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Abstract: We present a design process for incorporating data quality requirements into database schemas that is 
rooted in goal-oriented requirements analysis techniques, developed in the Requirement Engineering community 
over last 15 years. Goal-oriented approaches (i) offer a body of notations, techniques and processes for modeling, 
analyzing and operationalizing quality requirements; (ii) support representation and evaluation of alternatives in 
goal fulfillment; and (iii) provide automated reasoning tools for various analysis and design tasks. This paper 
extends existing proposals for addressing data/information quality issues during database requirements analysis and 
design in two ways. First, we consider a broader range of quality assurance data requirements, which can be 
classified as restrictive, descriptive, supportive and reflective. Second, we offer a systematic way to operationalize 
high-level, abstract quality goals into operational, concrete quality assurance data requirements plus standard 
operating procedures, based on a risk-based analysis. In an earlier paper, we presented a goal-oriented conceptual 
database design approach, focusing on deriving an ordinary conceptual schema from application-specific goals. In 
this paper, we take the next step to incorporate quality goals into the design process. The proposed quality design 
process is illustrated step-by-step using a meeting expense database example. We also show how this process fits 
into the overall goal-oriented conceptual database design approach to offer an integrated framework for analyzing 
both application-specific and quality assurance data requirements.  
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INTRODUCTION  
 
Information Quality (IQ) aims to deliver high quality information to the end users; it covers the entire 
lifecycle of data acquisition, storage and utilization, and involves various stakeholders, such as data 
producers, custodians, managers and customers. One approach to study IQ problems is to views 
information as products of an information manufacturing system, where each stage of the manufacturing 
process can be analyzed for quality concerns [9,10,11]. Databases are essential components of any 
information manufacturing system. Therefore, we consider data quality (DQ) at the database level as a 
sub-problem of IQ, mainly related to the data acquisition and storage processes. The quality of observed, 
captured and stored data contributes largely to the quality of the final delivered information products. The 
goal of this research is to tailor and apply the idea of “quality-information-by-design” [10] to databases. 
We propose to support high quality data in terms of two complementary quality assurance mechanisms: 
(i) a set of quality assurance data requirements to be incorporated into database schemas at design time, 
and (ii) a set of standard operating procedures that are considered during schema design and carried out 
at run- time.   
 
It is well accepted that the quality of data is strongly influenced by the quality of the schema [1]. On one 
hand, the way in which data is organized may affect its quality. For example, consider the single attribute 
address in a relational table Person(id, name, address). There are several potential DQ problems 
associated with this design [1]. First, the value of address is an unstructured string where its different 
components can be ambiguous (e.g., can not be distinguish if a number in the string is  a room number or 



 

a house number); second, no constraint can be specified on the components of address values (e.g., an 
address value without a street name will not be detected as a piece of incomplete data by traditional null-
value checks); last, there is no way to enable automatic checks of accuracy in the event that there is a 
standard vocabulary applicable for a component (e.g., “street”, “avenue”, “road”). On the other hand, the 
way in which data is acquired also affects quality; a data acquisition process that produces high quality 
data may be required to produce “auxiliary” metadata. Such metadata can either affect the structure of the 
data store, i.e., they are quality assurance data requirements, or expressed as procedures that guide the 
integrity of the data which also need to be considered during conceptual schema design. 
  
The conceptual schema of a database is normally viewed as a formal requirements specification of the 
database [12]. Our approach is based on the goal-oriented requirements analysis techniques for software 
design, developed in the Requirement Engineering community over last 15 years. Goal-oriented 
Requirement Engineering (GORE) approaches [3,4,5,6,7] start with an early requirements step that 
focuses on modeling stakeholders’ goals, deriving from these both functional (i.e., application-specific) 
and non-functional (i.e., quality assurance) requirements through a systematic process. GORE provides a 
suitable framework for realizing the idea of data quality by design [15]. First, quality goals (e.g., 
accuracy, security) are usually “soft” in nature (i.e., there is neither clear cut definition nor criteria to 
decide whether a quality requirement is satisfied). GORE research has accumulated a large body of 
notations, techniques and processes for modeling, analyzing and operationalizing high-level quality goals 
into operational and technical requirements (see, for example, [5]). Second, GORE supports 
representation and evaluation of alternatives in goal fulfillment. This feature allows one to perform cost-
benefit analysis of various design alternatives to achieve the same application-specific goals, but with 
different level of support for quality goals. It also supports traceability of design decisions back to goals 
whose fulfillment was finally chosen by the human designer. Last, formal goal reasoning tools are 
available to support various steps of the schema design process.  
 
In this paper, we describe a quality design process to support high quality data during database 
requirements analysis and conceptual schema design. A necessary initial step is the ability to design 
ordinary conceptual schema starting from application-specific goals. We have proposed a goal-oriented 
conceptual database design (GODB) approach [13] for this task. In this paper, we take the next step, 
showing how high-level quality goals themselves are represented and operationalized into quality 
assurance data requirements and standard operating procedures. The contributions of this work include:  
1. a novel approach towards realizing the idea of data quality by design, borrowing ideas from goal-

oriented requirements analysis paradigm for software design, 
2. a wide coverage of quality assurance data requirements, both at the requirements analysis and 

conceptual schema design phases, 
3. a systematic way to operationalize high-level, abstract quality goals into operational, concrete data 

requirements and standard operating procedures, based on a risk-based analysis, and  
4. applicability of formal reasoning tools to support part of the design process. 
These add to the benefits of the original GODB approach, which include the consideration of goals form 
multiple stakeholders, the exploration and evaluation of alternative ways to fulfill these goals, and the 
explicit traceability from higher level goals to technical design decisions.  
 
The rest of paper is organized as follows. We first review existing approaches to incorporate quality 
requirements into database schema design and their limitations. Then we give an overview our previously 
proposed GODB approach, and show how the quality design process fits into the overall approach to offer 
an integrated framework for addressing both application-specific and quality assurance data requirements. 
A step-by-step illustration of the quality design process is then presented, using a meeting expense 
database example. Next, we discuss, in general terms, different types of quality assurance data 
requirements, and important properties of the complete GODB approach. Finally we conclude and point 



 

out future research directions.    
 
BACKGROUND 
 
It has long been accepted that DQ problems need to be recognized at the requirements analysis stage. For 
example, [15] introduces a set of concepts and premises for DQ modeling and analysis, and proposes a 
process for defining and documenting quality requirements. In [15], data requirements are divided into 
application data requirements (called application attributes), such as a person address and a stock price, 
and quality data requirements (called quality attributes). Furthermore, quality attributes are considered at 
two levels: quality parameters model qualitative and subjective dimensions by which a user evaluates DQ 
(e.g., credibility and timeliness); quality indicators capture aspects of the data manufacturing process 
(e.g., when, where, how data was manufactured) and provide objective information about quality of the 
produced data. The quality requirements analysis process starts with a conventional conceptual data 
modeling step, where application attributes are elicited and organized into a conceptual schema. Then 
quality parameters are identified and associated with certain application attributes in the schema. Finally, 
each parameter is “refined” into one or more quality indicators. Although a significant first step, there are 
some limitations to this approach. First, the final result of this process is the initial conceptual schema, 
tagged with various quality indicators. The process of incorporating these quality indicators to produce a 
new conceptual schema is missing. Second, as an important step, the transition from subjective quality 
parameters into objective quality indicators is left open. Although, some of the refinements are quite 
straightforward (e.g., from “timeliness” to “age”), others are less obvious (e.g., from “accuracy” to 
“collection method”). 
 
Quality requirements, once analyzed and documented, need to be incorporated into a conceptual schema 
during the schema design stage. The Quality Entity Relationship (QER) approach [14] addresses the first 
limitation mentioned above by providing a mechanism to embed quality indicators into conceptual 
schemas. The QER approach introduces two generic entities, DQ Dimension and DQ Measure. DQ 
Dimension, with attributes name and rating, models all possible quality dimensions (e.g., accuracy) for an 
application attribute (e.g., address) and their values (e.g., accuracy = “8”). DQ Measure is used to 
represent the interpretation for these quality values (e.g., “1” for very inaccurate, “10” for very accurate). 
This approach focuses only on a particular class of quality indicators − those used to directly record the 
actual or estimated DQ assessment. It can not accommodate quality indicators that are used to indirectly 
indicate DQ of application attributes (e.g., “collection method” for “accuracy”), or to ensure quality of 
application attributes (e.g., “last audit date” for “accuracy”). 
 
DQ issues have also been investigated within the context of data warehouses. The Foundations of Data 
Warehouse Quality (DWQ) approach [16,19] explores the representation, measurement and evaluation of 
quality of various data warehouse components, including schemas, agents and data. This approach relies 
heavily on the modeling of quality metadata, based on the Goal-Question-Metric (GQM) paradigm [17], 
which was originally developed for software quality management. A range of stakeholders’ (subjective) 
quality requirements are expressed in terms of high-level quality goals, which are operationalized into 
one or more executable quality queries. Answers to quality queries are obtained by quality measurements, 
which are documented activities establishing a static relationship between data warehouse components 
and the quality measures. The DWQ is similar to our goal-oriented approach in that both use goals to 
model quality requirements. The main difference is how these quality goals are operationalized. In DWQ, 
quality queries operationalize quality goal in the sense that their answers provide evidence for the 
fulfillment or non-fulfillment of these goals based on the current status of data in the warehouse, while we 
are interested in goal operationalization that leads to assurance of the satisfaction of these goals by 
design.   
 



 

PRELIMINARIES  
 
In this section, we first summarize the GODB approach we proposed in [13], and show how the quality 
design process fits into the overall approach to offer an integrated framework for addressing both 
application-specific and quality assurance data requirements. We then introduce the meeting expense 
database example and the goal modeling notion that will be used throughout the rest of the paper.  
 
The GODB Approach: An overview  
 
The GODB approach [13] covers both the analysis of initial requirements and the specification of these 
requirements in terms of a conceptual schema (see Figure 1). Goal-oriented requirements analysis starts 
with a list of stakeholders and their high-level goals, including both hard goals and softgoals. The former 
lead to application-specific data requirements, while the latter lead to quality assurance data requirements. 
These goals are analyzed (by humans) using three types of techniques: (a) AND/OR-goal decomposition 
for refining high-level abstract goals into lower-level, operational ones; (b) means-end analysis for 
identifying operations (modeled as plans) to fulfill the refined goals; and (c) contribution analysis for 
detecting lateral influence on goal fulfillment. The result is a goal model that captures not a single, but 
several alternative sets of data requirements (i.e., design alternatives), from which a particular one must 
be chosen to generate the conceptual schema for the database-to-be. The modeling of goals, operations 
and their relationships in a database design context is influenced by the TROPOS goal-oriented software 
development methodology [7], which is evolved from the i* framework [6] for modeling and reasoning 
about organizational environments and their information system requirements.  
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Figure 1. The GODB approach proposed in [13] 
 

Goal-oriented schema design is divided into two stages: the modeling of the application domain and the 
detailed design of the conceptual schema. The domain model is constructed by extracting concepts, 
relationships and attributes from the hard goals and plans in the chosen design alternative. A domain 
model describes the necessary understanding of a part of the real world, and facilitates the communication 
of domain knowledge between developers, end-users and other stakeholders. It represents (a superset of) 
the application-specific application data requirements. A conceptual schema, on the other hand, 
represents the semantics of the actual data in the proposed database; its design focuses on data specific 
design issues that are not relevant in domain modeling. DQ is one such important design issue. 
Consequently, we proposed a transformational approach from the domain model to the conceptual 
schema, using a sequence of design operations, some of which may be available in a knowledge base of 
design operations (for more details about this process, please refer to the original paper). 
 
In [13], we focused on the application-specific (hard) goals. A general design strategy for dealing with 
any type of (including data quality) softgoals is also outlined and illustrated with a few examples of 
design operations. The open question however remains: how are these design operations defined in the 
first place? In this paper, we aim at answering this question by proposing the quality design process. This 
process starts with a set of quality softgoals and the application-specific application data requirements 
obtained as described above; analyzes the data acquisition process for potential risk factors that may 
compromise the quality of the data of interest; identifies and selects potential mitigation plans against 
these risks; and finally merges the selected plans with those already in the goal model. The last step 
creates a new design alternative in the goal model that satisfies the previous top-level hard goals, but with 
better attention to the quality softgoals. The regular goal-oriented conceptual database design process then 



 

resumes from this new design alternative. An overview of this process, and as well as how it fits into the 
overall GODB approach, is shown in Figure 2 as a UML activity diagram. The meaning of various terms 
used in the diagram will be made clear in the next section, and summarized in the discussion section. 
Before we describe the quality design process in detail, we first introduce the meeting expense database 
example and the diagrammatic goal modeling notation1.  
 

 
Figure 2. The complete GODB approach, covering both application-specific and quality assurance data 

requirements 
 
The ExpDB Example  
 
Employees of a particular organization travel to cities in different countries, and participate in various 
meetings. A meeting expense management system monitors the spending on meetings in order to (a) 
reimburse its employees attending these meetings, (b) estimate the meeting budget for next fiscal year. 
Here we describe the design of a database component (called ExpDB thereafter) for a travel expense 
management system. This example is adopted from [5].  
 
According to the GODB approach, the design of ExpDB starts by constructing a goal model. A goal 
model is a forest of goal/plan AND-OR decomposition trees with contribution edges between nodes of 
different trees and means-end edges connecting goal and plan nodes. A portion of the goal model is 
shown in Figure 3. The top-level hard goal G1 is refined into sub-goals using AND-decomposition, which 
means that in order to fulfill this goal one has to achieve all its sub-goals (i.e., G1.1 ~ G1.3). G2 is OR-
decomposed so that achieving any of its sub-goals is sufficient to fulfill the top goal. To achieve G1.1, a 
single plan P1.1.1 is identified at this moment; it is linked to G1.1 through a means-end edge, and is 
further refined into three subplans P1.1.1.1 ~ P1.1.1.3. Various contribution edges exist in the goal 
model. For example, the full, positive (shown as a dashed arrow labeled with “++”) contribution from  
the goal G1.2 to the goal G2.1 means that the fulfillment of the former is considered sufficient to achieve 
the later. The partial, negative (shown as a dashed arrow labeled with “−”) contribution from the plan 
                                                           
1 Note that the diagrammatic notation is for the ease of use of humans - it has a fully formal representation, which supports 
formal inference. See Step 6 in the next section for a discussion of the formal reasoning capability of goal-oriented approaches. 



 

P1.2.1 to the softgoal S1 means performing this plan contributes negatively (to some degree) to the 
satisfaction of the softgoal.   
 
This goal model depicts a reimbursement process to fulfill the top-level goal G1: the employee collects 
the vouchers of expenses related directly to the meeting (e.g., travel, boarding, registration), and fills in a 
reimbursement request form with a summary of all the expenses. The employee then submits the form to 
the manager, who signs and forwards it to the secretary. The secretary is then responsible for entering the 
form into the system. The system finally generates an expense report at a specified time in a particular 
format, and issue reimbursement cheques accordingly.  

 
Figure 3. A portion of the goal model for ExpDB. 

 

The goals and plans in the goal model “name” the concepts, relationships and attributes that can be 
systematically derived [13] to form the domain model for ExpDB. A portion of the domain model is 
shown in Figure 4. To support the reimbursement process described above, it is sufficient to include only 
a few elements from the domain model in the final conceptual schema of ExpDB. One possible conceptual 
schema design is shown in Figure 5 2 . Although simple and intuitive, this design does not take into 
account nor respond to the quality softgoals (i.e., QS1 ~ QS3) at all.  

 
Figure 4. The domain model derived for the goal model. 

 

                                                           
2 In this paper, we use UML Class Diagrams to represent both domain models and conceptual schemas. For the sake of clarity, 
we omit details (e.g., attributes, constraints) in the diagrams that are not relevant to our discussion.    



 

 
Figure 5. A conceptual schema for ExpDB without considering quality softgoals. 

 

THE QUALITY DESIGN PROCESS 
 
In this section, we describe the quality design process, and illustrate it step-by-step using the ExpDB 
example. From the above discussion, we have seen briefly how the GODB approach is used to derive an 
ordinary conceptual database schema from application-specific hard goals, without considering quality 
issues. When the quality softgoals in the goal model are also taken into consideration, other variants of 
this basic reimbursement process can be derived and added to the goal model, providing alternative ways 
to fulfill G1.1, with different levels of support to these softgoals. These variants may require additional 
concepts, relationships and attributes to be incorporated into the conceptual schema, leading to different 
schema design. The quality design process is all about how this is can be done in a systematic way. The 
following steps are defined to achieve this: 

1. Characterize the data acquisition process 
2. For each leaf-level quality softgoal QS 

2.1. Identify and characterize the application data concerned by QS 
2.2. Identify the risk factors to QS in each step of the data acquisition process 
2.3. Develop mitigation plans for each identified risk factor 
2.4. Identify lateral contributions from the mitigation plans to other quality softgoals 

3. Evaluate and select mitigation plans to be supported by schema design 
4. Integrate the selected plans to the original goal model, and follow the normal goal-oriented 

conceptual database design approach.  
Below we illustrate each step with the ExpDB example, focusing on the accuracy softgoal (QS1).  
 
Step 1: Characterizing data acquisition process 
  
In a data acquisition process, an observer makes an observation, which may be recorded and manipulated 
before being entered into a database. Note that,  
1. the observer, recorder and enterer have their own goals that may affect the objectivity of their 

respective tasks,  
2. various instruments that are used during the process (e.g., observation instrument, recording media) 

may have certain limitations (or biases) due to their intrinsic properties (e.g., number of significant 
digits, error margin) or environment factors (e.g., time, location, altitude),  

3. the database’s ability to store the observation is limited by its schema design (e.g., presence or 
absence of certain fields, and the number of decimal places for numeric data fields).  

 
In the ExpDB example, the employee plays both the roles of data observer and recorder, with the goal of 
maximizing meeting expense reimbursement. She (a) “observes” various expenses concerning meeting-
related events, such as airline ticket purchase, hotel booking and meeting registration, (b) calculates the 
total amounts during the reimbursement request event, and (c) “records” detailed expenses on the original 
vouchers (or a separate piece of paper), and expense summary on the reimbursement request form. The 
secretary plays the role of data enterer whose main concern is to finish assigned tasks in an efficient way. 



 

Therefore, she (d) usually enters the meeting summary data in a batch mode. All these factors have the 
potential to reduce the quality of the observation being finally stored in the database. 
 
Step 2: Characterizing application data 
 
Each quality softgoal has one or more topics that correspond to the application-specific data about which 
this quality is concerned. In this step, we characterize these application data along following dimensions:  
• Data value: numeric, date vs. character-based, atomic vs. composite, primary vs. derived, etc. 
• Data domain: enumerable vs. non-enumerable, standardized vs. non-standardized, etc. 
• Types of value defects: inconsistent representation, syntactic vs. semantic, etc.  
This characterization helps us understand the nature of these application data, identify various ways how 
the quality of the data can be compromised, and define quality assurance mechanisms. A part of this 
knowledge is application-independent, and therefore could be put into a library for later reuse. For 
example, composite values could be decomposed into their components, which are stored and verified 
separately (recall the person address example discussed in the introduction section). As another example, 
for application data with an enumerable and standardized domain, a control vocabulary could be used to 
ensure the syntactic (but not semantic) accuracy of the data at data entry time.   
 
In the ExpDB example, the quality softgoal QS1 concerns meeting expense summary data. According the 
domain model (Figure 2), this includes the monetary amount of the total expense 
(ExpenseSummary.amount) and the date when it is reported (ExpenseSummary.date). The former has 
numeric, atomic and derived data values where its data domain is non-enumerable and non-standardized. 
Moreover, in this particular application, expense summary data are expected to be mainly syntactically 
valid (e.g., ensured by syntax checkers during data entry) but may be semantically wrong. 
 
Step 3: Identifying risk factors 
 
Based on the characterizations of the application data and its acquisition process, the risk factors that may 
compromise the quality of the application data in each of the acquisition steps are identified. A few risk 
factors identified in the ExpDB example are shown in Table 1, some of which are further explained 
below. During observation time, because the ultimate goal of the employee is to maximize meeting 
expense reimbursement (which conflicts with one of the softgoals of ExpDB: accurate estimation of 
meeting budget for the next year fiscal year), the employee may report expenses that do not result directly 
from the meeting (R1). During recording and manipulation time, since the meeting expense summary data 
is derived from expense detail data, there is a potential that the calculation may be wrong (R2). During 
data entry time, typos are the most common sources of data defects in the database (R5). This is especially 
true when the secretary’s private goal (i.e., efficiency) conflicts with the accuracy softgoal.   
 

During observation time: 
R1: The employee considers expenses that do not result directly from the 

meeting (e.g., visiting a nearby place or friend, before or after the meeting).  
During recording and manipulation time:  
R2: The employee miscalculates the total amount of the expense summary 
R3: The employee fills in incorrect summary data in the request form 
R4: The employee makes a reimbursement request long time after the trip and 

the original expense vouchers are lost 
During data entry time: 
R5: The secretary enters summary data incorrectly 

Table 1. Correspondence between mitigation plans and risk factors 
 



 

 

Step 4: Developing mitigation plans 
 
For each risk factor identified above, one or more mitigation plans can be developed to either (a) reduce 
the likelihood of occurrence of the risk factor, or (b) reduce its impact on the quality of data. Table 2 
shows a few mitigation plans that are defined for the risk factors listed in Table 1. 
 

MP1: Verify that any meeting expense occur within the meeting date ± one day.  
MP2: Verify that meeting expense summary is consistent with expense details.  
MP3: Verify that the reimbursement request date is within one month of the meeting date.  
MP4: Require that expenses summary data be entered at least twice, possibly by different 

secretaries and/or at different times.  
MP5: Perform audit where the manager periodically goes through a sample of expense 

summary data newly entered into the database in order to identify suspicious expense 
patterns, possibly with reference to the original expense vouchers.  

Table 2. Correspondence between mitigation plans and risk factors 
 

Note that MP1, MP2, MP3 and MP5 can be performed either manually by the manager or secretary 
before data entry, or automatically by the system at data entry time (or periodically). In most the cases, 
the automatic versions of these plans require additional data to be maintained by the ExpDB. For example, 
for MP2, it is necessary to enter both the meeting expense summary and expense voucher data into the 
ExpDB in order to perform the automatic verification of consistency between these two. Moreover, the 
manual versions of these plans may also lead to additional data requirements. We will come back to this 
in the last step. The correspondence between mitigation plans and the associated risk factors are shown in 
Table 3.  
 

Mitigation Plan Risk Factors 
MP1 R1 
MP2 R2 ~ R4 (manual),  R2 ~ R4 and R5 (automatic) 
MP3 R4 
MP4 R5 
MP5 R1, R2, R3, R4, R5 

Table 3. Correspondence between mitigation plans and risk factors 
 

Step 5: Identify lateral contributions 
 
The mitigation plans identified above all contribute positively (with different degrees) to the satisfaction 
of the quality softgoal QS1. In this step, we try to identify positive / negative contributions from these 
mitigation plans to other softgoals in the goal model. First, mitigation plans MP1 ~ MP3 contribute 
negatively to the quality softgoal QS3 since the extra verification steps compete with the mainstream data 
acquisition steps for the manager or secretary’s time and attention. This is true even if they are performed 
automatically by the system. The reason for this is that, as discussed previously, they all require extra data 
to be entered into the database in first place. Second, MP2, when performed automatically, contributes 
positively to the softgoal S1. This is because recording expense voucher data allows generating expense 
summary reports not only by employee and meeting, but also by type of expenses (e.g., hotel).  Third, 
both M2 and M4 contribute negatively to the quality softgoal QS2. In the first case, employees who lose 
their expense vouchers cannot get reimbursement even if they remember the detailed expenses correctly; 
in the second case, the secretary may forget to re-enter the summary data causing that expense summary 
to be omitted when the summary report is produced. These contributions are shown in Figure 6 
(contributions to QS1 are omitted for the sake of clarity).  
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Figure 6. Lateral contributions from mitigation plans to softgoals. 

 

Step 6: Evaluating and selecting mitigation plans 
 
It is not always possible or desirable to simply integrate all identified mitigation plans into the data 
acquisition process because:  
• For any DQ problem, the levels of tolerance may vary depending on the type of applications or type 

of application data [15]. For example, a 30-minute delay in stock price is more critical to a stock 
trading system than to market analysis application. Likewise, for a student registration system the 
accuracy of academic history data is more important than that of demographical data. In both cases, 
user requirements decide when a quality softgoal is sufficiently satisfied.  

• There are may be multiple mitigation plans for the same risk factor, each with a different cost.  
• Quality softgoals may conflict with one another, and a mitigation plan may have positive 

contributions to some softgoals and negative ones to others.  
• Different risk factors may have different likelihoods of occurrence.  
In summary, users’ requirements for quality and cost-benefit tradeoffs need to be carefully evaluated 
when selecting mitigation plans. Evaluation can be carried out manually or automatically (given proper 
tool support). Only the chosen mitigation plans require schema design support. 
 
Formal Reasoning with Quality Softgoals, Risks and Plans 
 
It might seem that reasoning with quality softgoals, risks and mitigation plans is inherently qualitative, 
and therefore unsuitable for formal reasoning, especially in view of the possible conflicting evidence. 
However, this appearance is deceptive. The Tropos project offers a formal framework [18] where one can 
encode diagrams such as Figure 3 into propositional logic by taking a component G (of any type) in the 
diagram, and instead of introducing a single propositional symbol G, use four symbols: 
Partially_Satisfied_G, Fully_Satisfied_G, Partially_Denied_G, and Fully_Denied_G.  If H then  
negatively contributes to G in a weak manner (i.e., there is a contribution edge labeled with a “−” from H 
to G) then the propositional implication Partially_Satisfied_H →Partially_Denied_G is added to the 
theory, among others, while if the negative link from H to G is strong (i.e., a “−−” edge), then 
Fully_Satisfied_H → Fully_Denied_G is also added to the theory. Similar axioms are added for 
decompositions and means-ends edges in the goal model. One can now use standard propositional 
abductive reasoning to find, for example, minimal sets of mitigating plans that cover all or only the most 
important selected quality softgoals.  
 
The Goal-Risk framework [20,21] extends the Tropos formal goal modeling and reasoning with risk-
related concepts, such as risk events (and their likelihood of occurrence, and severity once occurred) and 
treatment plans (and their effectiveness to reduce the impact of risk events). It also proposes a risk 
analysis process that automatically selects a subset of all possible plans that satisfies the top-level hard 



 

goals, with total risk and cost below specified thresholds. Further work needs to be done to adapt this 
framework to support automatic evaluation of mitigation plans during conceptual schema design.  
 
Step 7: Integrating mitigation plans into goal model 
 
Selected mitigation plans describe steps to be performed in addition to those in the original data 
acquisition process, with the purpose of providing quality assurance for the acquired application data. 
These steps are normally termed in practice standard operating procedures (SOPs). SOPs are integral 
part of the quality assurance process as they represent sequences of human and machine executed actions 
that guarantee the implementation of a quality property or policy. A database then needs to provide 
support to state an SOP (and its parameters) and record its execution (its values for each run). In this step, 
we merge the quality assurance process with the data acquisition process in the original goal model 
(Figure 3). For demonstration purpose, we assume all mitigation plans MP1 ~ MP5 have been selected in 
the previous step. Figure 7 shows a portion of the resultant new goal model, rooted at Goal G1.1. In this 
goal model, a new plan P1.1.2 is created by merging P1.1.1 with MP1 (manual), MP2 (manual), MP3 
(automatic), MP4 and MP5 (manual); it provides an alternative way to achieve Goal G1.1 with better 
attention to Softgoal QS1. In P1.1.2, modified or added subplans (compared to P1.1.1) are shaded.  
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P1.1.2.2:
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P1.1.2.5:
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(MP2)

P1.1.2.5.1:
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data entry (MP3)

P1.1.2.5.2:
perform periodic
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(MP5)  
Figure 7. A portion of the new goal created by merging P1.1.1 and MP1 ~ MP5. 

 

The improved reimbursement process can be described as follows: the employee collects the vouchers of 
expenses related directly to the meeting, and fills in a reimbursement request form with a summary of all 
the expenses. The employee then submits the form and all expense vouchers to the manager. The manager 
signs and forwards them to the secretary who first checks (a) if any expense voucher date is within the 
meeting date ± one day, and (b) if meeting expense summary is the sum of all the expense voucher 
amounts. If no error is found, the secretary is then responsible for entering the form into the system at 
least twice. The system finally generates an expense report at a specified time in a particular format, and 
issue reimbursement cheques accordingly. The manager occasional goes through a selected sample set of 
the expense summary data newly entered into the database to identify suspicious expense patterns.   
 
This new process requires new entities, relationships and attributes to be included in the conceptual 
schema, in addition to those shown in Figure 5. For example, although manual verification of expense 
date (P1.1.2.3.1) and expense amount (P1.1.2.3.2) does not require expense voucher data to be entered 
into ExpDB, the fact that the secretary has performed the verification process needs to be recorded. This 
can be done by including a verifies relationship with attributes signature and date between Secretary and 
Expense Summary, as shown in Figure 8.  
 



 

 
Figure 8. A portion of the conceptual schema of ExpDB that supports manual verification. 

 

The final conceptual schema that supports every subplans of P1.1.2 is shown in Figure 9. The entity 
Confirmation is used to record the number of times the same expense summary data has been entered by 
the secretary. The intention is that any expense summary data which has not been confirmed will be 
ignored by the application (e.g., when generating the expense summary reports). The entity Audit and its 
associated relationships are used to support the auditing activities performed the manager. 
 

 
Figure 9. The final conceptual schema of ExpDB that supports P1.1.2. 

 

DISCUSSION: HOW THINGS FIT TOGETHER 
 
In this section, we summarize important concepts that have appeared in previous discussion, and present a 
classification of quality assurance data requirements. We also discuss general properties of the complete 
GODB approach. 
 
Quality assurance data requirements 
 
From the discussion in the previous section, it is reasonable, for analysis purpose, to consider processes 
that satisfy stakeholder goals at three levels. At the topmost level, the business process (BSProc) 
represents the set of all activities performed by an organization in order to realize its value. During 
requirements analysis, an initial version of BSProc is obtained by analyzing the hard goals in the goal 
model, and is used to derive application-specific data requirements (AppData) for the database-to-be. In 
the ExpDB example, this is the reimbursement process we depicted in Figure 3 and the resulting AppData 
is in Figure 5. At the middle level, a data acquisition process (DAProc)3 can be separated out from 
BSProc and undergoes a risk-based analysis. The result is a set of mitigation plans that can be used to 
provide quality assurance for the corresponding AppData. In the ExpDB example, the acquisition process 
                                                           
3 Data maintenance and utilization processes also belong to this level; but here we focus only on quality of the data stored in a 
database.    



 

for the meeting expense data is characterized in the first step of the quality design process, and the 
resulting set of mitigation plan is shown in Table 2. At the bottom level, the selected mitigation plans 
collectively characterizes a quality assurance process (QAProc). An analysis of this process produces 
quality assurance data requirements (QAData) to be combined with AppData identified earlier. In the 
ExpDB example, the QAProc for meeting expense data is depicted in Figure 7, and the derived QAData is 
shown in Figure 9.  
 
We can further classify quality assurance data requirements into four categories:  
• Restrictive QAData (ResQAData) are constraints on AppData that cannot be simply expressed as 

integrity constrains (e.g., key, cardinality constraints) in the conceptual schema, and often lead to 
elicitation of metadata. For example, the mitigation plan MP1 ~ MP3 (see Table 2) imply three such 
constraints. 

• Descriptive QAData (DesQAData) characterize activities in QAProc, providing evidence that these 
quality assurance activities have been carried out successfully. The relationship verifies in the final 
conceptual schema for ExpDB (Figure 9) is an example of DesQAData.   

• Supportive QAData (SupQAData) represent extra data required or produced by QAProc. For 
example, the relationships audit history and adjustment history in the final conceptual schema for 
ExpDB (Figure 9) are both updated by each audit activity and used for the selection of sample data for 
the next audit (e.g., employees who have not been audited recently are likely to be included in the 
next audit).   

• Reflective QAData (RefQAData) support recording of quality assessment (actually measured or 
estimated) for AppData in the database. This is the type of quality assurance data supported in [14]. 

 
General Properties of the GODB Approach 
 
The complete GODB approach, addressing both application-specific and quality assurance data 
requirements, is summarized in Figure 2. Our approach concurs with the data quality separation principle 
[14] which states that application-specific and quality assurance data requirements are modeled 
separately.  Moreover, the QAProc derived from the risk-based analysis not only (a) adds QAData to the 
conceptual schema, but also (b) augment the initial BSProc with a set of SOPs for quality assurance. 
These SOPs accompany the conceptual schema at design time, and serve as the recipes that need to be 
followed at run-time. Therefore, the goal model also severs the purpose for documenting these SOPs and 
may be useful in quality assurance activities beyond schema design (e.g., in assigning responsibilities and 
monitoring performance of these SOPs at run-time).   
 
CONCLUSION AND FUTURE WORK 
 
We have presented a novel approach towards realizing the idea of data quality by design, building on our 
previous work on the GODB approach. We draw ideas from Tropos, a goal-oriented software 
development methodology, and its extension for performing risk-based analysis. Quality is usually 
defined as fitness for use. This implies that quality of data should be evaluated in a way relative to the 
purpose of its use. [24] defines the term “relativity of data quality” as “a functional dependency of all its 
aspects on the purpose and circumstances of operations where those data serve as resources”, and calls 
for teleological methods to DQ problems. Our goal-oriented approach provides exactly such a framework 
for analyzing purposes (modeled as goals), and their manifestation as operations (modeled as plans) in the 
context of database design, overcoming the limitations of existing data quality by design proposals. The 
benefits of our approach are discussed in the introduction section and summarized here: 
• the formal modeling of quality softgoals of multiple stakeholders, 
• the systematic exploration and evaluation of alternatives in goal fulfillment,  



 

• the support for explicit traceability from higher level goals to technical design decisions, 
• a broader coverage of quality assurance data requirements (restrictive, descriptive, supportive and 

reflective), thus addressing the limitation of [14], 
• a systematic goal operationalization mechanism based on risk analysis, thus addressing the second 

limitation of [15]4, and 
• the existence of formal representation  of the diagrammatic models in our figures, and concomitant 

reasoning tools that support automating part of the design process. 
In the end, we offer an integrated framework for addressing both application-specific and quality 
assurance data requirements during database requirements analysis and conceptual schema design.  
 
This work is being extended along several different directions. First, as mentioned earlier, an 
investigation of frequently occurring categories of DQ, together with standard risks and mitigation plans 
for them, will provide a library (“ontology”) that can be the basis of a much more systematic,  less 
omission-prone methodology, using a computer-supported tool to elaborate goal/risk/mitigation diagrams. 
Second, a full analysis in a practical setting may result in a very large and complex model of quality 
softgoals, risk factors, mitigation plans with various cost-benefit characteristics and interrelationships. 
Formal analysis tools are essential. The Goal-Risk framework [20,21] is intended for automated agents 
and does not distinguish application- and quality-related risk factors. Further research is required to tailor 
this framework to support human designers. Last, our approach to quality design can be extended to 
address data governance issues (e.g., privacy, security), where both data acquisition and utilization 
processes need to be analyzed.  
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