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Abstract

Recent studies have indicated that companies are increasingly experiencing Data Quality (DQ) related problems
as more and more complex data are being collected. In order to address such problems, literature suggests the imple-
mentation of a Total Data Quality Management Program (TDQM) that should consist of the following phases: data
quality definition, measurement, analysis and improvement. DQ is often defined as “fitness for use”. Although “fitness
for use” captures the essence of quality, it is difficult to measure DQ using this broad definition. Thus, it has long been
acknowledged that the quality of data is best described or analyzed via multiple attributes or dimensions. Yet, despite
broad discussion in the DQ literature, there is no one definite set and exact definition of DQ dimensions because DQ
is context dependent. Therefore, DQ dimensions should be identified and defined in relation to tasks to achieve a
suitable level of DQ. This work identifies the important DQ dimensions for evaluating the quality of the data for credit
risk assessment. It also explores the key DQ challenges and causes of DQ problems in financial institutions. Findings
of a statistical analysis of an empirical study identify nine important DQ dimensions including accuracy and security
for assessing the quality of the data in credit risk databases.
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1. Introduction

The risk of poor DQ increases as larger and more complex information resources are being collected and main-
tained [19, 24]. Because most modern companies tend to collect increasing amounts of data, good data management
is becoming ever more important. As a response, in the last two decades, the issues of DQ have received a lot of
attention, both by organizations worldwide and in academic literature. Several studies are exploring DQ challenges,
focusing on DQ measurement and improvement [3–10, 15–38].

In practice, decision makers differentiate information from data intuitively, and describe information as data that
has been processed. Unless specified otherwise, this paper uses data interchangeably with information.

DQ is often defined as “fitness for use” which implies the relative nature of the concept [4, 17, 25]. Data with
quality for one use may not be appropriate for other use. For instance, the extent to which data is required to be
complete for accounting tasks may not be required for sales prediction tasks. More general, data that are of acceptable
quality in one decision context may be perceived to be of poor quality in another decision context, even by the same
individual [25, 29]. This is mainly because DQ is a multi-dimensional concept in which each dimension represents
a single aspect or construct of data items [4, 5, 36] and also comprises both objective and subjective aspects. Some
aspects are independent while others depend on the type of task and/or experience of the data user [4, 25]. Moreover,
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in the end, it is the user who will decide whether or not data are fit for use. Therefore, quality of data is considered
to be task and expertise dependent. Accordingly, studying DQ in the context of a specific task and expertise is a
recognized method [10, 21, 23–25, 37, 38].

1.1. Credit Risk Assessment Task
DQ is of special interest and relevance in a credit risk setting because of the introduction of compliance guidelines

such as Basel II and Basel III. Since the latter have a direct impact on the capital buffers and hence safety of financial
institutions, special regulatory attention is being paid to addressing DQ issues and concerns. Hence, given its imme-
diate strategic impact, DQ in a credit setting is more closely monitored and/or scrutinized, than in most other settings
and/or business units [12, 28].

The credit risk assessment task considered in this study is subjected to Basel II regulation which demands complete
transparency and traceability of data, and is primarily concerned with quantifying the risk of loss of principal or
interest stemming from a borrower’s failure to repay a loan or meet a contractual obligation. Thus, financial institutions
are obliged to assess the credit risk that may arise from their investment. They may estimate this risk by taking into
account information concerning the loan and the loan applicant.

The quality of the credit approval process from a risk perspective is determined by the best possible identification
and evaluation of the credit risk resulting from a possible default on a loan. Credit risk can be decomposed into four
risk parameters as described in the Basel II documentation [12]. These are Probability of Default (PD), Loss Given
Default (LGD), Exposure at Default (EaD) and Maturity (M). These parameters are used to calculate the regulatory
capital. Regulatory capital, also referred to as a buffer capital, is the money set aside to anticipate future unexpected
losses due to loan defaults.

Regulatory Capital = f (PD, LGD, EaD,M)

Incorrect parameters may result in a loss and even bankruptcy of the institution. Therefore, minimizing the errors
when quantifying the credit risk parameters is a crucial process [2, 13]. Improving the quality of the data used for
calculating these parameters is one way of improving the precision of the parameters.

1.2. Total Data Quality Management Program (TDQM)
It is argued in the literature that organizations should implement a Total Data Quality Management (TDQM)

program which includes DQ definition, measurement, analysis and improvement. This enables them to achieve a
suitable DQ level [30].

The DQ definition phase is the starting point for a TDQM program identifying all the necessary DQ dimensions
to be measured, evaluated and analyzed. Next, the measurement process is implemented. The results from the
measurement process are analyzed and DQ issues are detected. These issues will be taken into account during the
improvement phase. In this phase, the collection of poor quality data cases is thoroughly investigated and improvement
actions are suggested. The four phases are iterated in this order over time as shown in Fig. 1. In fact, the primary goal
of DQ assurance is the continuous control of data values and possibly, their improvement [4, 34].

Since the identification of DQ dimensions from a user perspective defines the list of important DQ dimensions for
the specific task that have to be assessed, analyzed and improved [4, 34], this empirical study explores and measures
the important DQ dimensions in order to assess the quality of the data for the credit risk assessment task. Moreover,
it reveals the most frequent challenges of DQ and their causes.

The remainder of the paper is structured as follows. The next section explores the related research on the topic.
The third section explains the research methodology used. The fourth section elaborates on the key findings. Finally,
the paper ends by elucidating the conclusions and indicating the future research ideas.

2. Related Research

2.1. Identification and Definition of Data Quality Dimensions
DQ problems cannot be addressed effectively without identifying the relevant DQ dimensions. Thus, a first ob-

jective of DQ research is to determine the characteristics of data that are important to, or suitable for data consumers
[36]. While fitness for use captures the essence of DQ, it is difficult to measure DQ using this broad definition [3, 16].
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Figure 1: A schematic overview of the TDQM methodology adopted from Massachusetts Institute of Technology (MIT) [34]

Thus, it has long been acknowledged that data are best described or analyzed via multiple attributes or dimensions
[20, 29, 32]. Yet, despite broad discussion in the DQ literature, there is no one definite set and exact definition of DQ
dimensions because DQ is context dependent (see Table 1).

Ref Intrinsic IQ Contextual IQ Representational IQ Accessibility IQ

[22]
Accuracy, Completeness,
Consistency, Validity Timeliness Uniqueness

[36]
Accuracy, Believability,
Reputation, Objectivity

Value-added, Relevancy, Com-
pleteness, Timeliness, Appro-
priate amount

Understandability, Interpret-
ability, Concise and consistent
representation

Accessibility, Ease of opera-
tions, Security

[33] Correctness, Unambiguous Completeness Meaningfulness

[8]
Accuracy, Precision,
Reliability, Freedom from bias

Importance, Relevance, Use-
fulness, Informativeness, Con-
tent, Sufficiency, Complete-
ness, Currency, Timeliness

Understandability, Readability,
Clarity, Format, Appearance,
Conciseness, Uniqueness,
Comparability

Usableness, Quantitativeness

Table 1: DQ dimensions from the literature ordered according to the framework of Wang and Strong [36]

Different studies analyzed DQ from a task specific perspective. For example, Zhu and Gauch [40] assessed the
DQ of a web page in terms of a DQ framework comprising of six DQ dimensions, namely currency, availability,
information-to-noise ratio, authority, popularity, and cohesiveness. They measured the dimensions through the prop-
erties of web pages. Similarly, Chien et al. [5] assessed different DQ dimensions in order to evaluate the quality of
online product review by customers or other parties. They adopted the definitions of different DQ dimensions for
the quality analysis of the online product reviews. For example, they defined objectivity as the extent to which an
information item is biased, appropriate amount of data as the extent to which the volume of information in a review
is sufficient for decision making, and completeness as the extent to which the information in a review is complete and
covers various aspects of a product. Furthermore, they identified objectivity and appropriate amount of information
as effective DQ dimensions in identifying product review quality but assessed completeness as a very ineffective DQ
dimension to measure the quality of a product review by customers or other parties.

On the other hand, there are a number of studies which identify and define DQ dimensions regardless of the use
of the data in order to facilitate the general applicability and comparability of their DQ dimensions across functions.
In this regard, Wand and Wang [33] based their definition of DQ on the internal view of information systems (data
production and system design processes) because it is context independent. Hence, it supports a set of definitions
of DQ dimensions that are comparable across applications. First, they identified different criteria for a real-world
system to be properly represented by an information system. Based on these criteria, they defined four deficiencies
namely ambiguous representation, incomplete representation, meaningless states, and operation deficiencies. Based
on these deficiencies, they summarized different DQ aspects into complete, unambiguous, meaningful, and correct DQ
dimensions. In addition, in the same study, they categorized different DQ dimensions from the literature as internal
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view (design or operation related) and external view (use or value related), whereby both views were further refined as
either system or data related DQ dimensions. Within the internal view, accuracy or precision, timeliness or currency,
reliability, completeness and consistency are defined as data related and reliability is defined as a system related DQ
dimension. On the other hand, in the external view, timeliness, relevance, content, importance and sufficiency are
defined as data related and timeliness, flexibility, format and efficiency are defined as system related DQ dimensions.

Similarly, Wang and Strong [36] analyzed the various DQ dimensions from end users’ perspectives but regardless
of the use of the data. They conducted a large scale survey to determine and categorize the DQ dimensions. Their
analysis began by collecting information from users regarding various DQ descriptors that resulted in over 100 items
that were grouped into 20 categories. These were further aggregated into four broad DQ classes: intrinsic (the extent
to which data values are in conformance with the actual or true values), contextual (the extent to which data are
applicable to the task of the data user), representational (the extent to which data are presented in an intelligible
and clear manner), and accessibility (the extent to which data are available or obtainable). Table 1 shows the DQ
dimensions considered in different studies and classifies them into the four classes of the Wang and Strong DQ
framework [36].

We summarized the most often cited DQ dimensions and their definitions based on a comprehensive literature
review and further extended these DQ dimensions based on our pilot survey in Section 3.2. In fact, we adopted the
DQ framework of Wang and Strong to classify DQ dimensions [36]. This framework is recognized as the only one that
attempts to strike a balance between theoretical consistency and practicability. Furthermore, the framework has been
found to be applicable to various domains [9]. The structure of the framework is hierarchical, and it organizes DQ
features along fifteen DQ dimensions to comprehend the four broad DQ classes. Table 2 shows the summary of the DQ
dimensions. We believe that these DQ dimensions provide a comprehensive coverage of the multidimensional nature
of DQ. Hence, in this paper, we used this summary to measure the relevance or applicability of the DQ dimensions
for the credit risk assessment task.

2.2. DQ Challenges

As more data are collected and maintained, the risk of poor DQ increases. Multiple data sources, subjective judg-
ment in data production, security/accessibility trade-off, and changing data needs are often mentioned challenges [17].
For example, multiple sources of the same data produce different values for that data. For instance, similar accounting
data held in different files are very likely to differ to each other as updating or changing all the files at the same time
is not always possible. This is also illustrated by system designers’ tendency to avoid having similar data in different
files. Similarly, using several different processes is also likely to produce different values for the same information
[20]. Like multiple sources of data, subjective judgment of data is also a challenge for DQ. Information production
using subjective judgment often produces biased information. Data stored in an organization’s database is considered
to be a set of facts. However, the process by which these “facts” are collected may involve subjective judgments.
For example, the expense codes assigned to indicate different allowances paid to employees by an accountant can be
biased by the accountant’s knowledge.

In fact, DQ improvement actions require the identification of the causes of data errors and their permanent elim-
ination through an observation of the whole process where data are involved [3, 4, 20]. Data are impacted by many
processes, most of which affect their quality to a certain degree [20]. Fig. 2 shows different data inputting and manip-
ulation processes as identified by [20]. Measuring the impacts of data inputting and manipulating processes on DQ
is necessary for proper DQ improving activities. In this paper, we identify different DQ challenges and their main
causes in financial institutions.

3. Research Methodology

3.1. Research Questions

As described above, data of sufficient quality considered appropriate for one task may not be of sufficient quality
for another task [32]. Therefore, identifying and defining DQ dimensions which are relevant to assess the DQ of one
specific task is a recognized approach [5, 40]. Also, we believe that identifying the most important DQ dimensions
for the specific task is a very crucial step for DQ improvement because it gives a clear direction as to how and where
to invest the improving actions. Accordingly, we performed an empirical study which identifies and defines DQ
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Cat. DQ dimensions Definitions References

In
tr

in
si

c

Accuracy (AC) The extent to which data are certified, error-free, correct,
flawless and reliable

[1, 3, 5, 7, 16, 18, 21, 24–26,
28, 29, 31–34, 36, 38]

Objectivity
(OBJ)

The extent to which data are unbiased, unprejudiced,
based on facts and impartial

[1, 5, 7, 16, 18, 21, 25, 31, 34,
36]

Reputation
(REP)

The extent to which data are highly regarded in terms of
its sources or content

[3, 5, 16, 18, 21, 25, 31, 36]

C
on

te
xt

ua
l

Completeness
(COM)

The extent to which data are not missing and covers the
needs of the tasks and is of sufficient breadth and depth
of the task at hand

[1, 4, 5, 7, 16, 18, 21, 23–25,
28, 29, 31, 33, 34, 36, 38]

Appropriate-
amount (APM)

The extent to which the volume of information is appro-
priate for the task at hand

[5, 16, 18, 21, 24, 31, 34, 36]

Value-added
(VAD)

The extent to which data are beneficial and provides ad-
vantages from its use

[5, 16, 18, 21, 24, 31, 34, 36]

Relevance
(REL)

The extent to which data are applicable and helpful for
the task at hand

[5, 16, 18, 21, 24, 31, 33, 34,
36]

Timeliness
(TIM)

The extent to which data are sufficiently up-to-date for
the task at hand

[5, 7, 16, 18, 21, 25, 29, 31,
33, 34, 36, 38]

Actionable
(ACT)

The extent to which data is ready for use pilot survey

R
ep

re
se

nt
at

io
n

Interpretable
(INT)

The extent to which data are in appropriate languages,
symbols, and the definitions are clear

[5, 16, 18, 21, 25, 34, 36]

Easily-
understandable
(EU)

The extent to which data are easily comprehended [5, 16, 18, 21, 25, 31, 34, 36]

Representational-
consistent (RC)

The extent to which data are continuously presented in
same format

[5, 16, 18, 21, 25, 28, 31–34,
36]

Concisely-
represented
(CR)

The extent to which data is compactly represented, well-
presented, well-organized, and well-formatted

[5, 16, 18, 21, 25, 28, 31–34,
36]

Alignment (AL) The extent to which data is reconcilable (compatible) pilot survey

A
cc

es
s

Accessibility
(ACC)

The extent to which data is available, or easily and
swiftly retrievable

[5, 16, 18, 21, 25, 31, 34, 36]

Security (SEC) The extent to which access to data is restricted appropri-
ately to maintain its security

[5, 16, 18, 21, 25, 31, 34, 36]

Traceability
(TRA)

The extent to which data is traceable to the source pilot survey

Table 2: Mostly cited DQ dimensions (attributes) and their definitions
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Figure 2: Different data inputting and manipulating processes as discussed in [20]

dimensions for the credit risk assessment task by collecting and analyzing data in the form of a survey taken from
financial institutions worldwide. The advantage of adopting an empirical approach is that it captures task specific
users’ requirements [36]. Furthermore, it may reveal characteristics that researchers have not defined as part of a
general DQ definition. This empirical study explores and measures the important DQ dimensions in order to assess
the quality of the data for the credit risk assessment task. Moreover, it reveals the most frequent challenges of DQ and
their causes.

3.2. Pilot study

To test our procedures and determine the clarity of the questions/items, we conducted a pilot study. The pilot
study also helped to identify DQ dimensions important to the credit risk assessment task but not shown in Wang and
Strong’s IQ framework [36]. Subjects were asked to list as many DQ dimensions as they found relevant for their task
in addition to the given framework. As a result, “alignment”, “actionable” and “traceability” DQ dimensions were
identified. The categories and definitions of these four dimensions are also determined by the subjects, Table 2.

The pilot study also served to discover a blueprint ICT architecture desired by financial institutions to enhance
DQ as shown by Fig. 3. Data is entered in the system using different interfaces and is checked against validation
constraints. Before transferring the data to the analysis warehouse, a staging area is used to verify the completeness,
uniqueness, accuracy and consistency of the data. If the data meets the expected quality level, it is directly transferred
to the data warehouse. Next, the data can be used to build credit risk models. On the other hand, if the data do not
meet the required quality level, the business analyst investigates the problem and traces the data back to the source for
corrections. This may then lead to the implementation of new business rules and constraints at the data entry level.

The pilot study finally provided feedback as to the usability and clarity of the study instruments and the simplicity
and consistency of the procedures. The subjects of the pilot study were credit risk department managers of three major
European banks. They took an average answer time of 30 minutes to finish the questionnaire.

3.3. Empirical evaluation

3.3.1. Design of the Study
The study consists of two parts. In the first part, the respondents are asked 20 questions to identify recurring DQ

problems and their magnitude, the motivation for DQ initiatives in their department and if there are any DQ improving
activities in place. The questions have exhaustive response categories with an “other” response option.

The second part of the study measures the importance of the DQ dimensions defined in Table 2 in the credit risk
assessment task context. Subjects are provided with Table 2 and are asked to rate the importance of the DQ dimensions
listed on a scale from 0 to 10 for their task (credit risk assessment), where 0 was not important at all, 5 was somehow
important and 10 was extremely important.
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Figure 3: A blueprint ICT architecture desired by financial institutions to enhance DQ

3.3.2. Participants
Among a set of 500 financial institutions worldwide determined by multiple business experts, a random subset of

150 were taken. The study subjects are managers of the credit risk department who are responsible for developing or
assessing credit risk models and are assumed to have similar experience on the job.

3.3.3. Procedures
A personalized link of the web survey, carrying the company name, was mailed together with a cover letter

explaining the nature of the study, the time to complete the study (less than 30 minutes) and the importance of this
study. All addresses used were company mail addresses. Finally, of the 150 questionnaires mailed, 64 (an effective
response rate of 42.67%) were returned.

3.4. Statistical analysis

In order to test the significance of the obtained results, a number of statistical tests are applied in accordance with
the literature. Each of the different tests is assessed at a significance level of 5% unless stated otherwise. Before
adopting specific statistical tests, the underlying assumptions made by these tests should be fulfilled. Parametric tests
such as Analysis Of Variance (ANOVA) and t-tests both assume the data are normally and IID (Independently and
Identically Distributed) [14]. A Jarque-Bera test was adopted to verify the normality of the data. The Jarque-Bera test
is a two-sided goodness-of-fit test used to verify the null hypothesis that the data comes from a normal distribution
with unknown variance and mean. It has an asymptotic χ2 distribution with 2 degrees of freedom. The test statistic
takes on the following form:

JB =
n
6

(
s2 +

(k − 3)2

4

)
where n represents the sample size, s the sample skewness and k the sample kurtosis.

As the null hypothesis of normality was rejected for ten out of seventeen DQ dimensions at α = 5%, we used
non-parametric tests in the remainder of the analysis.

To compare the survey results across DQ dimensions, a Friedman test was adopted which is a non-parametric
equivalent to the well known ANOVA test [11]. This test detects differences across all DQ dimensions and is defined
as:

χ2
F =

12P
k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4
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with R j the average rank of DQ dimension j = 1, 2 . . . k for P banks. Under the null hypothesis, the Friedman test
statistic is χ2

F distributed with k − 1 degrees of freedom, at least when P and k are big enough (P > 10 and k > 5). In
this survey, P = 33 and k = 18.

Next, since the assumption of equality between all DQ dimensions is rejected, we proceed with a post-hoc
Bonferroni-Dunn test. The Bonferroni-Dunn test is a non-parametric alternative to the Tukey test and compares the
DQ dimensions with the dimension associated with the highest average rank. The difference between two dimensions
is found to be significant if the corresponding average ranks differ by at least the critical difference:

CD = qα

√
k(k + 1)

6P

where qα is drawn from a Studentized range statistic divided by
√

2. This test also incorporates an additional Bonfer-
roni correction by dividing the confidence level α by the number of comparisons made, k − 1, to control for family
wise testing, thus resulting in a stronger test.

In case of comparing the sample median between two groups, a (non-parametric) Wilcoxon ranked sum test
is used. This test hypothesizes that the data comes from two unknown distributions with equal median [39]. All
statistical tests were implemented in Matlab.

4. Results and Discussion

In this section, we present and discuss the key findings of the study. The results of Section 4.1 explain the key DQ
challenges, the key causes of DQ problems and the motivations of DQ enhancing activities in financial institutions. In
Section 4.2, we present the results of the statistical analysis and identify the important DQ dimensions for the credit
risk assessment task.

4.1. DQ issues in financial institutions

Among 64 financial institutions, only 37 are participated in the first part of the survey. In this first part, the
respondents were asked to indicate the major DQ challenges or problems that they encounter on a daily basis in
financial institutions of which the results are depicted in Fig. 4a. 63% of the respondents indicated that inconsistency
(value and format) and diversity of data sources are main recurring challenges of DQ. This indicates that there are
many similar data which are kept in different files. Since these data may not be updated or changed at the same time,
it is very likely that the data can differ to each other. As a result, decision makers either must rely on their own
DQ assessment in order to choose the data source most suited for their decision tasks or must reconcile the different
data sources to get one reliable data source. However, we can infer from the results that both processes are not easy.
In line with the results in Fig. 4a, Cappiello et al. [4] indicated that mismatches among sources of the same data
are a common cause of intrinsic DQ concerns. They identified in their study that mismatches among sources of the
same data encourage a subjective DQ assessment by decision makers which gradually affects the intrinsic or objective
DQ dimensions. Initially, data consumers do not know the source to which DQ problems should be attributed; they
only know that data is conflicting. These concerns initially appear as believability problems. Over time, data users
assess the accuracy of the data for the sources based on experience and personal preferences, which leads to a poor
reputation for sources considered inaccurate. Hence, less reputable sources are viewed as having little added value
for the task, resulting in reduced use [4]. However, these less reputable data sources may be of high quality.

In addition to the inconsistency and diversity of data sources, the results in Fig. 4a show that data collection
problems and the high costs associated to them are recurring DQ challenges. Data are often produced or maintained
by different departments and by different data producers. However, these data are typically also needed by other
departments which are not responsible for the production and maintenance of it. This indeed should be facilitated by
the system. Yet, collecting all the necessary data for the task is found to be a common challenge as it consumes much
of the decision makers’ time. Another reported DQ related problem in the results of Fig. 4a are difficulties when
making use of the available data. This is related to the relevancy and timeliness DQ dimensions. If data are irrelevant
for the task, the task user can’t use the data as the data may not have added value. Similarly, if the data are out of date
or not timely, the decision makers can’t use the data for their decision making activities.
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Literature assessed the impact of different data related processes on DQ [17, 20]. We adopted these data related
processes shown in Fig. 2 and measured their impact on DQ for financial institutions in the first part of the survey. The
results are depicted in Fig. 5. These results indicate that though with different degree, all data related processes have
an impact on DQ. Predominantly, manual data entry processes are confirmed to be a major DQ problem cause. This
indicates that despite high automation in the institutions, much data enter into databases by people through various
interfaces. The most common source of data problems is a person making a mistake while entering data manually.
Example of this could be mixing up the age of two customers or not entering any data at all resulting in inconsistent
data. This can create a DQ problem which can not easily be identified or explained. These different human manual
data entry process problems however can be mitigated by well-designed data entry processes and accompanying
instructions [20].

System consolidation and initial data conversion are also confirmed to cause database impurity as shown in the
results in Fig. 5. The main common problem in system consolidation is data duplication. Previous research also
acknowledges that the data in the consolidated systems often overlap [3]. Similarly, when data are transferred from
previous/old systems or paper documents to a new system, data may be lost in the process. This is exacerbated by the
fact that there is typically no well recorded metadata or information about the data [3, 17, 20]. In addition to the above
identified causes of DQ problems, data mutations taking place internally without being captured by the system and
loss of expertise are also indicated as common DQ problem causes as shown in the results in Fig. 5. The changes are
known only by those who made the changes and whenever those employees leave, these changes may get lost. This
clearly indicates that much of the data exists as tacit knowledge rather than in metadata format. Though very rarely,
the respondents also admitted that processes meant to clean impure data in fact caused DQ problems (Fig. 5). Wang
and Strong [36] reported that every database has impurity, thus trying to fix one problem may create another one. This
finding warns that in order to ensure DQ, the effects of all data related processes need to be taken into account as well.

In the first part of the survey, the respondents were also asked to indicate the magnitude of DQ problems in the
available credit risk databases. The results in Fig. 6 depict the observed magnitude of poor DQ. More than 10% of the
data in credit risk management databases are estimated to be of poor quality. The majority of the institutions estimated
that between 10-20% of the data in the databases is subject to errors. However, a large number of institutions do not
know the magnitude of the problem. This is clearly shown by the not known answers given by 19% of the total
respondents as depicted in the results in Fig. 6. This result indicates that most financial institutions are still unable
to develop comprehensive measures and are unable to assess the magnitude of DQ problems. As a consequence, the
impact of the existing poor DQ on the decision tasks is hard to assess as well.

In addition, the intrinsic difficulty of accurately measuring DQ might discourage any initiative to improve it. This
is confirmed by the results shown in Fig. 4b which indicate that regulatory requirements (e.g. Basel I and II) are cited
as the key reasons of any DQ enhancing project. The Basel Accord requires the calculation of detailed loss modeling
factors to determine the capital requirement as explained earlier. Accurate quantitative modeling of PD, LGD, and EaD
is not only required by this regulation but can become a competitive advantage leading to superior credit performance
[2]. However, a competitive advantage is considered as less important to initiate DQ enhancing activities as indicated
in the results in Fig. 4b. Because of these regulatory compliance requirements, financial institutions are organizing
DQ teams to improve DQ and cross-functional efforts to improve the comparability and applicability of data sources
across different business units. However, such efforts are reported to be not matured enough yet.

In the first part of the survey, respondents were also asked whether the DQ ICT architecture implemented in the
organization (if any) is similar to the blueprint architecture suggested by the pilot survey. Most respondents indicated
the presence of a DQ ICT architecture which was however dissimilar to the suggested one; a minority even did not
have any DQ specific ICT architecture in place. Further inquiry revealed the existence of at least three important
differences to the DQ ICT architecture proposed as ideal by the respondents of the pilot survey. The first element is
the lack of a staging area to check the DQ prior to transfer to the data warehouse. Instead the data are most often
directly transferred from the operational data stores to the data warehouses where DQ is then subsequently checked.
The second main difference is there is the difficulty of tracing back the DQ errors and/or problems to the source
or original operational data stores for correction. Hence, it was indicated that identified DQ problems are typically
corrected in the data warehouses itself instead of in the operational data stores as in the ICT architecture suggested
in the pilot survey. As a result, the data in the operational stores and data warehouses are likely to be different and
thus inconsistent. Finally, the respondents indicated the absence of an independent business analyst to study the DQ
problems in the implemented ICT architecture unlike in the suggested ICT architecture in the pilot survey.

9



Generally, the above explained key findings show that although poor DQ appears to be the norm, rather than the
exception, the issue of DQ is currently largely ignored by financial institutions.

Inconsistent data representation
Inconsistent copies of data
Data collection
Diversity of data sources
Making use of the available data
Others (cost of data collection)

(a) Major data quality issues in financial institutions

Regulatory Compliance
Support Business Operations
Support Strategic Decisions
Other (not applicable)
Multiple factors

(b) Major Data quality initiative motivations in financial
institutions

Figure 4: The major DQ problems and reasons for improvement actions

4.2. Basic statistic analysis
In the second part of the survey, the respondents were asked to rate the importance of each of the DQ dimensions

given in Table 2 for the credit risk assessment task. The overall results are presented in Table 3. All seventeen DQ
dimensions in Table 2 are attributed a score higher than 7/10, indicating the importance of each dimension for credit
risk assessment. The results in Table 3 are further analyzed by first performing a Friedman test, which detects if
there are statistically significant differences between the scores of all DQ dimensions. The null hypothesis is strongly
rejected (p value < 0.001) indicating significant differences exist in the results of the survey. Thus, we proceed with
a Bonferroni-Dunn test. The results of the Bonferroni-Dunn test are depicted in Fig. 7. The X-axis in this figure
corresponds to the average rank for each of the DQ dimensions. The DQ dimensions are represented by a horizontal
line; the more this line is situated to the left, the higher the scores on that DQ dimension. The left end of this line
depicts the average ranking while the length of the line corresponds to the critical distance. If the difference in average
ranking between a DQ dimension and the ‘best’ DQ dimension is more than this critical distance, the difference is
significant at the 99% confidence level. The ’best’ DQ dimension is a DQ dimension which has the lowest average
ranking. The dotted, dashed and full vertical lines in the figure indicate the critical difference at respectively the
90%, 95% and 99% confidence level. The scores on a DQ dimension are significantly lower than those of the ‘best’
dimension if it is located at the right hand side of the vertical line.

Accuracy clearly was attributed the highest score as it is the most left-positioned DQ dimension as shown in the
results of the Bonferroni-Dunn test in Fig. 7 and consequently is confirmed to be the most important DQ dimension
for the credit risk assessment task. Since accuracy is found to be the best scoring dimension, it is used to compare
the average scores of each of the other sixteen DQ dimensions. The scores for security, relevancy, actionability,
accessibility, objectivity timeliness, value-added and representational consistency are found to be not significantly
different at the 99% confidence level. Based on these results, we can conclude that accuracy, security, relevancy, ac-
tionability, accessibility, objectivity, timeliness, value-added and representational consistency are the most important
DQ dimensions for the credit risk assessment task. On the other hand, the completeness, interpretability, reputabil-
ity, traceability, easy understandability, appropriate-amount, alignment and concise representation DQ dimensions are
found to be significantly less important (see Fig. 7).
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Figure 5: Different causes of DQ problems in financial institutions
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Figure 6: Magnitude of poor DQ problems measured in financial institutions
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DQ Dimension Mean SD 95% C.I.
Accuracy(AC) 9.08 1.54 8.69–9.46
Actionable(ACT) 8.53 1.63 8.12–8.94
Relevancy(REL) 8.52 1.53 8.13–8.9
Security(SEC) 8.47 2.08 7.95–8.99
Accessibility(ACC) 8.41 1.61 8.00–8.81
Timeliness(TIM) 8.28 1.79 7.83–8.73
Value-
added(VAD)

8.27 1.94 7.78–8.75

Objectivity(OBJ) 8.19 2.20 7.64–8.74
Representational-
consistent(RC)

8.13 2.22 7.57–8.68

Completeness(COM) 8.02 2.31 7.44–8.59
Reputability(REP) 7.89 1.88 7.42–8.36
Interpretability(INT) 7.86 2.05 7.35–8.37
Appropriate-
amount(APM)

7.84 1.86 7.38–8.31

Easily-
understandable(EU)

7.81 1.93 7.33–8.30

Alignment(AL) 7.75 2.05 7.24–8.26
Traceability(TRA) 7.73 2.23 7.18–8.29
Concisely-
Represented(CR)

7.36 2.21 6.81–7.91

Table 3: Basic statistical description of DQ dimensions (Mean, standard deviation (SD) and confidence interval (C.I.)

It has been shown that DQ problems increase when there is a large amount of data to be collected and managed
[24]. This is typically the case for large institutions. Therefore, we conducted a Wilcoxon-ranked sum test of which
the results are shown in Fig. 8 to check whether there is a difference in the importance of DQ dimensions between
large and SMEs financial institutions. Financial institutions with total assets of more than and less than 100 billion
euros are classified as large and SMEs respectively. While, there are no statistically significant differences among
the median scores of DQ dimensions for large and SMEs institutions at the 5% significance level in (Fig. 8), we
can see that the medians of most of the DQ dimensions for large institutions are greater than that of SMEs. This
inconclusive result may indicate that the importance of each DQ dimensions increases as the amount and complexity
of data increase.

The Friedman test is also used to test if there are significant differences among the aggregated scores of the four
DQ classes defined in the framework of Wang and Strong [36]. The results depicted in Table 4 indicate that there
is a statistically significant difference among the representation and the other three DQ classes. This indicates the
fact that most of the DQ dimensions under the representation DQ class are significantly less important for credit risk
assessment task as shown above.

Data
quality
Classes

M
edian

Standard
deviation

Intrinsic

C
ontextual

R
epresen.

A
ccess

Intrinsic 9 1.94
Contextual 9 1.86
Represen. 8 2.09
Access 9 2.01

Table 4: The results of Wilcoxon ranked sum test show statistically significant difference among some of the DQ Classes(dark grey
and light grey cells indicate significant and non significant difference at α = 5% respectively)
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Figure 7: Bonferroni-Dunn plot of the DQ dimensions scores assessed by the credit risk managers in financial institutions
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Table 5: The results of Spearman’s rank correlation test which show the significance of correlation between DQ dimensions

The correlation between DQ dimensions was also investigated using the Spearman’s rank correlation, ρ. This is a
non-parametric correlation measure which investigates the monotonic relationship between any two DQ dimensions.
ρ is defined as:

ρ = 1 −
6
∑n

i=1 d2
i

n(n2 − 1)

with n the sample size and di the difference between the ordinal ranks assigned to each of the observations. The
significance of the Spearman’s rank correlation measure is given in Table 5. These results show that most of the
DQ dimensions are correlated with each other. The black, dark grey and light grey cells in the results of Spearman
test depicted in Table 5 show the significance of the correlation among the DQ dimensions at 99%, 95% and 90%
confidence level respectively. The white cells indicate that there is no correlation between the DQ dimensions.

As the results in Table 5 indicate, the majority of the DQ dimensions are positively correlated to each other.
Accuracy is correlated with the majority of other DQ dimensions, clearly illustrating the business analyst’s tendency
of equalizing it with the total DQ requirements. In fact, the problem of inaccuracy can be related to many of the DQ
dimensions. For example, a null value for the age of a customer can be both associated to completeness and accuracy
DQ dimensions. Accuracy can also relate to the representational consistency DQ dimension. For example, a birthdate
value of a person represented in DDMMYY and MMDDYY format can indicate both inaccuracy and inconsistency
problems.

The strong positive correlation observed in the results of Table 5 are also supported by the literature. Lee et al.
[18] also found high correlation between a number of DQ dimensions. They reported a significant correlation at the
95% confidence level between the accessibility DQ dimension and the appropriate amount, believability, complete-
ness, concise representation, consistent representation, free-of-error, interpretability, relevance, reputation, security,
timeliness and understandability DQ dimensions [18]. Hence, it can be concluded that improvement action on one
DQ dimension has a positive effect on the others DQ dimensions.
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Figure 8: The results of Wilcoxon ranked sum test, comparing the medians of DQ dimensions for large and SMEs financial
institutions as assessed by the credit risk managers with their p-values between brackets

5. Conclusion and Future Research

This paper explored the important DQ dimensions in the context of the credit risk assessment task and identified
different DQ challenges and their possible causes. We started with a literature review of the different DQ dimen-
sions, especially focussing on the framework of Wang and Strong [36]. Based on the results of the pilot survey, this
framework was extended with three additional DQ dimensions (i.e. “alignment”, “actionability” and “traceability”),
totalling seventeen DQ dimensions. The importance of this extended framework has been assessed by credit risk
managers. These decision makers rated the DQ dimensions on a scale from 0-10. The results were analyzed using
a Friedman test which indicated a significant difference among the scores of the DQ dimensions. The results of the
post-hoc Bonferroni-Dunn test confirmed that accuracy is the most important DQ dimension for the credit risk assess-
ment. Also, security, relevancy, actionability, accessibility, objectivity, timeliness, value-added and representational
consistency are found to be important DQ dimensions for this task. Moreover, it was found that the majority of DQ
dimensions are correlated, implying that DQ, although intrinsically a multidimensional concept, is often perceived
from a single perspective.

Finally, the paper identified different DQ challenges and their causes in financial institutions. The results indicated
that inconsistency and diversity of data sources are among the most recurring challenges. Likewise, manual data
entry processes are found to cause the majority of the DQ problems. Although DQ problems are endangering the
effectiveness of the task, only little DQ enhancement activities are currently in place. Moreover, these activities are
mostly instigated by regulatory authorities, rather than by internal considerations. Surprisingly, creating a competitive
advantage was not found to be an important stimulus in any DQ improving activity.

Although the implementation of a TDQM program involves DQ definition, measurement, analysis and improve-
ment phases, this paper only focused on the DQ definition phase. In the definition phase, the identification of various
DQ dimensions relevant to credit risk assessment was considered. This helps to invest resources for improving the ap-
propriate DQ dimensions. However, the three other phases (measurement, analysis and improvement) for the identified
DQ dimensions are left as a topic for future research.

It is also confirmed in this paper that the majority of financial institutions are unaware of the magnitude of their
DQ problems. This implies that they are still unable to develop comprehensive measures to these DQ problems. This
is a clear indication of the need for comprehensive DQ measuring metrics.

Finally, although the pilot survey identified the blueprint DQ ICT architecture which should be implemented by
financial institutions in order to enhance the DQ of data stores, the effectiveness and viability of this architecture needs
further investigation.

Acknowledgment

This research was supported by the odysseus program (Flemish Government, FWO) under grant G.0915.09.
[1] B. Baesens, C. Mues, D. Martens, and J. Vanthienen. 50 years of data mining and or: upcoming trends and challenges. Journal of the

Operational Research Society, 60:16–23, 2009.

14



[2] Basel Committee on Banking Supervision. International convergence of capital measurement and capital standards. Technical report, Bank
of international settlements, 2006.

[3] C. Batini and M. Scannapieco. Data Quality: Concepts, Methodologies and Techniques, pages 20–50. Springer, New York, 2006.
[4] C. Cappiello, P. Giciaro, and B. Pernici. Hiqm: A methodology for information quality monitoring, measurement, and improvement. ER

Workshops, LNCS 4231:339–351, 2006.
[5] C.C. Chen and Y.D. Tseng. Quality evaluation of product reviews using an information quality framework. Decision Support Systems, in

press, 2010.
[6] I.N. Chengalur-smith, D.P. Ballou, and H.L. Pazer. The impact of data quality information on decision making: An exploratory analysis.

IEEE Transactions of Knowledge and Data Engineering, 11(6), 1999.
[7] K. Dejaeger, B. Hamers, J. Poelmans, and B. Baesens. A novel approach to the evaluation and improvement of data quality in the financial

sector. In Proceedings of the 15th International Conference on Information Quality, Little Rock, USA, 2010.
[8] W.H. Delone and E.R. McLean. Information systems success: The quest for the dependant variables. Information Systems Research, 3(1):60–

95, 1992.
[9] M.J. Eppler and D.Wittig. Conceptualizing information quality: A review of information quality frameworks from the last ten years. In

Proceedings of the 2000 Conference on Information Quality, 2000.
[10] C.W. Fisher and D.P. Ballou. The impact of experience and time on use of data quality information in decision making. Information Systems

Research, 14(2):170–188, 2003.
[11] M. Friedman. A comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical Statistics, 11:86–92,

1940.
[12] T.V. Gestel and B. Baesens. Credit Risk Management. Oxford University Press Inc. New York, 2009.
[13] M.B. Gordy. A comparative anatomy of credit risk models. Journal of Banking and Finance, 24:119–149, 2000.
[14] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, Data Mining, Inference, and Prediction. Springer, 2001.
[15] M. Jarke and Y. Vassiliou. Data warehouse quality: A review of the DWQ project. In Proceedings of the Confrenece on Information Quality,

pages 299–313, Cambridge, MA, 1997.
[16] B.K. Kahun, D.M. Strong, and R.Y. Wang. Information quality benchmarks: Product and service performance. Communications of the ACM,

45(4), 2002.
[17] Y.W. Lee, L.L. Pioino, J.D. Funk, and R.Y. Wang. Journey to Data Quality, pages 67–108. The MIT Press, London, 2006.
[18] Y.W. Lee, D.M. Strong, B.K. Kahun, and R.Y. Wang. A methodology for information quality assessment. Information and Management,

40:133–146, 2002.
[19] S. Madnick and H. Zhu. Improving data quality through effective use of data semantics. Data & Knowledge Engineering, 59:460–475, 2006.
[20] A. Maydanchik. Data Quality Assesment, pages 5–30. Technics publications, 2007.
[21] C. Moraga, M.A. Moraga, C. Calero, and A. Caro. Towards the discovery of data quality attributes for web portals. ICWE, LNCS 5648:251–

259, 2009.
[22] A. Paul P. Cykana and M. Stern. Dod guidelines on data quality management. In Proceedings of the Conference on Information Quality,

pages 154–171, Cambridge, MA, 1996.
[23] F. Panse and N. Ritter. Completeness in databases with maybe tuples. ER workshops, pages 202–211, 2009.
[24] A. Parssian and V.S. Jacob. Assessing data quality for information products: Impact of selection, projection, and cartesian product. Manage-

ment Science, 50(7):967–982, 2004.
[25] L.L. Pipino, Y.W. Lee, and R.Y. Wang. Data quality assessment. Communications of the ACM, 45(4), 2002.
[26] S. Raghunathan. Impact of information quality and decision-maker quality on decision quality: a theoretical model and simulation analysis.

Decision Support Systems, 26:275–286, 1999.
[27] E. Rahm and H.H. Do. Data cleaning: problems and current approaches. Bulletin of the IEEE Computer Society Technical Committee on

Data Engineering, 2000.
[28] T.C. Redman. The impact of poor data quality on the typical enterprise. Communications of the ACM, 1998.
[29] G. Shankaranarayanan and Y. Cai. Supporting data quality management in decision-making. Decision Support Systems, (42):302–317, 2006.
[30] G. Shankaranarayanan, M. Ziad, and R.Y. Wang. Managing data quality in dynamic decision environments: An information product approach.

Journal of Database Management, 14(4):14–32, 2003.
[31] D.M. Strong, Y.W. Lee, and R.Y. Wang. Data quality in context. Communications of the ACM, 40(5):103–110, 1997.
[32] G.K. Tayi and D.P. Ballou. Examining data quality. Communications of the ACM, 41(2), 1998.
[33] Y. Wand and R.Y. Wang. Anchoring data quality dimensions in ontological foundations. Communications of the ACM, 39(11), 1996.
[34] R.Y. Wang. A product perspective on data quality management. Communications of the ACM, 2, 1998.
[35] R.Y. Wang, V.C. Storey, and C.P. Firth. A framework for analysis of data quality research. IEEE Transactions on Knowledge and Data

Engineering, 7(4), 1995.
[36] R.Y. Wang and D.M. Strong. Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems,

12(4), 1996.
[37] J.E. Ware and B. Gandek. Methods for testing data quality, scaling assumptions, and reliability. Journal of Clinical Epidemiology, 51(11):945–

952, 1998.
[38] S. Watts, G. Shankaranarayanan, and A. Even. Data quality assessment in context: A cognitive perspective. Decision Support Systems,

48:202–211, 2009.
[39] F. Wilcoxon. Individual comparisons by ranking methods. Biometrics, 1:80–83, 1945.
[40] X. Zhu and S. Gauch. Incorporating quality metrics in centralized/distributed information retrieval on the world wode web. In Proceedings

of the 3rd Annual Internation ACM SIGIR Conference on Research and Development in Information Retrieval, pages 288–295, 200.

15




