

DATA INTEGRATION SCHEMA ANALYSIS: AN APPROACH
WITH INFORMATION QUALITY

(Research-in-Progress)

Maria da Conceição Moraes Batista, Ana Carolina Salgado
Centro de Informática, Universidade Federal de Pernambuco

{mcmb, acs}@cin.ufpe.br

Abstract: Integrated access to distributed data is an important problem faced in many scientific and commercial
applications. A data integration system provides a unified view for users to submit queries over multiple
autonomous data sources. The queries are processed over a global schema that offers an integrated view of the data
sources. Much work has been done on query processing and choosing plans under cost criteria. However, not so
much is known about incorporating Information Quality analysis into data integration systems, particularly in the
integrated schema. In this work we present an approach of Information Quality analysis of schemas in data
integration environments. We discuss the evaluation of schema quality focusing in minimality and consistency
aspects and define some schema transformations to be applied in order to improve schema generation and,
consequently, the quality of data integration query execution.

Key Words: Data Quality, Information Quality, Data Integration, Schema Quality

1. INTRODUCTION
Information quality (IQ) has become a critical aspect in organizations and, consequently, in Information
Systems research. The notion of IQ has only emerged during the past ten years and shows a steadily
increasing interest. IQ is a multidimensional aspect and it is based in a set of dimensions or criteria. The
role of each one is to assess and measure a specific IQ aspect ([23], [19], [2]).
A data integration system provides to users a unified view of several data sources, called integrated
schema. In this kind of system, data is spread over multiple, distributed and heterogeneous sources, and,
consequently, the query execution is an essential feature. The propagation of data with lack of quality is a
real problem in data integration and, in some cases, the integration step may not be executed if IQ
problems are not fixed [4].
In general, information may be of poor quality because it does not reflect real world conditions or because
it is not easily used and understood by users. The cost of poor information quality must be measured by
its accordance with user requirements [22]. Even accurate information, if not interpretable and accessible
by the user, is of little value.
The primary contribution of this paper is the proposal of IQ criteria analysis in a data integration system,
mainly related to the system’s schemas. The main goal we intend to accomplish is to improve the quality
of query execution. Our hypothesis is that an acceptable alternative to optimize query execution would be
the construction of good schemas, with high quality scores, and we have based our approach in this
affirmative.
We focused our work in developing IQ analysis mechanisms to address schema generation and
maintenance, specially the integrated schema. Initially we built a list of IQ criteria related to data
integration aspects but, due to space limitations, we decided to focus on formally specifying the
algorithms and definitions of schema IQ criteria – minimality and type consistency. We also defined an
algorithm to carry out with schema minimality improvements.
The paper is organized as follows: section 2 introduces several issues related to schemas’ IQ; section 3
discusses the schema representation; in section 4 we present the formal specification of the IQ criteria and
in section 5 we discuss some examples of the analysis of these criteria; section 6 presents the schema
improvement algorithm addressing minimality aspects; in section 7 we discuss existing IQ approaches

addressing data integration and schemas issues; in section 8 is our concluding remarks and the final
considerations about the mentioned topics.
2. DATA INTEGRATION AND SCHEMA QUALITY
The main feature of a data integration system is to free the user from knowing about specific data sources
and interact with each one. Instead, the user submits queries to an integrated schema, which is a set of
views, over a number of data sources, designed for a particular data integration application. Commonly,
the tasks of query processing involving query submission, planning, decomposition and results integration
are performed by a software module called mediator [24]. Each source publishes a data source schema
with the representation of its contents. The mediator reformulates a user query into queries that refers
directly to schemas on the sources. To the reformulation step, a set of correspondence, called schema
mappings, are required. There are also the user schemas that represent the requirements of information
defined for one user or a group of users. The user requirements and their schema are not the focus of this
work.
As a starting point, we adopted IQ classifications proposed in previous works ([1], [13], [8], [16], [21],
[23]) with discrete variations: some criteria are not considered (not applicable), and some were adapted to
our environment. In our classification, the IQ aspects were adapted and associated to the main elements of
a data integration system.
When considering any data integration task, component, process or element, (for example, a user query
execution, data source selection or integrated schema generation), we perceive that each one can be
associated with one of the three components: data, schemas and data sources. We defined these
components as the core classes of our IQ criteria classification.
We classify as data, all the data objects that flow into the system. For example, query results, an attribute
value, and so on. The schemas are the structures exported by the data sources (source schemas), the
structures that are relevant for users to build queries (users’ schema) and the mediation entities (integrated
schema). The data sources are the origin of all data and schema items in the system. All IQ criteria in the
data integration system are associated with one of the three groups of elements according to the Table 1.

Table 1. Data integration IQ criteria classification

Data Integration Element IQ Criteria
Data Sources Reputation, Verifiability, Availability, Response Time
Schema Schema Completeness, Minimality, Type Consistency
Data Data Completeness, Timeliness, Accuracy

In this paper, we present our approach of schema maintenance with quality aspects, using two IQ criteria:
minimality and type consistency.
Minimality
Minimality is the extent in which the schema is compactly modeled and without redundancies. In our
point of view, the minimality concept is very important to data integration systems because the integrated
schema generated by the system may have redundancies. The key motivation for analyzing minimality is
the statement that the more minimal the integrated schema is, the least redundancies it contains, and,
consequently, the more efficient the query execution becomes [9]. Thus, we believe that our minimality
analysis will help decreasing the extra time spent by mediators accessing to unnecessary information
represented by redundant schema elements.
Type Consistency
Type consistency is the extent in which the attributes corresponding to the same real world concept are
represented with the same data type across all schemas of a data integration system. Table 2 lists each
criterion with its definition and the metric used to calculate scores.
The quality analysis is performed by a software module called IQ Manager or Information Quality
Manager which may be attached to a data integration system. At the moment of integrated schema
generation or update, this module proceeds with the criteria assessment and then, according to the
obtained IQ scores, may execute adjustments over the schema to improve its design and, consequently,

the query execution. This last step of schema tuning, executed after the IQ evaluation, is presented in
section 6.

Table 2. IQ Criteria for schemas quality analysis
IQ Criteria Definition Metrics

Minimality The extent in which the schema is modeled without
redundancies

1 – (#redundant schema elements/#
total schema elements)1

Type Consistency Data type uniformity across the schemas 1 – (#inconsistent schema elements /
#total schema elements)1

3. SCHEMA REPRESENTATION
Commonly, data integration systems use XML to represent the data and XML Schema to represent
schemas. To provide a high-level abstraction for XML schema elements, we use a conceptual data model,
called X-Entity [11] described in what follows. We also present the schema mappings with this notation.

3.1 X-Entity Model
The X-Entity model is an extension of the Entity Relationship model [7], i.e., it uses some basic features
of the ER model and extends it with some additional ones to better represent XML schemas.

The main concept of the X-Entity model is the entity type, which represents the structure of XML
elements composed by other elements and attributes. Relationship types represent element-subelement
relationships and references between elements. An X-Entity schema S is denoted by S = (E,R),
where E is a set of entity types and R is a set of relationship types.

• Entity type: an entity type E, denoted by E({A1,…,An},{R1,…,Rm}), is made up of an entity name
E, a set of attributes {A1,…,An} and a set of relationships {R1,…,Rm}. Each entity type may have
attributes {A1,…,An} that represents either a XML attribute or a simple XML element. In X-Entity
diagrams, entity types are rectangles.

• Containment relationship: a containment relationship between two entity types E and E1, specifies that
each instance of E contains instances of E1. It is denoted by R(E,E1,(min,max)), where R is the
relationship name and (min,max) are the minimum and the maximum number of instances of E1
that can be associated with an instance of E.

• Reference relationship: a reference relationship, R(E1,E2,{A11,…,A1n},{A21,…,A2n}), where R is
the name of the relationship and the entity type E1 references the entity type E2. {A11,…,A1m} and
{A21,…,A2n} are the referencing attributes between entities E1 and E2 such that the value of A1i, 1 ≤ i
≤ n, in any entity of E1 must match a value of A2i, 1≤ i ≤ n, in E2.

3.2 Schema Mappings
A data integration system is widely based on the existence of metadata describing individual sources and
integrated schema, and on schema mappings [18] specifying correspondences between the integrated
schema concepts and the source schemas concepts. There are several types of schema mappings to
formally describe the associations between the concepts of X-Entity schemas. We consider an X-Entity
element as an entity type, a relationship type or an attribute:
• Entity schema mappings: if E1 and E2 are entity types, the schema mapping E1 ≡ E2 specifies that E1

and E2 are semantically equivalent, i.e., they describe the same real world concept and they have the
same semantics.

• Attribute schema mappings: are the mappings among attributes of semantically equivalent entities.
The mapping E1.A1 ≡ E2.A2 indicates that the attributes A1 and A2 are semantically equivalent
(correspond to the same real world concept);

• Path mappings: specify special types of mappings between attributes and subentities of semantically
equivalent entity types with different structures. Before defining a path mapping, it is necessary to

1 # denotes the expression “Number of”

define two concepts: link and path. A link between two X-Entity elements X1 and X2 (X1.X2) occurs if
X2 is an attribute of the entity type X1, or X1 is an entity of the relationship type X2 (or vice-versa). If
there is a multiple link, it is called a path. In this case it may occurs a normal path, X1.....Xn or an
inverse path (X1.X2.....Xn)-1. Entities attributes and relationships are represented by paths. A path
mapping can occur in four cases as explained in the following (assuming P1 and P2 as being two
paths):
1. Case 1: P1=X1.X2...Xn and P2=Y1.Y2...Ym, where X1 ≡ Y1. The mapping P1 ≡ P2 specifies

that the entity types Xn and Ym are semantically equivalent.
2. Case2: P1 = X1.X2...Xn.A and P2=Y1.Y2....Ym.A’, where X1 ≡ Y1. The mapping P1 ≡ P2

specifies that the attribute A ∈ Xn and the attribute A’ ∈ Ym are semantically equivalent.
3. Case 3: P1 = X1.X2...Xn and P2 = (Y1.Y2...Yn)-1, where X1 ≡ Yn. The mapping P1 ≡ P2

specifies that the entity types Xn and Y1 are semantically equivalent.
4. Case 4: P1 = X1.X2...Xn.Ak and P2 = (Y1.Y2...Yn)-1.Ak’, where X1 ≡ Yn. The mapping

P1 ≡ P2 specifies that the attribute Ak ∈ Xn and the attribute Ak’ ∈ Y1 are semantically equivalent.
To illustrate the cases, consider the integrated and data source schemas presented in Figure 1.

Source Schema S2 =
({book

2
({title

2,year2},
 {book

2
_chapter

2
,book

2
_publisher

2
}),

 chapter
2
({ch_title2},{}),

 publisher
2
({pub_name

2
},{})},

{book
2
_chapter

2
(book

2
, chapter

2
,(1,N)),

 book
2
_publisher

2
(book2, publisher

2
, (1,1))})

publisher
m

title
m bookm chaptermcontains

chapter_title
m

Integrated Schema Smed =
({book

m
({title

m,publisherm},{bookm_chapterm}),
chapter

m
({chapter_titlem},{})},

{book
m
_chapter

m
(book

m
,chapter

m
,(1,N))})

(1,N)

publisher
1

title
1

book1 chapter1refers

chapter_title
1

Source Schema S1 =
({book

1
({title

1,publisher1},{}),
chapter

1
({chapter_title1,book_title1},

 {ref_chapter
1
_book

1
})},

{ref_chapter
1
_book

1
(chapter

1
,book

1
,{book_title

1
},{title

1
})})

book
1
_title

1

year
2

title
2

book2

chapter2contains

ch_title
2

(1,N)

publisher2contains

pub_name
2

(1,1)

Figure 1. Integrated Schema (Smed) and Schemas of data sources (S1 and S2)

Table 3. Schema mappings between the integrated schema Smed and the source schemas S1 and S2

MP1:bookm ≡ book1
MP2:bookm.titlem ≡ book1.title1
MP3:bookm.publisherm≡ book1.publisher1
MP4:chapterm ≡ chapter1
MP5:chapterm.chapter_titlem≡ chapter1.chapter_title1
MP6:bookm.bookm_chapterm.chapterm ≡
(chapter .chapter_ref_book1.book1)-1 1

MP7:bookm ≡ book2
MP8:bookm.titlem ≡ book2.title2
MP9:chapter ≡ chapter m 2

MP10:book .book _chapter .chapter ≡ book .book _chapter2.chapter2 m m m m 2 2

MP11:chapterm.chapter_titlem ≡ chapter2.ch_title2
MP12:bookm.publisherm≡ book2.book2_publisher2.publisher2.pub_name2

Table 3 presents the relevant schema mappings identified to compute bookm and chapterm. The
mappings MP1 to MP12 specify the semantic equivalences between the integrated and data source schema
elements.
In data integration, the mappings are essential to assure the query processing over integrated schema. We
assume that the mappings and schema elements equivalences are already defined automatically by the
system or even manually by advanced users. Particularly, in the environment exploited to experiment the
proposed IQ evaluation ([5], [11]), there is a schema generator component responsible to maintain
equivalencies and define mappings among data sources and integrated schema.
Our proposition, centered in IQ analysis for schemas in data integration systems, has goals of query

optimization and it is detailed in the following sections.

4. SCHEMA IQ ASPECTS
As previously mentioned, high IQ schemas are essential to accomplish our goal of improving integrated
query execution. It is important to notice that the proposed approach is not only to be applied in X-Entity
schemas. The IQ aspects may be useful in any integrated schema to minimize problems acquired from
schema integration processes, for example, the same concept represented more than once in a schema.
The next section describes some definitions, required to introduce the minimality criterion.
From now on, we assume that the integrated schema is already created, and, consequently, the
equivalences between entities, attributes and relationships are already defined.

4.1 Definitions
More formally, a data integration system is defined as follows:

Definition 1 – Data Integration System (Ð)
A data integration system is a 4 element tuple, Ð = <δ,Sm, ρ,ϕ(Ð)> where:
• δ is the set of Si data sources schemas, i.e. δ = <S1,S2,…,Sw>, where w is the total number of data

sources participating in Ð;
• Sm is the integrated schema, generated by internal modules of Ð;
• ρ is the set of user schemas, ρ = <U1,U2,…,Uu> where u is the total number of users of Ð. Together

with the data source schemas it is the basis of the integrated schema generation;
• The component ϕ(Ð) is the set of all distinct concepts in the application domain of the data integration

system, as stated in the next definition. This set can be extracted from the schema mappings between
the data source schemas and the integrated schema.

In Ð, the following statements are true:
• Sm is a X-Entity integrated schema, Sm =

m1 2 n<E ,E ,...,E > where Ek is an integration or mediation
entity (1 ≤ k ≤ nm), and nm is the total number of entities in Sm;

• ∀Ek ∈ Sm, , where:
k k

o
k k1 k2 ka k1 k2 krE({A ,A ,...,A },{R ,R ,...,R })

kk1 k2 ka{A ,A ,...,A } is the set of attributes of Ek, ak is the number of attributes in Ek, (ak > 0);
o

kk1 k2 kr{R ,R ,...,R } is the set of relationships of Ek, rk is the number of relationships in Ek (rk ≥
0).

• If X1 and X2 are schema elements (attributes, relationships or entities), the schema mapping X1 ≡ X2
specifies that X1 and X2 are semantically equivalent, i.e., they describe the same real world concept
and have the same semantics.

Every information system (even a data integration one) is constructed from a number of requirements.
Moreover, embedded in this set of requirements is the application domain information [10], very
important to schemas construction.

Definition 2 – Domain Concepts Set
We define ϕ as the set of domain concepts, ϕ(β) =

1 2<C ,C ,...,C >
βσ

:

• β is even a given integrated schema Sm or a data integration system Ð;
• σβ is the number of real world concepts in β;
• Ck is an application domain concept which is represented by an schema element Y in one of the

two following ways:
i) Y ∈ Sm, if β is a integrated schema or;

ii) Y ∈ δ = <S1,S2,…,Sw>, if β is the data integrated system.
Usually, the data integration system has mechanisms to generate and maintain the integrated schema. It is
very difficult to guarantee that these mechanisms, specifically those concerning the schema generation,

produce schemas without anomalies, e.g., redundancies. In data integration context, we define a schema
as redundant if it has occurrences of redundant entities, attributes or relationships. To contextualize
schema aspects, we introduce the definitions 3 to 6.

Definition 3 – Redundant attribute in a single entity
An attribute Aki of entity Ek, Aki ∈

kk1 k2 ka{A ,A ,...,A } is redundant, i.e., Red(Aki,Ek) = 1, if:

 ∃Ek.Akj, j ≠ i, Akj ∈
kk1 k2 ka{A ,A ,...,A }and Ek.Aki ≡ Ek.Akj, 1 ≤ i,j ≤ ak

Definition 4 – Redundant attribute in different entities
An attribute Aki of the entity Ek, Aki ∈

kk1 k2 ka{A ,A ,...,A } is redundant, i.e. Red(Aki,Ek) = 1, if:

 ∃Eo, o ≠ k, Eo ∈ Sm, Ek ≡ Eo,
 Eo(

oo1 o2 oa{B ,B ,...,B }), Boj are attributes of Eo and ∃Eo.Boj, Boj ∈
oo1 o2 oa{B ,B ,...,B }

 and Ek.Aki ≡ Eo.Boj,1 ≤ i ≤ ak, 1 ≤ j ≤ ao.
If an attribute Aki, Aki ∈

kk1 k2 ka{A ,A ,...,A } , and Red(Aki,Ek) = 0, we say that Aki is non-
redundant.

Definition 5 – Entity Redundancy Degree
We say that a given entity Ek has a positive redundancy degree in schema Sm, i.e. Red(Ek,Sm) > 0, if
Ek has at least one redundant attribute. The redundancy degree is calculated by the following formula:

 Red(Ek,Sm) =

ka

ki k
i = 1

k

Red(A ,E)

a

∑
, where

 is the number of redundant attributes in Ek and
ka

ki k
i = 1

Red(A ,E)∑
 ak is the total number of attributes in Ek.
An entity Ek is considered fully redundant when all of its attributes are redundant, i.e. Red(Ek,Sm) =
1. In this case, we assume that the entity Ek may be removed from the original schema Sm without lost of
relevant information. Any existing relationship from Ek may be associated to a remaining equivalent
entity Eo, as will be shown in Section 6. As an example of redundant attributes and the entity redundancy
degree, suppose the schema and mappings of Figure 2.

movie
m contains actor

m

ssh
m

age
m

artist
m

address
m

nationalitym

contains
countrym

 artist ≡ actor m m
 nationalitym ≡ countrym

Figure 2. Schema with redundant attributes

The attribute nationalitym in artistm is redundant because it has a semantic correspondent in the
entity actorm (attribute countrym), and both the entities artistm and actorm are semantically
equivalent. Thus, we have the following:
 Red(nationalitym,artistm) = 1
 Red(addressm,artistm) = 0
 Red(countrym,actorm) = 0
 Red(agem,actorm) = 0
 Red(sshm,actorm) = 0
It is interesting to mention that nationalitym ≡ countrym, but only the first is classified as

redundant. This occurs because only one must be marked as redundant and removed, while the other has
to be kept in the schema to assure that domain information will not be lost.
The entities in Figure 2 have the following entity redundancy degrees in schema Sm:

 Red(artist ,S) = (1 + 0)/2 = 0.5 m m

 Red(actorm,Sm) = (0 + 0 + 0)/3 = 0
The entity artistm is 50% redundant because it has only two attributes, and one of them is redundant.

Definition 6 – Redundant Relationship
Consider a relationship R ∈ Sm between the entities Ek and Ey represented by the path Ek.R.Ey, then: R
∈

kk1 kr{R ,...,R } and R ∈
yy1 yr{T ,...,T },where

kk1 kr{R ,...,R } is the set of relationships of the

entity Ek and
yyry1{T ,...,T }

k1

 is the set of relationships of the entity Ey. Thus, the relationship R connects

Ek and Ey iif R ∈
kkr{R ,...,R } and R ∈

yy1 yr{T ,...,T }.

We define R as a redundant relationship in Sm, i.e. Red(R,Sm) = 1 if:
 ∃P1, where P1 = Ek.Rj.….Ts.Ey is a path with
 Rj ∈

kk1 kr{R ,...,R } and Ts ∈ y1 yyr{T ,...,T } and P1 ≡ R.

In other words, a relationship between two entities is redundant if there are other semantically equivalent
relationships which paths are connecting the same two entities.

Consider the schema and mappings illustrated in Figure 3. The relationship connecting enterprisem
and sectionm is redundant (Red(enterprisem,sectionm,(1,N))= 1) because it has a
semantically equivalent correspondent represented by P1.

enterprise
m

contains department
m

P1 = enterprisem.enterprisem_departmentm.
departmentm.departmentm_sectionm.sectionm

P2 = enterprisem.enterprisem_sectionm.sectionm

section
m

containscontains

 P1 ≡ P2

Figure 3. Schema with redundant relationship

4.1 Type Consistency
In databases, the consistency property states that only valid data will be written to the database. The
stored data must adhere to a number of consistency rules. If, for some reason, a transaction is executed
that violates the database’s consistency rules, the entire transaction will be rolled back and the database
will be restored to a consistent state according to those rules. On the other hand, if a transaction
successfully executes, it will take the database from a consistent state with the rules to another state that is
also consistent. These affirmatives are related to data consistency, but they can be extended to adequately
represent data type consistency constraints [16].
A data type is a constraint placed upon the interpretation of data in a type system in computer
programming. Common types of data in programming languages include primitive types (such as
integers, floating point numbers or characters), tuples, records, algebraic data types, abstract data types,
reference types, classes and function types. A data type describes representation, interpretation and
structure of values manipulated by algorithms or objects stored in computer memory or other storage
device. The type system uses data type information to check correctness of computer programs that access
or manipulate the data [6].
When the same data type is recorded in more than one way, an integrated schema management system
experiences problems with consistency. The first step in resolving this consistency problem is to

determine which alternative data type is preferable. This approach would then be defined as a standard,
namely, the accepted way of recording the information. In this case, a schema element is called consistent
if it adheres to the defined standard data type. On the other side, when there are a variety of types for the
same information, the conversion may be a difficult process, and achieving consistency could be both
time-consuming and expensive. As in [3], we have based the consistency metric in an essential factor: in a
set of semantically equivalent attributes, the number elements that adhere to the standard data type
defined for the group.
We approximate consistency rules and data types to create the Type Consistency concept, and associate it
with the degree in which an attribute is recorded with different types. We use the Type Consistency
criterion to investigate which data elements in the schemas are represented with the same type, adhering
to a consistency standard. This is an indicator of quality and query improvement, once the query
processor is not going to perform a number of type conversions for a schema element in order to access
its correspondences in data sources schemas. For type consistency measurement, we use a metric similar
to the one presented in [21].
As X-Entity is a high level abstraction for XML schema structures, it is necessary to define the concept of
type for an X-Entity attribute.

Definition 7 – Attribute Data Type
A data type Tkj for the attribute Akj, where Akj ∈ Ek, is a domain element or structural metadata
associated with the attribute data as defined in previous works [6]. As the data integration system is
concerned with XML data, then every Tkj may be one of the valid datatypes defined for XML Schema
(including the user defined ones). From the XML Schema specification [14], we import the concept of
datatype as follows:
A datatype T is a tuple <α, λ, γ>, consisting of:
• α is a set of distinct values, called the value space, containing the values that the elements of the type

can have;
• λ is a set of lexical representations, called the lexical space and;
• γ is a set of facets that characterize properties of the value space, individual values or lexical items;
• T ∈ £, where £ is the set of all XML schema datatypes.
In our work, to use datatypes, it is only necessary to refer to the α set of valid values in the datatype
specification.
To determine the type consistency criterion, we define the following:

Definition 8 – Attribute
∀Ek ∈ Sm, every attribute Akj (Akj ∈ Ek) is defined by the tuple (Tkj,vkj), where:
• Tkj = <αkj, λkj, γkj> is the datatype of attribute Akj (1 ≤ j ≤ ak);
• vkj is the value of attribute Akj (1 ≤ j ≤ ak) and vkj ∈ αkj.

Definition 9 – Data Type Consistency Standard
The data type consistency standard is the alternative data type which is more appropriate to an attribute.
This data type is defined as the standard, namely, the accepted way of recording the attribute. Formally, a
data type consistency standard is an X-Entity attribute data type:
 ∀Ek.Akj, Ek ∈ Ð,
 Akj ∈

kk1 k2 ka{A ,A ,...,A } and ∃Tstd,Tstd=<αstd,λstd,γstd> and

 ∃Ex.A, Ex ∈ Ð ^ Ex.A ≡ Ek.Akj, A = (Tstd,v) where
Tstd is the most frequently data type used in Ð for attribute A and its equivalents.

Definition 10 – Attribute Type Consistency
In a given a set of data source schemas Si (1 ≤ i ≤ w) and a mediation schema Sm, we say that an attribute
Apj = (Tpj,vpj) (Tpj is a valid datatype as in Definition 7) of an entity Ep ∈ Sp (Sp=Si or Sp=Sm) is

consistent i.e. Con(Apj,Sp)= 1 if it appears in another entity or even in the same entity with other
datatype:

∃Tstd ∈ Ð, T ∈ £ and Apj = (Tstd,vpj)

Definition 11 – Schema Data Type Consistency
The overall schema type consistency score in a given data integration system (Con(Sm,Ð)) is obtained
by the following calculation:

 Con(Sm,Ð) =
m k

m

n a

kj
k 1 j 1

n

k
k 1

Con(A ,Ð)

a

= =

=

∑ ∑

∑

, where

m kn a

kj
k 1 j 1

Con(A ,Ð)
= =

∑ ∑ is the total number of consistent attributes in Ð; Akj ∈ Ð;

 nm is the total number of entities in the schema Ð;
ak is the number of attributes of the entity Ek.

In this section we have presented the formal specifications introduced for type consistency criterion. We
strongly believe that improving the consistency of the information across the schemas in Ð will help the
query execution, once it will be required less conversion steps between equivalent attributes.

4.2 Minimality

A major problem of conceptual schema design is to avoid the generation of a schema with redundancies.
A schema is minimal if all of the domain concepts relevant for the application are described only once. In
other words, a minimal schema may represent each application requirement only once ([9], [20], [12],
[15]). Thus, we can say that the minimality of a schema is the degree of absence of redundant elements in
the schema. Likewise our point of view, Kesh [9] argues that a more minimal (or concise) schema will
make itself more efficient, and, consequently, improve the effectiveness of operations and queries over it.
We state that if the integrated schema is minimal, query execution will be improved. Redundant
elimination (or minimality increasing) avoids the query processor to spend extra time querying redundant
elements.
Therefore, to measure the minimality, we must first determine the redundancy degree of the schema. To
each one of the next redundancy definitions, we assume the following:
• nrel is the total number of relationships in Sm;

• nm is the total number of entities in Sm.

Definition 12 – Schema Minimality
We define the overall redundancy of a schema in a data integration system as the sum of the
aforementioned redundancy values: entities and relationships. The schema minimality is measured by the
computation of the following:

m

1 1
m

Re (,) Re (,S)
Mi(S)= 1 - (+)= =

∑ ∑
relm nn

k m l
k l

m rel

d E S d R

n n
, where

mn

k m
k 1

m

Re d(E ,S)

n
=

∑
 is the entity redundancy score of schema Sm;

reln

l m
l 1

rel

Re d(R ,S)

n
=

∑
 is the relationship redundancy score of schema Sm.

This section discussed the minimality specification. If the data integration system has minimal schemas,
the query execution step can be simplified once the system will not spend time querying redundant
elements. Analogously, the query result may have good quality scores as an effect of the absence of
redundant items in its composition.

5. EXAMPLES
In this section we present practical examples of proposed criteria evaluation in schemas. For each one of
the IQ criteria, one schema with anomalies in the referred aspect is presented, and the evaluation process
is detailed.
5.1 Minimality Analysis
For an example of minimality evaluation, assume the redundant schema of Figure 4 and its equivalencies.

 artistm ≡ actorm
 id ≡ sshm m
 nationalitym ≡ countrym

Figure 4. Schema with redundant elements
The entity artistm, is redundant because it is semantically equivalent to actorm and all its attributes
have a semantically equivalent correspondent in actorm. The relationship moviem_artistm
(moviem,artistm,(1,N)) is also redundant because it has a semantically equivalent relationship
moviem_actorm(moviem,actorm,(1,N))and actorm≡artistm. The schema minimality value
will be obtained as illustrated in Figure 5.

Red(moviem,Sm) = 0
 Red(actor

m
,S

m
) = 0

 Red(theater
m
,S

m
) = 0

 Red(artistm,Sm) = 1
 Red(movie

m
_actor

m
,S

m
) = 0

 Red(movie
m
_artist

m
,S

m
) = 1

 Red(moviem_theaterm,Sm) = 0
 ER(Sm)= 1/4 = 0,25
 RR(S

m
)= 1/3 = 0,333

Mi(S
m
)= 1 -(0,25 + 0.333) = 0,417

Figure 5. Schema minimality score
The minimality of schema Sm is 41,70%, what means that the schema has 58,30% of redundancy that can
possibly be eliminated.

5.2 Type Consistency Analysis
For an example of type consistency evaluation, assume an hypothetic schema with the following attribute
equivalencies:

SM1:actorm.birthdatem ≡ actor1.birth1
SM2:actorm.birthdatem ≡ actor2.birth2
SM3:actorm.birthdatem ≡ actor3.bd3

Suppose that the data type of the attribute actor1.birth1 is String and the data type of attributes
actorm.birthdatem, actor2.birth2 and actor3.bd3 is Date. We have three Date
occurrences versus one single occurrence of String data type for the same attribute. Thus, the IQ
Manager will consider the data type Date as the data type consistency standard:
 Tstd = Date
 Con(actorm.birthdate ,Ð) = 1 m

 Con(actor1.birth1,Ð) = 0
 Con(actor2.birth2,Ð) = 1

 Con(actor3.bd3,Ð) = 1
The attributes of type Date are consistent and the attribute of type String is inconsistent. To compute the
consistency degree of a given schema it is necessary to sum the consistency values of each attributes in
the schema, dividing the result by the total number of attributes as stated in Definition 11.

6. SCHEMA MINIMALITY IMPROVEMENT
After detecting the schema IQ anomalies, it is possible to restructure it to achieve better IQ scores [1]. In
order to improve minimality scores, redundant elements must be removed from the schema. In this
section, we present an algorithm with schema improvement actions to be executed after the integrated
schema generation or update. The sequence of steps is specified in the algorithm of Table 4.
It is important to see that is possible to accomplish a total minimality schema score, or a schema with no
redundancies, by removing redundant elements until the value of minimality equal to 1 is achieved. It will
occur when all the redundancies have been eliminated.

Table 4. Schema adjustment algorithm
1 Calculate minimality score and if minimality = 1, then stop;
2 Search for fully redundant entities in S ; m

3 If there are fully redundant entities then eliminate the redundant entities from Sm;
4 Search for redundant relationships in S ; m

5 If there are redundant relationships then eliminate the redundant relationships from Sm;
6 Search for redundant attributes in S ; m

7 If there are redundant attributes then eliminate the redundant attributes from Sm;
8 Go to Step 1

The detection of redundant elements processes in steps 2, 4 and 6 are already described in previous
definitions. The next sections describe the proposed redundancies elimination actions executed in steps 3,
5 and 7 of the improvement algorithm. In the following, we present details about schema adjustments,
performed when the IQ Manager has to remove redundant elements.

6.1 Redundant Entities Elimination
It is important to point that, after removing a redundant entity E, its relationships must be relocated to a
semantic equivalent remaining entity. When removing a redundant entity E1 (E1 ≡ E2), the IQ
Manager transfers the relationships of E1 to the remaining equivalent entity E2. Three different situations
may occur when moving a relationship Rx, Rx ∈ E1:
• If Rx ∈ E2 then Rx is deleted because it is no longer necessary;
• If Rx ∉ E2 but ∃Ry, Ry ∈ E2 and Rx ≡ Ry then Rx is deleted;
• If Rx ∉ E2 and there is no Ry, Ry∈E2 and Rx ≡ Ry, then Rx is connected to E2.
The first and second situations are not supposed to cause any schema modification besides the entity
deletion. However, the third case needs more attention, once the redundant relationships of the removed
entity have to be relocated.

Definition 13 – Substitute Entity
We say that Ek is a fully redundant entity, iif Red(Ek,Sm) = 1 and Ek has at least one Substitute Entity
Es, i.e. Subst(Ek) = Es:
• Ek

k kk1 ka k1 kr({A ,...,A },{R ,...,R }) Akx are attributes and Rky are relationships of Ek and;

• Es
sss1 sa s1 sr({A ,...,A },{R ,...,R }) Asz are attributes and Rst are relationships of Es and

• Ek ≡ Es and ∀Ek.Aki ∈
kk1 ka{A ,...,A }, ∃Es.Asj ∈

ss1 sa{A ,...,A } with Ek.Aki ≡ Es.Asj, 1

≤ i,j ≤ ak.
The Definition 13 states that an entity Ek is considered fully redundant when all of its attributes are
redundant (Red(Ek,Sm) = 1) and it must have a substitute entity Es in Sm. All the attributes of Ek are
contained in Es. In this case, Ek may be removed from the original schema Sm without lost of relevant
information if it is replaced by its substitute entity Es. Any existing relationship from Ek may be
associated to Es, as stated in the following definition.

Definition 14 – Relationship Relocation
In a schema Sm, if Subst(Ek) = Es, then Ek can be eliminated from Sm. In this case, to avoid the
schema of losing relevant information, Ek relationships are relocated to Es according to the following
rules, i.e. ∀Ek.Rkj:

i. If Ek.Rkj ∈
ss1 sr{R ,...,R } then Rkj must be deleted because it is no longer useful;

ii. If Ek.Rkj ∉
ss1 sr{R ,...,R } but ∃Es.Rsp, Ek.Rkj ≡ Es.Rsp then Ek.Rkj must be deleted

because it has an equivalent relationship in Es;
iii. If Ek.Rkj ∉

ss1 sr{R ,...,R } and ∃ Es.Rsp, Ek.Rkj ≡ Es.Rsp then, Es is redefined as Es =
'

s s

'
sa s1 srs1({A ,...,A },{R ,...,R }), Asz are attributes and '

stR are relationships of Es and

kjs s

' '
s1 sr s1 sr{R ,...,R } {R ,...,R }= ∪ R .

The first and second case above do not imply in schema relevant changes, only the relationship removal.
The third one, where the relationship relocation occurs, can be exemplified in Figures 6 and 7.
The fully redundant entity artistm (with its attributes) is removed and it is substituted by the
semantically equivalent actorm. Consequently, the relationship {moviem_artistm(moviem,
artistm,(1,N))} may be deleted because it can be replaced by the remaining equivalent relationship
{moviem_actorm(moviem, actorm,(1,N))}.

movie
m contains actor

m

ssh
m

name
m

artistm

idm

nationalitym

contains

artistm actorm
idm sshm
nationalitym countrym

country
m

award
m

description
m

year
m

edition
m

category
m

contains

(1,N)

(1,N)

(1,N)

=> Red(artistm,Sm) = 1

Figure 6. Redundant entity detection

The relationship {artistm_awardm(artistm, awardm,(1,N))} is relocated to actorm, turning
into the new relationship {actorm _awardm(actorm, awardm,(1,N))}. With this
operation, it is possible to obtain a no redundant schema as illustrated in Figure 7.

movie
m contains actor

m

ssh
m

name
mcountry

m

award
m

description
m

year
m

edition
m

category
m

(1,N)

contains

(1,N)

Figure 7. Relationship relocation

6.2 Redundant Relationships Elimination
After removing redundant entities and possibly performing the necessary relationship relocations, the IQ
Manager identifies remaining redundant relationships to eliminate. This can be accomplished by merely
deleting from the schema, the relationships identified as redundant. Considering the example of Figure 8,
the relationship {enterprisem_sectionm(enterprisem,sectionm,(1,N))} is redundant
because it has a semantically equivalent correspondent represented by P1.

enterprise
m

contains department
m

P1 = enterprisem.enterprisem_departmentm.
departmentm.departmentm_sectionm.sectionm

P2 = enterprisem.enterprisem_sectionm.sectionm
P1 P2

section
m

contains

contains

(1,N)

(1,N)

(1,N)

=> Red(enterprisem_sectionm
,Sm) = 1

≡

Figure 8. Redundant relationship detection

After eliminating the relationship {enterprisem_sectionm(enterprisem,
sectionm,(1,N))}, the schema with no relationship redundancies is showed in Figure 9.

enterprise
m

contains department
m

section
m

contains

(1,N)

(1,N)

Figure 9. Redundant relationship elimination

It is important to note that the remaining schema after the relationship eliminations, do not lose relevant
information. Instead, without redundancies, it has better IQ scores, and, consequently, it is more useful to
assist the query processing.

6.3 Redundant Attributes Elimination
The last step of schema improvement algorithm consists in investigating and eliminating remaining
redundant attributes in schema. Similarly to the redundant relationships removal step, these attributes may
merely be deleted from schema. This occurs because the schema always has semantically equivalent
attributes to substitute the redundant ones. In Figure 10, the attribute nationalitym is removed
because there is a semantically equivalent attribute countrym, which will substitute it.

moviem contains actorm
sshm

agem

artistm
addressm

nationalitym

contains

artistm actorm
nationalitym countrym

countrym

namem
Figure 10. Redundant attribute detection

After executing the schema improvement steps, the IQ Manager can recalculate and analyze minimality
scores in order to determine if the desired IQ is accomplished.

6.4 Experimental Results
We implemented the IQ Manager in an existing mediator-based data integration system. More details
about the system can be found in [5]. The module was written in Java and the experiment used two
databases – MySQL and PostgreSQL – to store the data sources. As mentioned before, the data in the
system is XML and the schemas are represented with XML Schema. The data integration system is a real
application in a health care domain. The main concepts are doctors, patients, diseases, treatments, among
other.
The following steps were executed: (i) initially, the queries were submitted over an integrated schema
with a 26% degree of redundancy and the execution times were measured; (ii) second, the redundancy
elimination algorithm was executed over the redundant integrated schema generating a completely

minimal schema; (iii) the same queries used in step (i) were executed. The query performance was
improved and results obtained with these experiments have been satisfactory.
7. RELATED WORKS
It has long been recognized that IQ is described or analyzed by multiple attributes or dimensions. During
the past years, more and more dimensions and approaches were identified in several works ([8], [13]).
Naumann and Leser [13] define a framework addressing the IQ of query processing in a data integration
system. This approach proposes the interleaving of query planning with quality considerations and creates
a classification with twenty two dimensions divided into three classes: one related to the user preferences,
the second class concerns the query processing aspects and the last one is related to the data sources.
Other relevant topic to consider in IQ and data integration is the set of quality criteria for schemas. These
are critical due the importance of the integrated and data sources schemas for query processing. Some
works are related to IQ aspects of schema equivalence and transformations, as in [1], where the authors
exploit the use of normalization rules to improve IQ in conceptual database schemas.
The work proposed by Herden [8] deals with measuring the quality of conceptual database schemas. In
this approach, given a quality criterion, the schema is reviewed by a specialist in the mentioned criterion.
In [17] the authors propose IQ evaluation for data warehouse schemas focusing on the analyzability and
simplicity criteria.
The differential of our approach is the proposal of processes for management of data integration schemas
associated with IQ analysis features and design improvements. The main contributions are: (i)
consolidation of using IQ in data integration systems through the classification of a set of criteria
specifically selected for this kind of environment; (ii) specification of the relevant IQ criteria in the
context of a data integration system and; (iii) analysis of system’s components according to the specified
IQ criteria. We presented specifically the IQ analysis of schemas associated with an algorithm for IQ
improvement.
8. CONCLUSION
Data integration systems may suffer with lack of quality in produced query results. They can be outdated,
erroneous, incomplete, inconsistent, redundant, and so on. As a consequence, the query execution can
become rather inefficient. To minimize the impact of these problems, we propose an Information Quality
approach that serves to analyze and improve the integrated schema definition, and, consequently, the
query execution.
It is known that a major problem in data integration systems is to execute user queries efficiently. The
main contribution of the presented approach is the specification of IQ criteria assessment methods for the
maintenance of high quality integrated schemas with objectives of achieving better integrated query
execution. We also proposed an algorithm to improve the schema’s minimality score.
We have specified the IQ Manager as a module of a data integration system ([5], [11]) to proceed with all
schemas IQ analysis and also the execution of improvement actions by eliminating the redundant items.
Similarly as done with the minimality criterion, we are working to formally describe and implement the
algorithms to evaluate the others specified IQ criteria, and proceed with schema IQ improvement.

REFERENCES
[1] ASSENOVA, P. and JOHANNESON, P. Improving Quality in Conceptual Modeling by the Use of Schema

Transformations, Proceedings 15th Int. Conf. of Conceptual Modeling (ER´96), Cottbus, Germany, 1996.
[2] BALLOU, D.P. and PAZER, H.L. Modeling Data and Process Quality in Multi-input, Multi-output Information Systems.

Management Science 1985.
[3] BALLOU, D. P. and PAZER H.: Modeling Completeness versus Consistency Tradeoffs in Information Decision Contexts.

IEEE Transactions on Knowledge and Data Engineering, vol. 15, no. 1, 2003.
[4] BOUZEGHOUB, M. and LENZERINI M. Introduction to the Special Issue on Data Extraction, Cleaning, and

Reconciliation. Information Systems, 26(8):535–536, 2001.
[5] BATISTA, M. C., LÓSCIO, B. F. AND SALGADO, A. C. Optimizing Access in a Data Integration System with Caching

and Materialized Data. In Proc. of 5th ICEIS, 2003.

[6] CARDELLI, L. and WEGNER, P. On Understanding Types, Data Abstraction, and Polymorphism. ACM Computing
Surveys, Vol.17, No.4, Dec. 1985.

[7] CHEN, P.P. The Entity-Relationship Model: Toward a Unified View of Data. ACM Transactions on Database Systems,
1976.

[8] HERDEN, O. Measuring Quality of Database Schema by Reviewing - Concept, Criteria and Tool. In Proc. 5th Intl
Workshop on Quantitative Approaches in Object-Oriented Software Engineering, 2001.

[9] KESH, S. Evaluating the Quality of Entity Relationship Models. Inform. Software Technology. 1995.
[10] KOTONYA, G and SOMMERVILLE, I. Requirements Engineering: Processes and Techniques. 1stEdition, Wiley & Sons,

1997.
[11] LÓSCIO, B. F., Managing the Evolution of XML-Based Mediation Queries. Tese de Doutorado. Curso de Ciência da

Computação. Centro de Informática, UFPE, Recife, 2003.
[12] MOODY, D. Measuring the Quality of Data Models: An Empirical Evaluation of the Use of Quality Metrics in Practice,

New Paradigms in Organizations, Markets & Society. Proc. of 11th European Conference on Information Systems, 2003.
[13] NAUMANN, F. and LESER, U. Quality-driven Integration of Heterogeneous Information Systems. In Proc. of the 25th

VLDB. 1999.
[14] PETERSON, D., BIRON, P. V., MALHOTRA, A. and SPERBERG-MCQUEEN., C. M. XML Schema 1.1 Part 2: Data

Types – W3C Working Draft, 2006. http://www.w3.org/TR/xmlschema11-2/.
[15] PIATTINI, M., GENERO, M. and CALERO, C. Data Model Metrics. In Handbook of Software Engineering and

Knowledge Engineering: Emerging Technologies, World Scientific, 2002.
[16] SCANNAPIECO, M. Data Quality at a Glance. Datenbank-Spektrum 14, 6–14. 2005.
[17] SI-SAID, S. C. and PRAT, N. Multidimensional Schemas Quality: Assessing and Balancing Analyzability and Simplicity,

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2814, 140—151. 2003.
[18] SPACCAPIETRA, S. and PARENT, C. View Integration: a Step Forward in Solving Structural Conflicts, IEEE

Transactions on Knowledge and Data Engineering, 1994.
[19] TAYI, G. K. and BALLOU, D. P. Examining Data Quality. Communications of the ACM 41(2), 1998.
[20] VARAS, M. Diseño Conceptual de Bases de Datos: Un enfoque Basado en la Medición de la Calidad", Actas Primer

Workshop Chileno de Ingeniería de Software, Punta Arenas, 2001.
[21] WAND, Y. and WANG, R.Y. Anchoring Data Quality Dimensions in Ontological Foundations. Communications of the

ACM 39(11), 86—95, 1996.
[22] WANG, R., KON, H. and MADNICK, S. Data Quality Requirements Analysis and Modelling, 9th International Conference

of Data Engineering, Vienna, Austria, 1993.
[23] WANG R.Y. and STRONG D.M. Beyond Accuracy: What Data Quality Means to Data Consumers. Journal of

Management Information Systems, 1996.
[24] WIEDERHOLD, G., 1992. Mediators in the Architecture of Future Information Systems. IEEE Computer. 2.

http://www.w3.org/TR/xmlschema11-2/

	3.2 Schema Mappings
	4.1 Type Consistency
	5.1 Minimality Analysis
	5.2 Type Consistency Analysis
	6.1 Redundant Entities Elimination
	6.2 Redundant Relationships Elimination
	6.3 Redundant Attributes Elimination

