
 

 
 

DEVELOPING A MODEL FOR QUANTIFYING THE QUALITY AND 
VALUE OF TRACKING INFORMATION ON SUPPLY CHAIN 

DECISIONS 
(Research Paper, IQ Metrics, Measures, Models, and Methodologies, IQ Assessment) 

 
Thomas Kelepouris 

Department of Engineering, University of Cambridge, United Kingdom 
tk328@cam.ac.uk 

 
Duncan McFarlane 

Department of Engineering, University of Cambridge, United Kingdom 
dcm@eng.cam.ac.uk 

 
Ajith K. Parlikad 

Department of Engineering, University of Cambridge, United Kingdom 
aknp2@cam.ac.uk 

 
 
 
 

Abstract: Supply chain tracking information has always been an enabler for effective and efficient business 
operations. In this paper we propose a way to model supply chain tracking information in order to determine its 
quality with regard to its ability to support business decisions. The analysis provides insights on the way that 
tracking information accuracy and timeliness affect decision effectiveness. A way to measure the value of the 
information provided by the tracking system as well as a way to measure the overall system performance are 
proposed. The results reveal the potential that automatic identification and data capture (AIDC) technologies offer 
for improved tracking systems’ performance.  
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INTRODUCTION 
The intense market competition at an international level has created an imperative need for companies to 
optimize business operations, streamline processes and minimize costs in order to be competitive. For 
companies that are, in some way, part of a supply network, information regarding the location of products 
is the cornerstone for effective and efficient business operations. Critical processes, such as inventory 
management, distribution planning and production planning include important decisions to be made, 
which depend on the quality of product location information. The effectiveness of these decisions is 
directly linked to the quality information that the decision maker has access to, regarding the location of 
products across the supply network. 
 
The emergence of new technologies that can enhance the quality of product location information provides 
a new potential for the supply chain tracking information systems. The use of Global Positioning System 
(GPS) in combination with automatic identification (auto-id) technologies such as barcode and more 
recently radio frequency identification (RFID) technologies promise the improvement of product location 
information quality in many aspects. Researchers and practitioners have already proposed a number of 



 

ways in which these technologies can be used under different architectures in order to deliver high quality 
product location information [9, 13]. Moreover, the expected benefits and information quality 
improvements stemming from the use of these technologies have been analyzed; however only at a 
qualitative level. There has not been proposed any quantitative method that will assess the quality of 
product location information across a supply network, with regard to its ability to support business 
decisions and operations. 
 
The aim of this paper is to propose a method that can be used to quantitatively measure the quality of 
product location information across a supply chain, in an objective and normalized manner. In order to 
achieve this, the paper’s objectives are  

• To provide a formal way to model product location information in a supply network 
• To provide a way to measure product location information quality and quantify its value 
• To provide a way to measure the overall performance of a supply network tracking system. 

 
The remaining of this paper is structured as follows: the next section provides some existing background. 
The third section describes the rationale behind this research. The fourth section presents the proposed 
model and the fifth section describes the proposed information quality metrics. The sixth section includes 
a discussion on our findings. Finally we state the limitations of this research and we conclude this paper. 
 
 
 
BACKGROUND 
The terms tracking and tracing are being used interchangeably by both the industrial and the academic 
community, many times referring to the same activity. We adopt the definition of supply chain tracking as 
the ability to determine the on-going location of a product during its way through the supply chain [7, 20]. 
The term tracing mainly relates to a product’s composition information and refers to the ability to identify 
and locate products that have either been produced using a specific product lot (forward traceability) or 
have used to produce a specific product (backward traceability) [7, 19]. This study focuses on the quality 
of tracking information; however it can be extended to also address the quality of tracing information. 
 
Researchers have proposed many different information system architectures to enable supply chain 
tracking [9, 13]. Each of the different architectures has its own advantages and disadvantages with regard 
to the quality of tracking information provided, considering many different quality dimensions as defined 
by Wand and Wang [22]. Karkkainen [8] and van Dorp [19] analyze the importance of automatic 
identification and data capture (AIDC) technologies for the effectiveness and efficiency of tracking 
applications. Sahin et al [17] propose a qualitative way to evaluate the performance of a tracking 
application, highlighting the importance of the use of auto-id systems. Despite the intense research 
interest in the role of AIDC in supply chain tracking, a formal quantitative approach to assess the quality 
of tracking information and the impact of auto-id technologies on that is clearly missing. 
 

IQ background 
There has been extensive research on the information quality dimensions (or attributes) that play an 
important role in determining its value. There are a number of studies that analyze the importance of 
specific information quality dimensions in a qualitative manner. The works of DeLone and McLean [6], 
Wang and Strong [25] and Boritz [5] are examples of classifications of IQ dimensions. Wang et al. [24] 
also provide an extensive list of information quality attributes that should be considered when assessing 
the effectiveness of an information system. The works of Strong et al. [18] and Wand and Wang [22] 
provide a contextual framing for some of the proposed information quality dimensions. Our model adopts 
the definitions and framing suggested by the aforementioned work and focuses on specific IQ dimensions 



 

that affect the value of tracking information. 
 
Researchers have proposed quantitative measures for some information quality dimensions. Ballou and 
Pazer [3] have suggested a form of a utility function that can be used to optimize the trade-off between 
accuracy and timeliness in an information system, depending on the importance of each of the two 
dimensions for the end user. The same authors have suggested ways to calculate the timeliness and 
quality of data as these evolve in an information system [2] and a way to model the impact of 
completeness and consistency in decision problems. Raghunathan [16] takes a different approach; he uses 
belief networks to model information accuracy and decision-maker quality. He suggests that the 
improvement of information quality leads to information system performance improvement only when the 
decision maker has perfect knowledge over the decision variables and the relationships between them. In 
a different case, there is no monotonic relation between the information accuracy and the system’s 
performance.  
 
Past research on information quality assessment includes proposals of methods for systematic assessment 
of the information quality that a system produces. The papers of Wang [23] and Ballou et al. [2] propose 
similar methods for assessing the quality of information produced by a system. They model information 
as a product that undergoes a number of operations, which affect different quality dimensions. The system 
user’s payoff can be a function of the quality dimensions of the final information product. Ahituv [1] 
suggests another method for assessing the value of an information system, in which the evaluator should 
construct a utility function according to the critical quality attributes that affect the information value for 
the system user. The effectiveness of the aforementioned assessment methods depends heavily on the 
selection of the right weighting factors and other critical parameters which lie on the subjective judgment 
of the system evaluator or the inevitable inaccuracy of the response from interviewees. 
 
Taking into account the above, in this paper we suggest a way to assess the quality of tracking 
information and to measure the performance of tracking information system, focusing on the accuracy 
and timeliness of the provided information and the impact that these have on the system value.  
 

Decision Theory 
As this research builds heavily on previous work in the field of decision theory, we briefly review 
existing works that define the underlying principles of decision theory. We adopt the expected utility 
model and its associated axioms, as defined by von Neuman and Morgenstern [21]. We model the 
information system’s output as a set of information signals and we define the system’s accuracy in 
accordance with the definitions provided by the well known works of Blackwell [4] and Marschak and 
Miyasawa [14]. Lawrence [12] provides a comprehensive review of existing work in the field of 
information value. The concepts of system accuracy and its relation with the system value, as well as 
other core concepts of information value are well analyzed in Lawrence’s work. Of course, the literature 
of decision theory and information theory includes numerous other pieces of work that relate to the 
concepts we will use, however a comprehensive listing of them is out of this paper’s scope.  
 
 
 
RATIONALE 
The rationale behind this research lies in two dimensions. From an academic perspective, this paper aims 
at delivering a method for measuring the performance of a supply chain tracking system. It provides a 
basis for modeling tracking information, taking into account its intrinsic uncertainty. Moreover, the 
proposed method aims to provide a way to quantify the value of tracking information for the supply chain 
decision maker, as a function of its quality. The proposed method reveals the critical determinants of a 



 

tracking system that make it successful. 
  
On the other hand, from an industrial perspective, this research provides a tool which can help companies 
to assess the performance of their tracking systems and estimate the benefits these are delivering to the 
company. Monitoring the performance of the system is crucial as it enables the company to point out 
shortcomings that need to be addressed. Moreover, delivering a robust return on investment (ROI) study 
for future tracking systems has always been a difficult challenge for companies. The proposed method can 
be used to estimate - in monetary terms - the benefits that a tracking system can deliver to a company 
regarding the improved effectiveness of decisions. The analysis of benefits at the decision effectiveness 
level can give a more accurate picture of the benefits that a system is/will be delivering.  
 
 
 
THE MODEL 
Let a product be moving across a supply chain as shown in Figure 1. The aim of a tracking system is to 
detect and record the presence of the product at specific checkpoints across the chain. These detection 
records are available to the system users. A decision maker needs to make a decision by choosing among 
a number of actions, based on the location of the product at the time of the decision. However, the only 
available information is the latest observation record, rather than the actual current location of the 
product. The quality of the information provided by the system has a direct impact on the effectiveness of 
the decisions. Case studies [10, 11] have revealed the following sources of noise in supply chain tracking 
information 1) Product identification accuracy 2) Processing delays (during product detection) and 
3)Aggregation information accuracy. Considering the above, the model presented in this section aims to 
describe the aforementioned decision problem, to describe the quality of the generated information and to 
provide a way to measure the performance of the tracking system. 
 
We first define the elements of the model, which describe the state of a product in the supply chain, the 
framing of the decision problem and the way that a tracking system records the ongoing location of a 
product. Based on these, in the next subsection we then define the information and estimation signals that 
a tracking information system provides to the decision maker; we also analyze how noise is introduced to 
the tracking information and the way this is modeled.  

The Model Elements 
 
Product State 
Let X be the variable that describes the location of a product across the supply chain. For example, this 
could be the distance from the start, or the end of the supply chain, or a set of coordinates which defines 
the exact location of a product.  
 
Actions 
The decision maker needs to make a decision D based on the location of the product. Let 

 be the set of feasible actions that are available for this decision and the decision maker 
needs to choose from. Also, let C be a set of possible consequences that an action can lead to. Each action 
a maps X into C 

1 2{ , ,..., }kA a a a=

 ( )a x c=  (4.1) 
Two distinct states x and x’ may be such that ( ) ( '),a x a x a= ∀ ∈Α . We will call these states equivalent 
with respect to A [14]. According to this, we define a partition A

xZ  on X of equivalent sets of the form 

  (4.2) { , ' : ( ) ( '), }A
xz x x X a x a x a A≡ ∈ = ∀ ∈



 

 
Payoffs and State Partitions 
In order to represent the preference of the decision maker for some consequences compared to some 
others, we introduce the concept of the utility of a consequence u(c), , in many cases the utility 
is represented in monetary terms. We can now define the payoff function 

:u C →ℜ
: X Aω × →ℜ  

 ( , ) ( ( )) ( )x a u a x u cω ≡ =  (4.3) 
Using the payoff function ω we can define a new partition on X. This new partition will have sets of the 
form 
  (4.4) { , ' : ( , ) ( ', ), }xz x x X x x a Aω ω α ω α≡ ∈ = ∀ ∈

We will call zω , a typical equivalence set in 1 2{ , ,..., }mZ z z zω = , a state, relevant with respect to the 
payoff function ω, or briefly an ω-relevant state [14]. The partitioning we have defined allows us to 
define ω in the discrete set Zω  rather in the continuous space X. 
 
In the same way, we can partition the set of possible actions A by defining sets of actions that have the 
same payoff for all states x in X,  
 ( ( )) ( '( )) ( , ) ( , ')u a x u a x x a x aω ω= ⇔ =  (4.5) 
In this way we define a partition Dω  of A into equivalence sets of the form  
  (4.6) { , ' : ( , ) ( , '), }ad a a A x a x a x Xω ω ω≡ ∈ = ∀ ∈

In simple words, equation (4.6) defines a partition on A, such that all actions ia dω∈  lead to the same 

payoff for all states in X. From this point on, with no ambiguity, we can define ω in the domain Z Dω ω×  
instead of X A× , therefore writing ω(z,d) instead of ω(x,a). 
 
Observations  
Let  be the set of checkpoints along the supply chain. We will use  to denote 

that a checkpoint 
1 2{ , ,..., }mC c c c= ic cp j

jc

i jz zp

 is further down/later in the supply chain than checkpoint . Same for the ω-relevant 

states,  . When an item with identity code ID is observed at a checkpoint 
ic

jc  at time jt  an 
observation record is created for it. At any time t we can define an observation vector for an item with a 
specific ID,  where 1 1 2 2(( , ), ( , ),...., ( , ))m mc t c t c t( , )V ID t =

 
( ,0), Item not yet seen at 

( , )
( , ), Item was seen at  at 

j
j j

j j j j

c c
c t

c t c t t
⎧

= ⎨
j

<⎩
 (4.7) 

 

Information System 
Vector describes the checkpoints and the respective times that the item has been observed for all 

. Let be the latest time that the item was observed at any checkpoint. We then define an 

information signal  as the observation record that corresponds to the latest observation of the item 

with the specific identity 

( , )V ID t
t ltjt <

( )jy ID
( ) ( , ), ( , ) ( , ) :j j j j j j ly ID c t c t V ID t t t= ∈ = . For simplicity, the identity 

parameter will be omitted from this point on. In simple words, information signal jy  indicates that the 

item was last observed at checkpoint jc  at time jt . According to the above, the allocation of checkpoints 

across the supply chain, creates a set of possible information signals 1 2{ , }mY y y,...,y=  as shown in 
Figure 1. Y is a partition of X in a way defined by the checkpoints.  



 

 
Based on the latest information signal jy , the tracking system will produce an estimation  of the 

current state of the product. The set of estimated states 

ˆiz
ˆ

xZω  will be the same partition of X as the set of ω-

relevant states Zω
. 

 
Figure 1 shows an example of an ω-relevant state partition, the respective state estimation partition and 
information signals for a tracking system that tracks a product from one end of a supply chain to the 
other. It should be noted that the checkpoints  are not always at points where the ω-relevant states 
change. 

ic

 Y

Ẑ

Z

… y2 y1 

c4 c3c2c1 

X 

Manufacturer Customs 3PL Supplier 

… z2 z1 

Figure 1, Example of an ω-relevant partition, state estimation partition and information signals 

 
Noiseless Tracking Information 
When the information system sends information signal jy  (as a response to a tracking query), this 
indicates that the item is in some ω-relevant state between the checkpoint it was last observed at, and any 
next checkpoint along the supply chain (if we assume that the system is accurate). Let 

jyZω denote the set 

of ω-relevant states that an item can be between checkpoint  and any next one. Note that the possible 
ω-relevant states that an item might be in, after a checkpoint, can form a tree structure rather than a linear 
structure, however the above definitions are still valid. In the example of 

jc

Figure 1 it is 
1y 1 2 3{ , , }Z z z z=ω . 

In the same way we define ˆ
jyZω as the set of estimation states between checkpoint j and any next one. 

 
At time jt t>

)

 the estimated product’s state will be described by a time-dependent probability distribution 

( ,f x t over the set 
jyZω . For example, assuming that a transition from c1 to c2 takes on average 5 hours in 

the example of Figure 1, then a possible probability distribution over the ω-relevant states given signal 1y  
for different times is displayed in Figure 2. 
 
The area below the probability distribution function and between the boundaries of each state  (denoted 
by 

iz

iz and iz ) defines the probability that the product is at that state at that time t.  

 ( , ) ( , )
i

i

z

i
z

p z t f x t dx= ∫  (4.8) 



 

The estimated product state  at time t is the state with the greater probability at that time.  ˆtz

 ˆ arg max ( , )
i

i
i

z

t z
z

z f= ∫ x t dx  (4.9) 

For the example of Figure 2, at time 1 1.5hourst t= +

2z
, the estimated state is  since the area of the 

probability distribution between the boundaries of  is greater than the other states. Before proceeding, 
based on the above we derive the following definitions: 

2ẑ

 
Definition 1: A tracking system is called noiseless when the set of possible information signals Y is a 
partition of the set Zω [15], that is 

• Every ω-relevant state zω  is indicated by a signal y, and 
• No ω-relevant state zω  is indicated by more than one signal y 

 
Definition 2: A tracking information signal jy  is called accurate if the product is actually in a state 

jiz Z y
ω∈

( |

at the time t that the information signal is received by the decision maker. That is 

, ) ( | , ) 1,
j jy j i j i y

i
p Z y t p z y t z Zω ω= =∑ ∈ . 

 
Definition 3: An estimation  is called accurate if the product is actually in state  at the time t that the 
estimation is received by the decision maker. That is 

ˆiz iz
ˆ( | ) 1i ip z z = . 

In a noiseless tracking system, 
given an information signal jy , 

there will be an estimated state ˆ jz  
and an associated time-dependent 
posterior probability distribution 
over the ω-relevant states in the 
set 

jyZω . The distribution can be 

represented by a n×n matrix Π(t), 
in which the ij-th element 
represents the conditional 
probability that the product is at 
state  given that the system 

estimates state 
iz

ˆ jz . Equation (4.10) shows a posterior distribution for the example of Figure 1. Note that, 

given jy , the distribution for states 
jyz Zω ω∉  is zero. Also, the matrix is column 

stochastic: . ˆ( | , ) 1i j
i

z t =∑ p z

 

t1+3.5hrs

z1 z3z2 

Y

Ẑ

Z

t1+0.5hr

t1+4.5hrst1+1.5hrs 

y1 c1 c2

Figure 2, Noiseless probability distribution over ω-relevant states for 
different times
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Noisy Tracking Information 
The real world is not perfect and information signals contain noise. Therefore, even though an 
information signal y indicates that an item should be in some state between two checkpoints, it may 
actually be anywhere in the supply chain. In this case, the posterior distribution matrix Π will be in the 
general form of (4.11), still being column stochastic. 

 
1 1 1

1

ˆ ˆ( | , ) ( | , )
ˆ( ) ( | , )

ˆ ˆ( | , ) ( | , )

n

i j

n n n

p z z t p z z t
t p z z t

p z z t p z z t

⎡ ⎤
⎢Π = ⎢
⎢ ⎥⎣ ⎦

L

M

L

⎥
⎥M  (4.11) 

Matrix Π can be written as a function of the age jτ  (instead of the absolute time t) of the respective 

information signal that resulted in the estimation ˆ jz . The age of an information signal at any time t is 

j jt tτ = −  (This is in accordance with Ballou et al. [2], assuming that the age of the signal when recorded 
into the system is zero). 
 
We briefly analyze the factors that introduce noise in tracking information.  
 
Product Identification Accuracy 
It is clear that the accuracy of the identification process directly affects the quality of tracking 
information, since the item's identity is one of the variables of a tracking record. Let an item be in a state 

jiz Z y
ω∈  and the system actually reflecting that by an information signal jy . The item moves from  

through a checkpoint  onto another state 
iz

kc
jkz Z y

ω∉ . If the item is not accurately identified at  then 

the system will keep on sending information signal 
kc

jy , which will be inaccurate from the moment  the 

item passes checkpoint and thereafter.  
kt

kc
 
Processing Delays 
The case studies [11] have revealed that in many cases there is a significant amount of time between the 
moment an item actually changes state, the moment this change is observed by either a person or the 
system and the moment the change is updated in the tracking system through a tracking record. This 
results in the system representing an inaccurate state of the item for this period of time. Figure 3 
illustrates the processing delay in the case of an item arriving in the receiving dock of the freight 
forwarder in our example. 
 
The moment the item's state changes in this case is the moment that the item physically arrives at the 
receiving dock. The moment of physical observation is the moment that either a person or a machine 
detects and identifies the item. The moment of system update is the moment that a tracking record is 
created in the tracking information system for the item. When the observation is manual (for example 
using human readable identifiers), there is usually a significant amount of time between observation and 



 

system update. However, when automatic identification technologies are used (for example barcode), 
typically there is no delay between the observation and the moment the system is updated, as 
identification information is passed automatically into the system. In this paper it is assumed that the 
period between physical observation and system update is zero. 

 
Figure 3, Processing delays during product state changes 

Note that the accuracy of information signal jy  does not depend on the processing delay at checkpoint 

jc  but only on that of checkpoints , as shown in kc Figure 3. Indeed, when the system update at 

checkpoint jc  takes place, information signal jy  is accurate (disregarding other sources of inaccuracy). 

The signal might become inaccurate only when the item arrives at any of the checkpoints , because of 
the processing delay.  

kc

 
Aggregation Information Accuracy 
There are many cases in which the ID of an aggregated package (e.g. a pallet) is used to track products 
that are registered to be in it. When the package reaches a checkpoint jc  its ID is recorded and a tracking 
record is created for all products that are expected to be in it. However, if, for any reason, a product is not 
in the package, this creates an inaccuracy in the tracking system for that product.  
 
Overall Tracking Information Accuracy 
The above reveal the reasons of noise in tracking information. Figure 4 demonstrates the differences 
between an accurate and an inaccurate information signal at a time t. In the case of accurate signal, as 
defined by Definition 2, the posterior probability distribution is spread over the states that correspond to 
signal 1y , 

1 1 2 3{ , , }yZ z z zω = . On the other hand, in the case of the noisy information signal, a part of the 

distribution spreads before checkpoint  and after checkpoint . The part before checkpoint  
corresponds to possible inaccuracies because of inaccurate aggregation information. That is, the product 
might have been left in earlier states, although the aggregated package that it is expected to be in has 
reached . The part of the distribution after checkpoint  corresponds to possible inaccuracies due to 
identification errors or processing delays. The product might have already reached state , but the 
system might not be updated because of processing delays or because there was an error during the 
scanning of the products ID.  

1c 2c 1c

1c 2c

4z

Real 
World 

Time

i kz →1iz −  iz  kz

Product 
Arrived 

System 
Updated 

System 
Updated 

Product  
Shipped 

y1jy −
System 

jy k

jc kc
Delay TimeDelay 



 

Figure 4, Comparison of accurate and inaccurate tracking information signals 

The overall posterior probability distribution over the ω-relevant states will result by taking into account 
the errors due to the aforementioned reasons and combining them into a unified distribution. The 
probability of inaccuracy due to aggregation information errors is not dependent on time. However, the 
probability of inaccuracies due to identification errors or processing delays does depend on the age of the 
estimation signal. The accuracy of the signal is almost certain at the moment jt  that the product is 
detected (disregarding errors due to aggregation information). However, the probability of the signal 
being inaccurate because of identification errors or processing delays should increase as the age of the 
signal increases. Figure 5 shows a noisy probability distribution for the example of Figure 2. Note that a 
small part of the distribution is assigned at states  for all t (due to aggregation information 
inaccuracies) and for  a part of the distribution is assigned to states  (due to identification 
inaccuracies and processing delays). 

1z zp

1t t>> 3z p z

 

t1+3.5hrs

z1 z3 z2

Y

Z

t1+0.5hr

t1+1.5hrs t1+4.5hrs 

Possible inaccuracy due 
to ID accuracy and 
processing delays 

Possible inaccuracy 
due to aggregation 

information 

z0 z4 z1 z3z2 

Y

Z

Accurate Signal 
Possibly Inaccurate Signal 

Possible inaccuracy 
due to aggregation 

information 

Possible inaccuracy due 
to ID accuracy and 
processing delays 

y1 c2 c1 

y1 c2 c1 

Figure 5, Noisy probability distribution over ω-relevant states for different times 

Due to the aforementioned reasons of possible inaccuracies, when the decision maker receives an 
estimation  about the product’s state, the actual state will result from a time-dependent posterior 
probability distribution described by 

ˆiz
(4.11). 

 
 
 
METRICS 
Based on the model that describes the decision problem and tracking information quality, we will now 
define the value of tracking information for the decision maker and a measure of overall performance for 
the tracking system.  
 

Information Value 
We adopt the maximum expected utility axiom in order to define the information value. Under this axiom, 



 

the decision maker will choose the action that maximizes his expected payoff [12, 15]. At time t, let 
( , )ip z t  denote the prior probability distribution over t  ω-relevant states. When no informhe ation is 

, at time t the decision maker will choose action  that max

 z d
a imizes his expected payoff vailable 0d

0 d i
arg max ( , ) ( , )i id p z t ω= ∑  (5.1) 

nd the expected payoff under no information will be 
 
a

0d i i
( , ) max ( , ) ( , ) ( , ) ( , )i i i iD t z d p z t z d p z tω ωΩ ≡ =∑ ∑  (5.2) 

When tracking information is available, at time t the decision maker will have a state estimation ˆ jz  
available from the stem and taking into account the posterior probability distr usy ib tion Π(t) (4.11) he will 
choose the action ˆ jzd  that maximizes his expected payoff given the estimation ˆ jz  

 z z tˆ jz i i jd i

ˆarg max ( , ) ( | , )d z d pω≡ ∑  (5.3) 

he decision maker’s expected payoff when using the tracking system described by (4.11) w
 ˆ  (5.4) 

rior and informed decision making. The gross value of information at time t is 
iven by (5.5) 

(5
btaining information described by (4.11). The net normative value 

f tracking information will be  
 (5.6) 

f a tracking system by comparing it to the perfect tracking system for the 
ecision problem in question.  

 item 
ation signals is identical to the state set, 

T ill be  

ˆ ˆj ji z i j j i z i j
j i j i

The gross normative value [1] of tracking information would be the difference between the expected 
payoff under p

ˆ ˆ( , , ) ( , ) ( , , ) ( , ) ( , ) ( | , )D Y t z d p z z t p z t z d p z z tω ωΩ = =∑∑ ∑ ∑

( , )gV Y t
g
 ( , ) ( , , ) ( , )gV Y t D Y t D t= Ω −Ω  .5) 
Let C(Y) denote the cost for o ( )nV I  
o
 ( , ) ( , , ) ( , ) ( )nV Y t D Y t D t C Y= Ω −Ω −

Tracking System Performance Measurement 
We measure the performance o
d
 
Perfect Information 
Perfect information occurs when the information system provides categorical direct messages that identify 
precisely and unequivocally the state that the is in [12]. Under perfect information the set of 
inform Y Zω= , and the posterior probability that a product is in a 
state iz  given the estimation ˆiz  is one, ˆ( | ) 1i ip z z = .That is, all entries in the diagonal in (4.11) equal 
one and all other entries equal zero. Let us denote the information signal set that corresponds to perfect 
information as . In the case of perfect information, giY ↑ ven an estimation ˆ jz ↑ , the decision maker will 

ˆ jzd ↑choose action  that maxim

 
d

z d  (5.7) 

nd the expected payoff under perfect information will be 
 

izes his expected payoff   

ˆ j i i jz d i
↑

ˆarg max ( , ) ( , , ) arg max ( , )jd z d p z z tω ω≡ ↑ =∑
a

ˆij i z
j i

ˆ( , , ) ( , ) ( , )D Y t p z t z dωΩ ↑ = ↑∑ ∑ ↑  (5.8) 

 the same way, the value of perfect information (assuming it comes at
) 

Having defined the value of perfect information, we now define the tracking system performance (TSP)  

In  no cost) will be  
 ( , ) ( , , ) ( , )gV Y t D Y t D t↑ = Ω ↑ −Ω  (5.9
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and replacing the expected payoffs from (5.2),(5.4) and (5.8) we get 
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Note that V Y  [12, 15]. In the case where V Y( , ) ( , )g nt V Y t↑ ≥ ≥ 0 0( , ) ( , )g nt V Y t↑ = =  the TSP is not 
defined, as there is no need for a tracking system anyway. 
 

Example 
Let us consider the supply chain depicted in Figure 1. In this example we will use cost figures, which 
were captured during a case study undertaken in a manufacturer, based in Brazil. The probabilities 
resulted from interviews with the company managers. We assume that the checkpoints are installed at the 
places where the ω-relevant states change. At time t a shipment should have reached the 
3PL centre. The manufacturer needs to choose one of the following actions based on the location of the 
shipment d1: send the shipment by sea, d2: send the shipment by air or d3: send the shipment by air and 
reschedule production in order to make up for the lost time. Table 1 shows the payoffs per action per 
state. Let the prior distribution over the states at time t be: 

. Also let the posterior distribution 

1 2 3 4, ,  and z z z z

3 40.4, ( ) 0.p z=1 2( ) 0.05, ( ) 0.4, ( ) 15p z p z p z= = = ˆ( | )p z z
, ) $85.2t =

 at time 

t be as shown in Table 2. Assuming that C Y =$30 then using ( )
( ) 0.03, (p z p z

(5.1)-(5.6) we get V Y . At 
time t+Δt the prior distribution is 

(n

4 0.171 2 ) 30.3, ( ) 0.5, ( )p z p z= = =

( , ) $69n t t+ Δ =
, ) $141.9Y t t↑ + Δ =

( ) 48%t t= + Δ =

=  and the posterior 

distribution will be as shown in Table 3.  We then get V Y . For this decision problem, 
using (5.7)-(5.9), we get V Y . The system performance for 
the two time instances will be TSP .  

( , (
TSP

) $142 and g gt V↑ =
( ) 60% and t

The example shows that the accuracy of tracking information, the information timeliness and the cost of 
information have a direct impact on the value of information and the system performance. 
 
 
DISCUSSION 
The model and metrics presented in the previous sections reveal the importance of the following 
determinants of the quality and value of tracking information: accuracy, timeliness, checkpoint 
configuration and cost. The following paragraphs provide a qualitative analysis of how each of the above 
factors affects the value of information. The exploration of the behavior of the value of information as a 

 d1 d2 d3 

Z1 -1100 -870 -670 

Z2 -700 -270 -770 

Z3 -100 -340 -720 

Z4 -100 -340 -870 

ˆ( | )p z z  Z1 Z2 Z3 Z4 

1̂z  0.53 0.47 0 0 

2ẑ  0.01 0.88 0.11 0 

3ẑ  0 0.09 0.87 0.04 

4ẑ  0 0 0 1 

ˆ( | )p z z Z1 Z2 Z3 Z4 

1̂z  0.36 0.64 0 0 

2ẑ  0.01 0.68 0.31 0 

3ẑ  0 0.06 0.86 0.08 

4ẑ  0 0 0 1 

Table 3, Posterior distribution 
at t+Δt 

Table 1, Action payoffs ($) 
per state, ω(z,d) 

Table 2, Posterior distribution 
at time t 



 

function of these factors, as well as the quantification of their impact is one of the next steps of this 
research, which will enable a more explicit comparison regarding the importance of each of them in 
different business context.  
 

Tracking Information Accuracy 
The impact of accuracy on decision effectiveness and the value of information are well established by 
existing research in the field of decision theory. Blackwell [4] has shown that the value of information is 
monotonically linked to the “Blackwell accuracy” of an information system. The accuracy of the tracking 

system is reflected by the posterior distribution 
of (4.11). The more the probabilities of the main 
diagonal are close to one, the more accurate the 
system. Figure 6 shows how the value of 
information behaves as a function of the 
accuracy of an estimation signal 1̂z , at a specific 
time t. The graph shows that there is a threshold 
of the posterior proba 0.71  
below which the estimation signal 1̂z  adds no 
value to the system. This is because the signal in 
not accurate enough so that the decision maker 
can trust it and change his prior decision. Note 
that the system value in Figure 6 up to $1750 is 
due to other estimation signals. On the contrary, 

0.71, the decision maker changes his decision when he receives estim ion 1̂z  and the 
signal starts to add value. The more accurate it gets the more the value it delivers to the decision maker. 
Following the above analysis, it becomes evident that the accuracy of the tracking system at any time is 
directly linked to its performance and the value it delivers. 

bility
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Figure 6, Value of information as a function of 
estimation accuracy 

 

Tracking Information Timeliness 
The posterior probability distribution, described by (4.11), is time-dependent and could be expressed as a 
function of the age jτ  of the information signal jy (which is assumed to be the same as the age of the 

estimation signal ˆ jz ). As shown in Figure 5, as the age of the estimation signal grows, the probability 
distribution is more spread over the possible states that the product could be in. For example, immediately 
after a product has been detected at a checkpoint, the probability that it still is at the state after the 
checkpoint is very high. On the contrary, some time after the last detection, this probability will be spread 
over more states. This is translated into decreased accuracy, as defined in the previous sub-section. 
Consequently, the age of the estimation signal affects its accuracy and in turn the effectiveness of the 
system in a way analyzed earlier on. Indeed, as described by (5.10) and (5.11) the performance of the 
tracking system is time-dependent. One would expect the performance of the system to increase for t soon 
after a product detection has taken place at a checkpoint (since the accuracy of the system would be high) 
and decrease after that, until the next detection time when it would again rise. As a result, the 
performance of the system would have oscillations defined by the information signal times jt . 

Checkpoints Configuration 
The configuration of checkpoints across the supply chain directly affects the quality of tracking 
information provided. As discussed earlier, the accuracy of the information is affected by the age of the 
signals. Moreover, the identification technology used in each checkpoint also affects the accuracy of 



 

tracking information in terms of accurate and complete identification of products as they arrive at a 
checkpoint. As a consequence, the distribution and density of checkpoints along the supply chain, along 
with the identification technology used has a direct impact on the posterior probability distribution of 
(4.11) and the performance of the overall system. 
 

Cost of Information  
The cost at which tracking information can be accessed impacts on the performance of the tracking 
system, as defined by (5.10). The decision maker has to position himself in the trade-off of having more 
accurate information, which usually comes at a higher cost. The value that this information delivers for 
the decision maker will determine the performance of the tracking system. The aim of the decision maker 
should be to optimize the overall performance of the system, by finding the right balance between the 
value and cost of tracking information.  
 

RFID Potential 
The emergence of RFID technology provides great potential for improving the quality of information 
provided by supply chain tracking systems. RFID can promise high read accuracy at checkpoints and 
minimization of processing delays. Moreover, the fact that no human intervention is required for a 
detection to take place, enables the installation of additional checkpoints along a supply chain, without 
disturbing existing operations. Finally, the significant reduction in labor costs for scanning products 
reduces the cost of information. In a nutshell, RFID technology provides an opportunity for significantly 
improving the performance of a tracking system, as defined in this paper, in an economically efficient 
way . 
 
 
LIMITATIONS 
We have represented the accuracy of the tracking system by the time-dependent posterior probability 
distribution of (4.11). However populating this distribution, in a systematic manner, can be a challenging 
task. Researchers have proposed ways in which one could populate this distribution [12]. The model we 
have proposed refers to decision effectiveness with regard to decisions that are based on the current state 
of a product in the supply chain. Very often, decisions in a supply chain are based on the estimated future 
state of a product (for example: “when will a shipment arrive in my warehouse?”). In this respect, our 
model needs to be extended to address this important decision class. Our research team is currently 
working to address the aforementioned issues and explore in greater depth the impact of the determinants 
of tracking system performance.  
 
 
CONCLUSION 
We have proposed a model that describes the quality of information provided by a supply chain tracking 
system and the way this affects decision effectiveness. Based on this model, we have proposed a method 
for quantifying the value of tracking information for a decision maker and a way to measure the overall 
tracking system performance. The analysis of results demonstrated the importance of tracking information 
accuracy as well as its timeliness for the system performance. It was also shown that the configuration of 
checkpoints along the supply chain directly affects the quality of information. Moreover, the cost of 
tracking information is another factor affecting the performance of the system, which, together with the 
system’s accuracy, defines trade-off that the decision maker needs to balance. All the above provide a 
way to analyze the potential that RFID technology offers for improving the effectiveness and efficiency 
of tracking applications. Further research is currently undertaken to extend the proposed model and 
explore the potential of this new technology in greater detail.  
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