naumann. Quality-Driven Query Answering for Integrated Informa-

tion Systems, volume 2261. Springer Berlin / Heidelberg, 2002. ISSN

0302-9743 (Print) 1611-3349 (Online).

[Nau02b] F. Naumann. Quality-Driven Query Planning, volume 2261 of Lecture

Notes in Computer Science. Springer-Verlag, 2002.

[New67] H.B. Newcombe. Record linking: The design of efficient systems for link-

ing records into individual and family histories. Am. J. Human Genetics,

19(3), 1967.

[NFL04] F. Naumann, J.C. Freytag, and U. Leser. Completeness of integrated

information sources. Information Systems, 29(7):583–615, 2004.

[NKAJ59] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P. James. Auto-

matic linkage of vital records. Science, 130:954–959, October 1959.

[NKKA03] A.I. Nesvizhskii, A. Keller, E. Koller, and R. Aebersold. A statistical

model for identifying proteins by tandem mass spectrometry. Analytical

Chemistry, 75(17):4646–4658, 2003.

[NUJ99] F. Naumann, U.Leser, and J.C.Freytag. Quality-driven integration of

heterogenous information systems. In VLDB’99, Proceedings of 25th In-

ternational Conference on Very Large Data Bases, pages 447–458, Edin-

burgh, Scotland, UK, September 1999. Morgan Kaufmann.

BIBLIOGRAPHY 223

[OAF+04] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,

T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna:

A tool for the composition and enactment of bioinformatics workflows.

Bioinformatics, pages 3045 – 3054, November 2004.

[PJM+06] A. Preece, B. Jin, P. Missier, S. Embury, D. Stead, and Al Brown.

Towards the management of information quality in proteomics. In

19th IEEE International Simposium on computer-based medical systems

(IEEE CBMS 2006), Utah, USA, 2006.

[PJP+06] A. D. Preece, B. Jin, E. Pignotti, P. Missier, S. M. Embury, D. Stead, and

A. Brown. Managing information quality in e-science using semantic web

technology. In York Sure and John Domingue, editors, ESWC, volume

4011 of Lecture Notes in Computer Science, pages 472–486. Springer,

2006.

[PKPS02] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara. Semantic match-

ing of web services capabilities. In Proceedings of International Semantic

Web Conference (ISWC), Sardinia, Italy, 2002.

[Plo81] G. Plotkin. A structural approach to operational semantics. Technical

report, Aarhus University, 1981.

[PME+06] A. Preece, P. Missier, S. Embury, B. Jin, and M. Greenwood. An

ontology-based approach to handling information quality in e-science.

Concurrency and Computation: Practice and Experience, 2006. submit-

ted.

[PPCC99] D.N. Perkins, D.J.C. Pappin, D.M. Creasy, and J.S. Cottrell. Probability-

based protein identification by searching sequence databases using mass

spectrometry data. Electrophoresis, 20:3551–3567, 1999.

[Qui93] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 1993.

[RA05] K.A. Resing and N.G. Ahn. Proteomics strategies for protein identifica-

tion. FEBS Letters, 579:885–889, 2005.

[Rah04] E. Rahm, editor. Data Integration in the Life Sciences, First Interna-

tional Workshop, DILS 2004, Leipzig, Germany, March 25-26, 2004, Pro-

ceedings, volume 2994 of Lecture Notes in Computer Science. Springer,

2004.

BIBLIOGRAPHY 224

[RDH+04] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch,

R. Stevens, H. Wang, and C. Wroe. OWL pizzas: Practical experience of

teaching OWL-DL: Common errors and common patterns. In E Motta

and et al N Shadbolt, editors, Proceedings of the European Conference on

Knowledge Acquistion, volume LNAI3257 of Lecture Notes on Computer

Science, pages 63–81, Northampton, England, 2004. Springer-Verlag.

[Red96] T.C. Redman. Data quality for the information age. Artech House, 1996.

[RH01] V. Raman and J. M. Hellerstein. Potter’s wheel: An interactive data

cleaning system. In VLDB, pages 381–390, 2001.

[RS05] V. Ravichandran and R.D. Sriram. Toward data standards for proteomics.

Nature Biotechnology, 23(3):373–376, 2005.

[SB04] M. Scannapieco and C. Batini. Completeness in the relational model:

a comprehensive framework. In Procs. 9th International Conference on

Information Quality, ICIQ 2004, Cambridge, Ma, 2004.

[SBB+00] R. Stevens, P.G. Baker, S. Bechhofer, G. Ng, A. Jacoby, N. W. Paton,

C. A. Goble, and A. Brass. TAMBIS: Transparent access to multiple

bioinformatics information sources. Bioinformatics, 16(2):184–186, 2000.

[SCY04] R.G. Sadygov, D. Cociorva, and J.R. III Yates. Large-scale database

searching using tandem mass spectra: Looking up the answers in the

back of the book. Nature Methods, 1(3):195–201, 2004.

[She07] A. Sheth. SAWSDL: Tools and applications. W3C track of WWW2007

Conference, May 2007. Banff, Canada.

[SMB05] M. Scannapieco, P. Missier, and C. Batini. Data quality at a glance.

Datenbank-Spektrum, 14:6–14, 2005.

[Smi02] R.D. Smith. Trends in mass spectrometry instrumentation for proteomics.

Trends in Biotechnology, 20(12 (Suppl.)):S3–S7, 2002.

[SPB06] D. A. Stead, A. Preece, and A. J.P. Brown. Universal metrics for qual-

ity assessment of protein identifications by mass spectrometry. Molec-

ular & Cellular Proteomics, 5(7):1205–1211, 2006. Also available at

http://www.mcponline.org/papbyrecent.shtml.

[SPG05] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in

e-science. SIGMOD Record, 34(3):31–36, 2005.

BIBLIOGRAPHY 225

[SVM+04] M. Scannapieco, A. Virgillito, C. Marchetti, M. Mecella, and R. Baldoni.

The DaQuincis architecture: a platform for exchanging and improving

data quality in cooperative information systems. Inf. Syst., 29(7):551–

582, 2004.

[SZB+04] I.I. Stewart, L. Zhao, T. Le Bihan, B. Larsen, et al. The reproducible ac-

quisition of comparative liquid chromatography/tandem mass spectrom-

etry data from complex biological samples. Rapid Communications in

Mass Spectrometry, 18:1697–1710, 2004.

[TMR+07] D. Turi, P. Missier, D. De Roure, C. Goble, and T. Oinn. Taverna Work-

flows: Syntax and Semantics. In Proceedings of the 3rd e-Science confer-

ence, Bangalore, India, December 2007.

[TPG+03] C.F. Taylor, N.W. Paton, K.L. Garwood, P.D. Kirby, et al. A systematic

approach to modeling, capturing, and disseminating proteomics experi-

mental data. Nature Biotechnology, 21, 2003.

[TSWH07] I. Taylor, M. Shields, I. Wang, and A. Harrison. The Triana Workflow

Environment: Architecture and Applications. In I. Taylor, E. Deelman,

D. Gannon, and M. Shields, editors, Workflows for e-Science, pages 320–

339. Springer, New York, Secaucus, NJ, USA, 2007.

[TSWR03] I. Taylor, M. Shields, I. Wang, and O. Rana. Triana applications within

grid computing and peer to peer environments. Journal of Grid Comput-

ing, 1(2), June 2003.

[Var96] H. R. Varian. Intermediate microeconomics : a modern approach. W.W.

Norton, New York ; London, 4 edition, 1996.

[VM04] V.S. Verykios and G.V. Moustakides. A generalized cost optimal decision

model for record matching. In Proc. 2004 Intl Workshop Information

Quality in Information Systems (IQIS), 2004.

[VS07a] K. Verma and A. Sheth. Semantically annotating a web service. IEEE

Internet Computing, 11(2), MarchApril 2007.

[VS07b] K. Verma and A. Sheth. Using SAWSDL for semantic service interop-

erability. Tutorial at Semantic Technology Conference, May 2007. San

Jose, CA.

[Wad90] P. Wadler. Comprehending monads. In LISP and Functional Program-

ming, pages 61–78, 1990.

BIBLIOGRAPHY 226

[Wad95] P. Wadler. Monads for functional programming. In Advanced Functional

Programming, pages 24–52, 1995.

[WAH+07] K. Wolstencroft, P. Alper, D. Hull, C. Wroe, P. Lord, R. Stevens, and

C. Goble. The myGrid ontology: Bioinformatics service discovery. Inter-

national Journal of Bioinformatics Research and Applications (IJBRA),

2007.

[WF05] I.H. Witten and E. Frank. Data Mining – Practical Machine Learning

Tools and Techniques. Data Management. Morgan Kauffman, 2nd edition,

2005. ISBN-10: 0-12-088407-0.

[Wid05] J. Widom. Trio: A system for integrated management of data, accuracy,

and lineage. In CIDR, pages 262–276, 2005.

[Win93] W.E. Winkler. Improved decision rules in the felligi-sunter model of

record linkage. Statistical Research Report Series RR93/12, US Bureau

of the Census, Washington, D.C., 1993.

[Win02] W. E. Winkler. Methods for record linkage and bayesian networks. Tech-

nical report, U.S. Census Bureau, Statistical Research Division, 2002.

[Win06] W.E. Winkler. Overview of record linkage and current research directions.

Statistical Research Report Series RRS2006/02, US Bureau of the Census,

Washington, D.C., 2006.

[WKA04] D. Wieser, E. Kretschmann, and R. Apweiler. Filtering erroneous protein

annotation. Bioinformatics, 20(Suppl. 1):i342–i347, 2004.

[WMF+05] S. C. Wong, S. Miles, W. Fang, P. T. Groth, and L. Moreau. Provenance-

based validation of e-science experiments. In International Semantic Web

Conference, pages 801–815, 2005.

[WPCea06] P.L. Whetzel, H. Parkinson, F.C. Causton, and L. Fan et al. The MGED

Ontology: a resource for semantics-based description of microarray ex-

periments. Bioinformatics, Jan 2006. Pubmed PMID: 16428806.

[WSG+03a] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A suite

of DAML+OIL Ontologies to describe bioinformatics web services and

data. International Journal of Cooperative Information Systems special

issue on Bioinformatics, March 2003. ISSN: 0218-8430.

BIBLIOGRAPHY 227

[WSG+03b] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A suite of

DAML+OIL ontologies to describe bioinformatics web services and data.

International Journal of Cooperative Information Systems, special issue

on Bioinformatics, March 2003.

[ZAS02] N. Zhang, R. Aebersold, and B. Schwikowski. Probid: A probabilistic

algorithm to identify peptides through sequence database searching using

tandem mass spectral data. Proteomics, 2:1406–1412, 2002.

[ZWG+04] J. Zhao, C. Wroe, C. Goble, R. Stevens, D. Quan, and M. Greenwood.

Using semantic web technologies for representing e-science provenance.

In Third International Semantic Web Conference (ISWC2004), num-

ber 3298 in LNCS, pages 92–106, Hiroshima, Japan, November 2004.

Springer-Verlag.

