THE COMBINED CONCEPTUAL LIFE CYCLE MODEL OF INFORMATION QUALITY IN USER PERCEPTIONS OF IQ ON THE WEB
(Research Paper)

Shirlee-ann Knight
Edith Cowan University
s.knight@ecu.edu.au

Abstract: Presented is the Combined Conceptual Life Cycle (CCLC) Model of Information Quality (IQ). The CCLC conceptualises information/data quality as being a highly relative construct, best understood in terms of sixteen IQ dimensions housed within four broad IQ categories: namely; Intrinsic IQ, Representational IQ, Interactional IQ, and Contextual IQ. The four categories themselves are seen as falling into two information life cycle contexts: that of (1) data/information generation and (2) data/information use. By conceptualising user perceptions of IQ in terms of the information life cycle, the model is able to demonstrate where in the information life cycle users are most likely to engage specific perceptions of IQ, and predict the relative impact those perception might have on the user’s general perception of IQ. In this way, the model begins to illustrate how users perceptions are able to legitimately vary depending on individual differences between users and information contexts.

Key Words: Information Quality; User Perceptions; Information Retrieval; CCLC; Combined Conceptual Life Cycle Model of IQ;

INTRODUCTION:
This paper presents and discusses the Combined Conceptual Life cycle (CCLC) model of IQ (see also [34]) which was developed as part of a research project examining user perceptions of IQ in the context of their World Wide Web information retrieval behaviour. As an information environment devoid of enforceable IQ standards [24, 8, 31] the Web provides an extraordinary observational context where users are often required to determine IQ for themselves.

Presented first is the theoretical underpinnings of the model, which outlines how the CCLC is able to conceptualise commonly accepted user perceptions of various IQ dimensions as part of an information life cycle of information production (also generation) and application (also retrieval and/or use). The methodology of how the dimensions for the CCLC were empirically selected and tested is then presented, followed by a discussion of some of the preliminary findings of the first empirical testing of the model.

DEFINING INFORMATION QUALITY:
The “Fit-for-Use/Purpose” Paradigm
Information Quality (IQ) has been described in the literature as a complex, multi-dimensional construct [3, 29, 1, 39, 22] in that multiple factors determine its perceived status and application. A somewhat general consensus has been reached in relation to a definition for IQ as being information/data that is “fit-for-use” (also “fit-for purpose”) [74].

The “fit-for-use/purpose” paradigm is useful in that it implies IQ is context driven [38, 22, 18, 48, 61]. The value of seeing IQ as context driven construct is that it:
1. Enables researchers to conceptualise the processes involved in any user/information interaction processes (for examples see: [74, 60, 14, 16, 26, 17, 46]);
2. Facilitates the process of associating characteristics (most often called IQ “dimensions”) with the information, which can be used as IQ value-judgment criteria (for examples, see: [26, 51, 10]);
3. Helps researchers to better understand what criteria users may employ in their value-judgements of information (for examples see: [11, 41, 32])

The “fit-for-use” concept has been widely embraced for several reasons. Firstly, it conceptualises into simple language a complex notion associated with multiple user/information interactions, contexts and value-judgements, while still remaining enigmatic and relative like the concept it is used to define. Secondly, it facilitates the idea that quality in information is relative, that is; information considered appropriate for one use – and therefore perceived to be of high quality – may not possess sufficient attributes for another use [67]. Thirdly, it gives IQ an investigative context in that it implies IQ cannot be defined and assessed outside of the reason for which it exists [63, 64]. This is important, since it provides clues for where researchers might begin looking for examples of IQ.

Perceptions of IQ in User/Information Behaviour

The problem with defining IQ in such non-specific terms as “fit-for-use” is that researchers are still no closer to actually defining what a „quality“ piece of information is, or what criteria can be used to quantify or measure it. Instead, “fit-for-use” recognises the context of information, that is; that which is considered a „quality“ piece of information is highly reliant on the perceptions of users interacting with that information [55, 30, 13, 71, 20, 73, 32]. In other words, the quality of information cannot be assessed independent of the people who will use that information, which – as it turns out – is what makes this concept of IQ ultimately so useful, since it implies that users’ perceptions of IQ will be manifest in their information behaviours.

It is these two presuppositions: (1) that IQ is highly contextual; and (2) that perceptions of IQ can be observed (and therefore measured) in users information behaviours; which have theoretically driven the development of the many frameworks designed to conceptualise and measure IQ since Wang, Strong and Lee’s groundbreaking “fit-for-use” papers [74, 63, 64]. The CCLC too, is based on these two assumptions, and was developed from a synthesis of twenty IQ frameworks and models published over the decade from 1996-2006. The twenty IQ models and frameworks used to construct the specific IQ dimensions associated with the CCLC are presented and summarised in Appendix 1.

Information Quality as a subset of testable IQ Dimensions

The frameworks cited in Appendix 1 can be classified into four broad types of IQ models.

1. **Conceptual IQ identification models:**
 - CIQF - Categorical Information Quality Framework [74]; Extended ISO Model [77]; SDQF - Semiotic Data Quality Framework [60]; Conceptual Framework for measuring IS Quality [14]; Mapping IQ into the PSP/IQ (becomes AIMQ) [26]; IQM - Information Quality Measurement Methodology [17]; IQ as an evolving Life Cycle [42].

2. **Frameworks that push existing models in order to apply them to a Web environment:**
 - Extension of IQF into Web environments information contexts [27]; Detection of IQ problems by users on the WWW [30]; Synthesis of IQ and TAM models to conceptualise user value judgements during info retrieval of Web-based health information [61].

3. **Development of IQ conceptual models into machine readable metrics:**
 - Quality metrics for information retrieval on the WWW [78]; Classification of IQ Metadata Criteria [47]; Using IPMAP to create machine readable (quality related) metadata about data [58]; Quality metrics used to create Wikipedia IQ evaluation tool [66].

4. **Practical application of IQ guidelines to build user-resources and “how to…” frameworks for searchers of information – specifically user/searchers on the World Wide Web:**
 - CARS Checklist for Information Quality [23]; (Web) Evaluation Criteria [6]; Web Wisdom [2].

While varied in their approach and application, Appendix 1 clearly illustrates that the twenty frameworks share numerous common characteristics regarding their classifications and descriptions of the dimensions
of IQ. For example, the dimension/characteristic of reliability – closely associated in the models with such constructs as authority, reputation and credibility – is present in seventeen of the twenty models. Likewise, accuracy (also „free-of-error” and „correctness”) appears sixteen times, as does currency (also „up-to-date” and „timely”). Other constructs, such as relevancy, accessibility, usability (in terms of navigation and interaction), consistency, completeness, scope and objectivity appear in at least half the twenty frameworks.

Table 1. Sixteen Common Dimensions of IQ/DQ

<table>
<thead>
<tr>
<th>Dimension</th>
<th># of times</th>
<th>Definitions & Relating Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>17</td>
<td>The degree to which information is worthy of being depended on. Is built from other dimensions relating to authority, authorship and reputation.</td>
</tr>
<tr>
<td>Accuracy</td>
<td>16</td>
<td>The degree to which information is correct, or free from error</td>
</tr>
<tr>
<td>Timeliness/Currency</td>
<td>16</td>
<td>The degree to which information is up-to-date, relative to the task at hand</td>
</tr>
<tr>
<td>Relevancy</td>
<td>13</td>
<td>The degree to which information is applicable and helpful for the task at hand. Includes other dimensions such as useful.</td>
</tr>
<tr>
<td>Accessibility/Availability</td>
<td>12</td>
<td>The degree to which information is easily retrievable by information seekers. Refers to both a physical access (i.e. through a network or internet) and cognitive access (i.e. easily read).</td>
</tr>
<tr>
<td>Usability</td>
<td>11</td>
<td>The degree to which information can be easily found (i.e. navigated) and easily used.</td>
</tr>
<tr>
<td>Consistency</td>
<td>11</td>
<td>The degree to which information is presented in an orderly, logical format that is compatible with other information contained within the same place</td>
</tr>
<tr>
<td>Completeness</td>
<td>11</td>
<td>The degree to which all the necessary parts or elements of the required information are present.</td>
</tr>
<tr>
<td>Scope/Depth</td>
<td>10</td>
<td>The degree to which the amount of information available from a source has the appropriate amount (or coverage) of information required.</td>
</tr>
<tr>
<td>Objectivity</td>
<td>10</td>
<td>The degree to which information is aware of (i.e. stated), or free from bias.</td>
</tr>
<tr>
<td>Understandability</td>
<td>10</td>
<td>The degree to which information is capable of being understood or interpreted.</td>
</tr>
<tr>
<td>Security</td>
<td>10</td>
<td>The degree to which information is considered safe because of appropriate restricted access</td>
</tr>
<tr>
<td>Value-Added</td>
<td>9</td>
<td>The degree to which information delivers benefit by providing unique or distinct material.</td>
</tr>
<tr>
<td>Conciseness</td>
<td>6</td>
<td>The degree to which information is expressed in a compact, easy to understand manner.</td>
</tr>
<tr>
<td>Believability</td>
<td>5</td>
<td>The degree to which information is regarded as true or credible, and therefore capable of being believed.</td>
</tr>
<tr>
<td>Efficiency</td>
<td>5</td>
<td>The degree to which information is able to quickly meet the „information needs” of a searcher.</td>
</tr>
</tbody>
</table>

Table 1 lists the sixteen most common occurring dimensions and how often they appear in the twenty frameworks engaged in the original study (see [31]) associated with this research. It should be noted that a degree of conceptual analysis was required on the part of the researcher when determining the sixteen most common occurring dimensions listed in table 1. For example, what one author might call „right amount of information” [74, 30] another author might call „appropriate coverage” [6], while yet another author might conceptualise this as „information scope” [65]. In addition to using different words to conceptualise the same construct, authors may also use the same words to conceptualise different constructs. For example; Sturges & Griffin [65] conceptualise „appropriate for audience” as a scope construct, while Liu & Chi [42] conceptualise it in terms of relevancy.

Careful conceptual analysis of the frameworks in the literature arrived at the sixteen IQ dimensions listed in table 1 which were then categorised into four broad types of IQ, namely: Intrinsic IQ; Representational IQ; Interactional IQ; and Contextual IQ. This makes the CCLC structurally most similar to Wang & Strong’s [74] Categorical Information Quality Framework (CIQF), although there are some important differences. In addition to the 16 dimensions being chosen from a synthesis of the literature, rather than an adaptation of Wang & Strong [74], the process of grouping the IQ dimensions into the four areas was governed by contextual analysis of user-information interaction within an information life cycle, rather than conceptual analysis of IQ characteristics.

Conceptualising information characteristics according to the information’s context is employed by
numerous authors. Shanks & Corbitt [60] contend that IQ should be assessed within the context of its
generation, while Katerattanakul & Siau [27] advocate that it needs to be assessed according to its
intended use. The reason this contextual approach is in line with Wang & Strong’s [74] fit-for-
use/purpose paradigm, is because it recognises the attributes and dimensions used to assess IQ can vary
depending on the context in which the data is created or to be used [58].

Information Generation vs. Application – IQ as a Life Cycle

Liu & Chi [42] conceptualised IQ in terms of the information life cycle. The concept of information
interaction and use as a life cycle was not new to IS research (see [68, 25]), but its application to
understanding information or data quality was. Liu & Chi developed their Evolutional Data Quality
pyramid (figure 1a) which contended that the physical/actual characteristics of data quality fell into four
‘types’ of quality which then built on one another in an evolutionary process. This type of approach
meant that IQ could be conceptualised as a non-static construct which might vary through stages of the
information life cycle (figure 1b).

![Figure 1. Liu & Chi’s Evolutional Data Quality model (2002)](image)

Conceptualising IQ/DQ into four evolutionary stages of the information life cycle also allows for a more
explicit separation of IQ into two over-arching contexts. That of: (1) information generation; and
(2) information use. The CCLC sought to separate these contexts, since the framework recognises that
user IQ perceptions are so contextually driven, that how a user might perceive a specific IQ dimension
such as „information security” or „information access” could vary significantly dependant on whether that
user was providing or retrieving information. So, while the CCLC model of IQ sought to synthesis the
previous models in order to determine a robust sub-set of IQ dimensions, the overall framework became
conceptually driven by the notion of the context-specific user/information „actions” or tasks [43] which
typically take place within the various stages of information life cycle.

User/Information Interaction in the Information Life Cycle

From the large sample of human information behaviour literature engaged¹ four broad information
actions/ asks were conceptualised as part of the user/information interactions which typically take place
during the information life cycle. These included:

1. Information classification [50, 4, 5, 76];
2. Information production [59, 36, 57];
3. Information retrieval [62, 19]; and
4. Information extraction [21, 70].

It is important to note that the terminologies constructed here are not meant to be exhaustive, but are broad
and encompassing descriptors of information actions which take place during the information life cycle. The
positioning of these descriptors into the information life cycle helps the researcher to identify the types of
potential information demands and related IQ value judgements users might make of the data they

¹ see Knight & Spink [33] for a comprehensive review of the information behaviour literature engaged as part of this study
encounter, since it tells us something of the task and/or context of the information interaction. How these information actions fit into the life cycle is illustrated in figure 2, which presents the CCLC model of IQ.

INVESTIGATIVE FRAMEWORK:

CCLC: Combined Conceptual Life Cycle Model of IQ

The CCLC model was developed through the synthesis of numerous previous conceptual IQ frameworks, or parts there-of, examined as part of this study however three models in particular provided robust conceptual scaffolding. Wang & Strong [74] informed the study in relation to categorising the 16 dimensions into conceptually similar types of IQ. Shanks & Corbitt’s [60] influence can be seen in the superimposing of their four symbolic/process constructs of IQ (syntactic, semantic, pragmatic and social) into the life cycle. And Liu & Chi’s [42] concept of IQ as an evolving construct provided the contextual glue which allowed the model to develop its own contextually-driven framework of analyses.

Figure 2. Combined Conceptual Life Cycle Model of IQ

The over-arching assumption of the CCLC model is that IQ dimension importance and users’ value-judgments made in relation to them is heavily dependent on where in the life cycle user/information interaction takes place. This is consistent with Wang & Strong’s [74] contention that IQ, as a constructed object and value is essentially contextually driven. This contextual approach to conceptualising and then investigating user perceptions of IQ is mirrored in virtually all of the IQ frameworks presented in Appendix 1 where the cited authors first and foremost contextualise their investigation into either: (1) broad categories [74, 27, 14, 17]; (2) assessment classes/types [47, 78, 26, 42]; or (3) criteria/contexts [6, 23, 2, 60, 65, 61]. Thus, the CCLC follows this same approach, conceptualising the 16 IQ dimensions into four IQ Categories by clustering those dimensions into the context of an information life cycle. In so doing, it postulates that:

S-1: IQ dimensions are conceptually connected into four interrelated clusters, which have a collective and evolving impact within their cluster, as well as on the other three clusters;

S-2: Users’ perceptions of IQ are driven, by and large, by where in the information life cycle the user and information interact;

2 Knight [34] provides a more comprehensive and theoretical discussion of the conceptual models visited for this study

3 Subsequent semiotic models (Price & Shanks, [53, 54]) removed “social” however CCLC puts the social construct back
Intrinsic IQ
In the CCLC model of IQ, the intrinsic IQ category is seen as being determined during information generation and is constructed from the IQ dimensions of: (1) reliability; (2) accuracy; (3) objectivity; and (4) believability. As an early component of the information life cycle, the constructs associated with intrinsic IQ are considered essential characteristics and give the information its degree of integrity. As constructs, the dimensions of intrinsic IQ are built on observable characteristics such as authorship, which imply other attributes such as authority and reputation [28, 51]. Importantly, like the clusters of dimensions associated with each of the four IQ categories; reliability, accuracy, objectivity and believability are seen as being co-dimensions [45] of the same larger construct, in that not only are they often judged using the same information characteristics, but they often imply each other’s presence. For example, believability describes the so called credibility of information, and like reliability, is intrinsically linked with characteristics such as authorship, and co-dimensions like accuracy and objectivity. So, a dimension such as reliability denotes the presence of dimensions such as objectivity, accuracy and believability, in that without these characteristics, information would be considered, by the discerning recipient, to be unreliable.

Representational IQ
The dimensions of: (1) conciseness; (2) completeness; (3) completeness; and (4) understandability; characterise the “representational” characteristics of IQ. Bovee et al., [7] contend that characteristics such as completeness and consistency represent the physically integrity IQ in the same way that the previously discussed intrinsic characteristics such as reliability and believability imply integrity IQ.

Represenational IQ is summed up in the information’s actual existence, in that the types of associated information characteristics, unlike intrinsic characteristics, require the information be viewed and examined in order for a value-judgment to be made. Thusly, the CCLC contends that the dimensions of conciseness, understandability, completeness and consistency are demonstrative of the skill level of the information producer. Moreover, they also engender the information retriever to engage their own skill-set when making value-judgments related to them. Put simply, the user will make representational IQ value-judgments relative to their own cognitive ability and skill.

Interactional IQ
In the CCLC the interactional characteristics of information are gained at the pragmatic [60, 54] or presentation [42] stage of the information life cycle. The model contends this is where users make value judgments of information according to their technical or interactive experience and skills, that is; the perceptive IQ value judgments made in regards to: (1) accessibility; (2) usability; (3) efficiency; and (4) security; relate to the motor aspects of user-information interaction, and include such characteristics as how easily information can be located and retrieved. Therefore user value-judgements do not relate to the actual content of information, but are made according to perceptions of IQ on the Web as an information environment. In addition, the model recognises that the criteria engaged in making value-judgements of interactional IQ dimensions are often opposites of the same entity for information producers as information receivers. For example, if an interactional value-judgment is made in relation to the „price/cost” of information, a receiver’s judgement is made in relation to obtaining the data for as little cost as possible, but the
information producer is concerned with the complete opposite, wishing to gain the highest price possible. The same principal often applies for other interactional IQ issues such as information accessibility, copyright and security.

Contextual IQ

Contextual IQ is made up of such IQ dimensions as; (1) currency; (2) uniqueness (innovativeness); (3) relevancy; and (4) scope/depth. Most often it relates to the topic/subject content of information, and is directly related to the information needs of the information seeker [71]. Where value-judgments are made of the dimensions associated with representational IQ according to the seekers own information skill, contextual IQ value-judgments are made according to what the seeker is specifically looking for. This direct relationship between contextual IQ dimensions and user information need may account for why the associated dimensions of contextual IQ have become a central focus in systems and Web IQ research, as they are the characteristics which best represent why the user is engaging the system.

Recent research into systems, and particularly Web IQ [17, 65, 69, 56, 61] have positioned the contextual IQ and interactional IQ related dimensions as central to information seekers’ value-judgment processes. This view is mirrored in much of the information seeking behaviour (ISB) and information retrieval (IR) research, where the relevancy dimension is considered of particular importance [12, 15, 44, 72, 75, 56].

Contextual IQ presents the greatest challenge to information producers because currency, relevancy, uniqueness, and scope/depth are highly relative. That is; the „right”, or „right amount” of information or detail depends on contextual elements such as a seeker’s individual information need [9, 52] and these are elements that the information producer may have little to no control over. For the information producer then, contextual IQ relies on them knowing their audience’s information need, and becomes an important element of IQ production if the producer would have the seeker return or reuse their system/content [32].

Looping Life Cycle: The Inter-connectivity of IQ dimensions

Although the CCLC conceptualises 16 dimensions of IQ into four contextual categories associated with an information life cycle, the model also recognises the inter-connectivity of IQ dimensions in general. For example, as an „interactional IQ” characteristic of IQ, efficiency might typically represent the ease with which information can meet a user’s information need, and be value-judged according to users being able to quickly find what they are looking for. This could also be conceptualised as „navigatability” and is therefore related to other interactional IQ dimensions such as usability and accessibility. However, efficiency also implies other information characteristics such as consistency and conciseness, which are classified in the CCLC as representational IQ dimensions. So, while as a framework the CCLC has been developed to guide the study’s conceptual classification of the multi-dimensional phenomenon that is „information quality”, the interactive user/information processes involved with information creation, presentation, seeking, value-judgements, and ultimate retrieval, and use and re-use, implore the model to recognise that information production and information use are a continuum.

METHODOLOGY:

Instrumentation: IQ Frequency & Impact Survey

Eighty (80) „high-end” participants were asked to indicate: (1) how often they encountered a described problem; and (2) how encountering the problem impacted their general perception of IQ of the webpage. Figure 4 presents question 5, one of two questions used to test the „currency” dimension. Unlike in the example, users were not informed which dimension was being tested, they were simply asked to indicate how frequently they encountered the described scenario, and to select how encountering the problem was

Footnotes:

4 „High-end” users: all participants were career-researching academics or PhD candidates who frequently engaged the Web as part of their information retrieval (IR) strategies in their work/research.

5 (Q.5 from survey #4). The whole study involved 109 questions, in 4 surveys, plus one registration/demographic form. Survey #4: on IQ perceptions (total 70 questions with results for part B, i.e., 32 freq/impact Q’s used in this paper)
likely to impact their overall perception of the quality of the webpage(s).

Figure 4: Example of question in the IQ-Frequency & Impacts Survey

Question 5. (Timeliness/Currency question 1)
_pages that contain out-of-date/broken hyperlinks\star

a. how often do you encounter this issue?
- frequently
- occasionally
- infrequently
- never

b. how does encountering this affect your view of the information contained on the webpage
- Does not affect my perception of the webpage’s Information Quality
- Marginally decreases \(\downarrow\) my perception of the webpage’s Information Quality
- Greatly decreases \(\downarrow\) my perception of the webpage’s Information Quality

The IQ dimension Questions

The sixteen (16) IQ dimensions identified from the literature (see Table 1) were conceptualised into a set of 32 questions (see Table 2) – with each of the dimensions being tested twice. The pilot study had shown that users found it easier to describe what IQ was not, rather than what it was, so each dimension was described in terms of two possible (negative) scenarios typically encountered by users on the Web. For example, a lack of „accuracy” was described as: (i) a page that contain numerous spelling errors; and (ii) information that is incorrect.

Table 2: The sixteen dimensions tested in Survey #4 (Information Quality)

<table>
<thead>
<tr>
<th>Category</th>
<th>Dimension</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrinsic IQ</td>
<td>Reliability</td>
<td>(Q.1) Information that lacks an attributed author</td>
</tr>
<tr>
<td></td>
<td>Objectivity</td>
<td>(Q.2) Information that seems unreliable</td>
</tr>
<tr>
<td></td>
<td>Accuracy</td>
<td>(Q.3) Information that does not attempt sustain itself (e.g.; reference etc)</td>
</tr>
<tr>
<td></td>
<td>Believability</td>
<td>(Q.4) Information that is incorrect</td>
</tr>
<tr>
<td>Representational IQ</td>
<td>Conciseness</td>
<td>(Q.5) Information that lacks credibility</td>
</tr>
<tr>
<td></td>
<td>Completeness</td>
<td>(Q.6) Information that is difficult to read</td>
</tr>
<tr>
<td></td>
<td>Consistency</td>
<td>(Q.7) Information that lacks an attributed author</td>
</tr>
<tr>
<td></td>
<td>Understandability</td>
<td>(Q.8) Information that seems disjointed and difficult to follow</td>
</tr>
<tr>
<td>Interactional IQ</td>
<td>Accessibility</td>
<td>(Q.9) Information that lacks an attributed author</td>
</tr>
<tr>
<td></td>
<td>Usability</td>
<td>(Q.10) Information that seems disjointed and difficult to follow</td>
</tr>
<tr>
<td></td>
<td>Efficiency</td>
<td>(Q.11) Information that doesn’t meet your information needs</td>
</tr>
<tr>
<td></td>
<td>Security</td>
<td>(Q.12) Information that is difficult to read</td>
</tr>
<tr>
<td>Contextual IQ</td>
<td>Currency</td>
<td>(Q.13) Information that is highly repetitive</td>
</tr>
<tr>
<td></td>
<td>Uniqueness</td>
<td>(Q.14) Information that is difficult to navigate</td>
</tr>
<tr>
<td></td>
<td>Relevancy</td>
<td>(Q.15) Information that doesn’t meet your information needs</td>
</tr>
<tr>
<td></td>
<td>Scope/Depth</td>
<td>(Q.16) Information that is difficult to read</td>
</tr>
</tbody>
</table>

Table 2 lists each question used to test the specific IQ dimensions. It should be noted that a contention of this research, and the evidence of the results suggests that perceptions of IQ dimensions, in all likelihood,
do not exist as islands, but are inter-connected and fluid. In addition, some described scenarios could easily be included as testing other dimensions. There were at least six scenarios, for example, that could have been used to test participants’ perception of relevancy, including: (Q.9) irrelevant information [tested relevancy]; (Q.10) unhelpful information [tested relevancy]; (Q.16) information that seems out of place [Consistency]; (Q.11) information aimed at the wrong audience [accessibility]; (Q.25) long winded, unfocused information [conciseness]; (Q.31) information that doesn't meet your information needs [efficiency]. Given the time to continue with the research, a deeper level of data analysis could be used to strengthen and validate current results regarding specific dimensions of IQ, as well as provide an avenue for further research.

The IQ Dimensions Rating Scale
The choice to examine both the frequency (called „frequency score” [FS]) and the impact (called „Impact score” [IS]) of encountering IQ problems on the Web was made in order to understand more than just the actual information deficits typically encountered in a Web environment. For example, knowing that a page might contain broken hyperlinks is not enough to determine the quality of a webpage in that the study needed to understand the significance of those broken hyperlinks to a user’s perception of the quality of that webpage. This approach is consistent with the theory associated with IQ being a relative, contextual construct, but more importantly allows the study to begin to identify if some IQ sub-dimensions are more important to users general IQ perceptions than others. It does this by attaching a weighted formula („Perception of Web-IQ”) i.e., a numerical value, developed from both the frequency and impact/effect data, to each of the 16 tested dimensions, allowing results to different dimensions to be compared against each other.

The Perception Web-IQ Score for each dimension was calculated using a weighted formula for both a ‘frequency score’ (FS) and impact score’ (IS), divided by α (α = number of scores used, in this case; α = 2):

\[
\text{FS} = \frac{\{[\text{FS}] + [\text{IS}]\}}{\alpha} = \text{Web-IQ dimension score}
\]

The FS weighted formula was based on the logic that:

(1) an increased frequency should result in a higher FS: i.e., each user result for a specific IQ problem being encountered frequently [=Fq] should receive a higher FS weighting than an IQ problem encountered occasionally [=Oc] or infrequently [=InF], with never [=N] being the only way to lower the score. The result is then divided by 4 (δ = 4):

\[
\text{FS} = \frac{\{[\text{Fq}] \times 3 + [\text{Oc}] \times 2 + [\text{InF}] \times 1 + [\text{N}] \times -2\}}{\delta} = \text{FS}
\]

The IS weighted formula was based on the logic that:

(2) greater impact on IQ should result in a higher IS: i.e., if the impact of encountering a specific IQ characteristic greatly decreases [=Gt] the user’s perception of the page's IQ, it should receive a higher weighted IS than if it marginally decreases [=Mg] the user’s IQ perception. In addition, if a user recorded encountering a specific problem as having „no effect” [=Ni] on their perceptions of IQ, then the result should impact the IS score positively (to lower the score). Then divided by 3 (η = 3).

\[
\text{IS} = \frac{\{[\text{Ni}] \times -2 + [\text{Mg}] \times 1 + [\text{Gt}] \times 2\}}{\eta} = \text{IS}
\]

The construction of the data collection and analysis was such that figures could be analysed in the context of three levels of IQ; namely: (1) IQ issues – the individual problem encountered, of which 32 were tested; (2) IQ dimensions – the 16 dimensions of IQ, each represented by two tested problems; and (3) IQ Categories – the type of IQ conceptualised from groups of IQ dimensions. In addition, users IQ results could be analysed from three perspectives, namely: (1) Most frequently encountered [FS] IQ issue, dimension or category; (2) Most impacting IQ issue, dimension or category; and (3) Most important perceived Web-IQ issue, dimension or category (calculated from results to #1 and #2).

The Target User Group
The target user-group needed to be a relatively intellectually sophisticated group of users who demand a high level of quality in the information they retrieve from the Web. An assumption was made that career academics and thesis level university students – often members of academia themselves – would possess a relatively high degree of IQ perception, enjoying the ability and need to make relevant quality related
judgments of the information they encounter on the Web. They would also have a relatively high degree of cognitive awareness, and exhibit the capacity to articulate their strategies in relation to the decision-making processes involved in information search and retrieval on the Web.

Once it was determined such a skill-set and information demand might be found amongst „academic” users, a call for participation was sent out to multiple university organisations, on-line academic community groups and list-servers, asking for: (1) users who were career academics or postgraduate level students – including users who fell into both these categories; and (2) users who frequently engaged the Web to retrieve information that related to their work and/or research. Participants did not necessarily have to feel „comfortable” retrieving work/research related information from the Web, but needed to do so relatively regularly and be personally familiar with the process of using the Web as an information retrieval tool for the high quality content associated with their work. In addition, users who engage the Web as a means of professional networking, or even entertainment were not excluded from the target user-group, however the surveys and questionnaires they completed did not relate to these interactions.

DISCUSSION:

Information Quality (Dimensions) Score Results

Table 3 presents the overall results for the each of the 32 IQ issues tested. Column 1 lists the 32 issues examined as part of the study; column 2 (a-d) lists results in percentage for how frequently the users encountered the issue from column 1. Column 3 (a-c) records the degree to which each described problem impacts users’ perceptions of IQ when they encounter it on the Web. The weighted scores are then presented in columns 4, 5, and 6, followed by an indicator of which category and dimension of IQ was being examined.

<table>
<thead>
<tr>
<th>Question</th>
<th>How often issue/problem encountered (%)</th>
<th>Impact on perception of IQ (%)</th>
<th>Category/Dimension</th>
<th>Score/Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q(1) Info lacks attributed author</td>
<td>48 44 9 0</td>
<td>6 58 36</td>
<td>60.25 39.33 49.79</td>
<td>Intrinsic IQ: reliability 53.0 [1]</td>
</tr>
<tr>
<td>Q(2) Info that is unclear</td>
<td>24 61 15 0</td>
<td>1 15 84</td>
<td>52.25 60.33 56.29</td>
<td>Intrinsic IQ: accuracy 49.6 [2]</td>
</tr>
<tr>
<td>Q(3) Information that is incorrect</td>
<td>15 49 34 2</td>
<td>6 24 70</td>
<td>43.25 50.67 46.96</td>
<td>Intrinsic IQ:</td>
</tr>
<tr>
<td>Q(4) Information that is incomplete</td>
<td>8 62 29 1</td>
<td>1 12 86</td>
<td>43.75 60.67 52.21</td>
<td>Intrinsic IQ:</td>
</tr>
<tr>
<td>Q(5) Information that is out of place</td>
<td>28 55 18 0</td>
<td>11 48 41</td>
<td>53.00 36.00 44.50</td>
<td>Intrinsic IQ:</td>
</tr>
<tr>
<td>Q(6) Information that does not attempt to sustain itself</td>
<td>42 42 12 2</td>
<td>9 36 55</td>
<td>54.50 42.67 48.58</td>
<td>Intrinsic IQ:</td>
</tr>
<tr>
<td>Q(7) Information that is clearly erroneous</td>
<td>2 38 55 5</td>
<td>4 6 90</td>
<td>31.75 59.33 45.54</td>
<td>Intrinsic IQ:</td>
</tr>
<tr>
<td>Q(8) Information that lacks credibility</td>
<td>6 61 32 0</td>
<td>4 15 81</td>
<td>43.00 56.33 49.67</td>
<td>Intrinsic IQ:</td>
</tr>
<tr>
<td>Q(9) Long winded, unfocused information</td>
<td>10 51 39 0</td>
<td>8 49 44</td>
<td>42.75 40.33 41.54</td>
<td>Representational IQ: conciseness 43.8 [5]</td>
</tr>
<tr>
<td>Q(10) Information that contains poor grammar</td>
<td>18 52 29 1</td>
<td>9 28 64</td>
<td>46.25 46.00 46.13</td>
<td>Representational IQ:</td>
</tr>
<tr>
<td>Q(11) Poorly written information</td>
<td>21 65 14 0</td>
<td>4 24 72</td>
<td>51.75 53.33 52.54</td>
<td>Representational IQ:</td>
</tr>
<tr>
<td>Q(12) Information that is difficult to understand</td>
<td>11 59 29 1</td>
<td>36 45 19</td>
<td>44.50 3.67 24.08</td>
<td>Representational IQ:</td>
</tr>
<tr>
<td>Q(13) Information that is not complete</td>
<td>21 56 21 1</td>
<td>14 44 42</td>
<td>48.50 33.33 40.92</td>
<td>Representational IQ:</td>
</tr>
<tr>
<td>Q(14) Information that is not understandable</td>
<td>21 49 29 1</td>
<td>34 32 34</td>
<td>47.00 10.67 28.83</td>
<td>Representational IQ:</td>
</tr>
<tr>
<td>Q(15) Information that is not complete</td>
<td>10 54 35 1</td>
<td>5 50 45</td>
<td>42.75 43.33 43.04</td>
<td>Representational IQ:</td>
</tr>
<tr>
<td>Q(16) Information that is difficult to navigate</td>
<td>2 42 45 10</td>
<td>24 49 28</td>
<td>28.75 19.00 23.88</td>
<td>Consistency 33.5 [10]</td>
</tr>
<tr>
<td>Q(17) Information that is difficult to find</td>
<td>28 61 11 0</td>
<td>41 31 28</td>
<td>54.25 1.67 27.96</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(18) Information that is hard to find</td>
<td>34 55 10 1</td>
<td>48 31 21</td>
<td>55.00 -7.67 23.67</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(19) Aimed at the wrong audience</td>
<td>9 42 39 10</td>
<td>32 40 28</td>
<td>32.50 10.67 21.58</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(20) Information that is not accessible</td>
<td>6 56 34 4</td>
<td>21 41 38</td>
<td>39.00 25.00 32.00</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(21) Doesn’t meet information needs</td>
<td>58 39 4 0</td>
<td>56 24 20</td>
<td>64.00 -16.00 24.00</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(22) Information that is not complete</td>
<td>33 54 32 2</td>
<td>65 21 14</td>
<td>42.00 -27.00 7.50</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(23) Information that is not understandable</td>
<td>10 55 32 2</td>
<td>40 19 41</td>
<td>7.00 7.00 7.00</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(24) Information that is not complete</td>
<td>2 22 42 32</td>
<td>1 1</td>
<td>33.25 0.67 16.96</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(25) Out-of-date/broken hyperlinks</td>
<td>9 42 40 9</td>
<td>41 32 26</td>
<td>33.25 0.67 16.96</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(26) Information that is not complete</td>
<td>22 68 10 0</td>
<td>31 51 18</td>
<td>53.00 8.33 30.67</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(27) Information that is not complete</td>
<td>15 68 18 0</td>
<td>10 61 29</td>
<td>49.75 33.00 41.38</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(28) Information that is not complete</td>
<td>12 55 31 1</td>
<td>14 45 41</td>
<td>43.75 33.00 38.38</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(29) Information that is not complete</td>
<td>24 56 20 0</td>
<td>40 30 30</td>
<td>51.00 3.33 27.17</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(30) Information that is not complete</td>
<td>19 58 22 1</td>
<td>32 42 25</td>
<td>48.25 9.33 28.79</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(31) Information that is not complete</td>
<td>29 58 12 1</td>
<td>42 31 26</td>
<td>53.25 -0.33 26.46</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(32) Information that is not complete</td>
<td>15 38 36 11</td>
<td>76 22 1</td>
<td>33.75 -4.67 -4.46</td>
<td>Interpersonal IQ:</td>
</tr>
<tr>
<td>Q(33) Too much information</td>
<td>31 52 16 0</td>
<td>26 42 31</td>
<td>53.25 17.33 35.29</td>
<td>Interpersonal IQ:</td>
</tr>
</tbody>
</table>
Some General Observations & Findings

A weighted impact score is required to better understand User Perceptions of Web IQ

The overall results demonstrate that including an „impact score“ as part of each Web-IQ dimension score is highly important to understanding how various information characteristics impact users perceptions of quality on the Web. For example, users’ most frequently encountered IQ problem was finding information that didn’t meet their information need (Q.31), however its impact on their IQ perceptions when this occurred was relatively minimal (ranking 23rd out of the 32 issues tested), so the weighted Web-IQ score positions this problem as relatively unimportant to user Web IQ perceptions. This specific result seems to offer support to previous literature which suggests users take into account the information environment (or context) when making value judgments about IQ. In this case, the sheer size and volume of data available on the Web means that users seem prepared to encounter information that is not quite what they want on their journey towards finding their target data, without it significantly impacting their perception of the IQ. Indeed, numerous results from the study indicate that users demonstrated a high degree of cognitive tolerance for Web-specific IQ issues.

Users’ Exhibit Cognitive Tolerance for Web-specific IQ issues

Web-specific IQ issues are those encountered simply because the user is interacting with information in the World Wide Web environment. The user group’s general cognitive tolerance for these problems was recorded as exceedingly high given how often users’ claim to encounter these types of problems. Some examples include:

1. Nearly a quarter (22%) of users said they frequently encounter Web pages with broken hyperlinks yet a staggering 81% of them said this made little to no difference to their perception of the page’s IQ.
2. Likewise, more than half (60%) of users frequently found themselves interacting with information which did not meet their actual information need, yet only 20% of them said this would adversely impact their perception of the webpage/site’s IQ.
3. Users seemed particularly forgiving of technical issues such as slow downloading times (86% said this did not impact perceived IQ); pages which proved difficult to navigate (79% said little to no impact on perceived IQ); blatant breaches to copyright (74% said little to no impact); under construction notifications (72%, little to no impact).
4. Participants were more than 75% more likely to be negatively impact by content being out-of-date if it was not specifically an out-of-date hyperlink
5. Perhaps most telling – in this generation of information over-load – users were almost completely unfazed (76% nil impact, 22% marginal impact) when confronted with too much data/information.

IQ Score Results: Support for the CCLC Model of IQ

Earlier in this paper, the following proposition was stated as being a central assumption of the CCLC:

S-2. Users’ perceptions of IQ are driven, by and large, by where in the information life cycle the user and information interact;

The supposition had been made as part of a theoretical framework designed to help conceptualise the context of user-information interaction within an information life cycle. When user results are examined, not only is the postulate confirmed, but the data actually reveals at least one of the ways this happens:

S-3. Users perception of what IQ is, grows increasingly varied (between users) the further into the IQ life cycle that information travels or information/interaction takes place.

Perceptions of Web-IQ diverge the further into the Information Life Cycle.

The CCLC proposes that Intrinsic IQ dimensions are gained by information at the earliest point in the information life cycle as part of information generation (see figure 2 for visual). Also a part of information generation is information classification, organisation and production – and this is where Representational IQ dimensions are gained. Retrievers of information also begin to interact with the information at this stage of the information life cycle, and thus use their own cognitive ability and skill to make decisions about the intrinsic and representational IQ characteristics of the data. Interactional IQ,
i.e., accessibility, efficiency, usability and security; relate to the *motor* processes of information interaction; while the relevancy, currency, uniqueness and scope dimensions of Contextual IQ relate to users cognitive choices regarding the content of the information interaction.

Figure 5 illustrates how the variation (or range of responses) in users perceptions of Web-IQ increases the further into the information life cycle the user interacts with the data. Another way of looking at this would be to say that: *Users’ perceptions of Web-IQ diverge the closer they get to their target information.* Importantly, as this happens, the impact on IQ perceptions of this divergence proportionally decreases until such times as the user – as an information retriever – begins to generate new information; thereby changing their role from retriever to producer.

Figure 5: Variables between Web-IQ Scores within each IQ Category

Impact of IQ dimensions on Web-IQ perception decreases the closer users get to target information

The statistics recorded in Table 2 illustrate that the major reason for the decline in dimensional IQ importance to users Web-IQ perceptions is not related to how frequently an IQ issue is encountered on the Web, but as a result of a steady decline in the *impact* on user IQ perceptions (*see figure 6*). Thus:

S-4. The impact of IQ dimensions on Web-IQ perception in not related to problem frequency; and

S-5. The negative impact of users’ encountering problems with IQ diminishes the further into the IQ life cycle that user/information interaction takes place.

The author contends that both the increasing divergence of Web IQ perceptions and their decreasing impact occurs because as the information retriever moves deeper into the IQ life cycle they get closer to their target information and therefore move away from more general perceptions of IQ towards an increasing specificity pertaining to their individual information need(s). It would seem from this that users carry much of the cognitive responsibility for finding and retrieving information from the Web, and are relatively forgiving of the Web’s known short-comings. This is an important point, since it re-aligns Web-IQ studies towards intrinsic and representational IQ characteristics being of critical importance to user perceptions of Web-IQ during a period in the research where contextual [65, 69, 56] and usability issues [49, 29, 75] have become the dominant IQ constructs.

Some Contributions & Implications

In the first instance, the data in this study is empirically supportive of Wang & Strong’s [74] original conceptualisation of IQ into four categories of associated dimensions. *Figure 6* illustrates how the user perception patterns vary markedly between the four constructed categories. In the case of the CCLC, the naming of the categories was made vocabulary consistent: i.e., (1) Intrinsic IQ; (2) Representational IQ; (3) Interactional IQ; and (4) Contextual IQ (*see figure 3*).

Intrinsic IQ: demonstrated itself to be the most important IQ category – with all four dimensions ranked in the top 4. It is also the least influenced by the contextual/subjective characteristics of the system in which the information was disseminated or retrieved. That is, it is the least context specific IQ construct
to where information is encountered in the life cycle. It should be noted, that although objectivity caused the least concern for this user group, results to the survey questions (Survey #3) about the group’s Information Seeking Behaviour (ISB) suggested that the user population had a higher than normal degree of tolerance for biased information.

Representational IQ: Cross analysis of the results for representational IQ constructs against user demographic, professional and information-task statistics (see footnote 4) demonstrated that value-judgments assigned to representational IQ characteristics by the receivers of information are most influenced by the users’ own cognitive and information skills and abilities. An implication of this is that information producers should be aware of their audience’s skill-level; since *the level of skill of the information receiver, places specific demands on the dimensions associated with representational IQ*. This is an important point, since although deficiencies in representational IQ dimensions are generally encountered less frequently than contextual or interactional IQ issues, they accounted for four of the top 10 most negative impacts on users perceptions of IQ.

Figure 6: Frequency of IQ issue, their impact on, and importance to user Web-IQ perception

![Figure 6: Frequency of IQ issue, their impact on, and importance to user Web-IQ perception](image)

Interactional IQ: The range of results for interactional IQ dimensions diverged significantly compared with the previous IQ categories. Consistent with usability becoming such a key issue in the Web IR and IQ literature [49, 37], participants identified the issues associated with *usability* as their 3rd (information that is hard to find) and 5th (information that is difficult to navigate) most frequently encountered web IQ problem. However, like a number of other contextual and interactional IQ problems associated with the Web, the actual impact of encountering these difficulties turned out to be relatively minor, ranking 30 and 26th out of 32 respectively.

Contextual IQ: Contextual IQ related issues were cited as some of the most commonly encountered problems on Web, with users coming across them 9% more often than representational IQ issues, 16% more frequently than interactional IQ problems, and 1.3% more frequently than the critical intrinsic IQ issues. User value-judgments of the dimensions associated with contextual IQ were, by and large, information need (contextually) driven and profoundly influenced by relative user constructs such as their Attribution tendencies and motivation to engage information. This could explain the high prominence of the relevancy construct in recent Web IR and IQ research [12, 29, 44, 75]. The negative impact of encountering unhelpful or irrelevant information, however, is relatively small, which the author contends, renders relevancy – as a construct – a cognitive process which most users engage at a non-
affective level. That is; relevancy is rarely used to make quality related value-judgments about information which users encounter.

As expected, the high specificity of user perceptions in relation to contextual IQ with users’ information task/context, provided valuable cross-analysis fodder with the ISB survey results. For example: users who principally engage the Web for industry related information tasks valued uniqueness/innovativeness above other contextual qualities, users who predominately search for academic resources valued currency the most, and users who chiefly engage Web-only information tasks, such as online news and magazines, placed a higher value on relevancy.

Limitations & Future Research
There are a number of limitations associated with the research which may have impacted user results in relatively predictable ways. These include: (1) The relatively small size of the user-group; (2) The narrow sample (academics only); and (3) The broad nature of the investigation.

User group Limitations
The target participants for the research were classified as high-end information users, namely; career academics and dissertation level researchers. In addition, although not a goal of the research in that no pre-defined minimum level of user Web experience was used as an inclusion criteria, the users were all highly experienced in using Web technology for information retrieval. All participants had been using the Web and its search engines since before 2004, with the vast majority (95%) having used search engines previous to 2001. In fact, nearly three quarters had been using Web search engine technologies since before Google, and – even more remarkable, over a fifth of the user-group had been using Web technologies since before 1995, making them some of the earliest adopters of the global technologies that would become the World Wide Web. In short, results from the study’s associated surveys [32] demonstrated this user-group to be: (1) highly experienced in Web IR; (2) technically Web and search engine savvy; and (3) confident in their own ability to successfully find their target information.

Representational IQ results: It is likely that the user-group makeup has positively impacted representational IQ results in that the cognitive skills associated with the group is expected to be significantly higher than average. Of course the study in no way advocates that academia holds a monopoly on intelligent individuals or high-end information users. It simply assumed that, in order to participate in post-graduate academic activities, the vast majority of users would possess above average cognitive capabilities and demand a high level of quality in their target information. Given that the study wished to learn about IQ related decision making processes, this over weighting towards high-cognition users was considered necessary to the investigation. It also acted to narrow of the internal user-group variables, therefore improving the internal validity of user results. Replication of the study using a different user-population might be necessary to determine the degree of generalisability of findings to other user populations.

Interactional IQ results: It is possible that the extremely high levels of user Web and Search Engine experience reported by the user group is a contributing factor to the study’s finding that users demonstrate a remarkable cognitive tolerance for Web-specific IQ issues, however as the novice Web user becomes a dying breed, the Interactional IQ results may find themselves increasingly applicable to a more general audience. In addition, future research associated with the current study and data has the capacity to sub-divide the user-group according to Web experience levels (recorded in the user registration form) to determine whether this impacts Interactional IQ results.

Conceptual Construction Limitations
The author recognises that the conceptualisation of IQ into a set of meaningful, measurable dimensions is fraught with the danger of over-simplifying what amounts to a multi-dimensional construct [3, 29, 1, 22] made up of numerous inter-connected, affective parts, which are consciously and unconsciously heterogeneously engaged during user/information interaction. In this regard, the itemising of individual
dimensions into a most-to-least important list of user-driven IQ criteria is ultimately meaningless without developing a degree of understanding of how at least some of the “parts” work together in impacting users’ IQ perceptions. The dimension “efficacy” illustrates this inter-connectivity of IQ dimensions well. As a dimension of the interactional IQ category, efficiency implies other interactional characteristics such as usability and accessibility. As a characteristic of information however, efficacy also implies other characteristics such as consistency and conciseness – which are classified as representational IQ dimensions.

The user results discussed in this paper come, by and large, from the data associated with 32 specific questions regarding user-encountered Web IQ issues, and represents less than one third of the data associated with the project at large. It is hoped that future research will bring together more parts of the study to provide a greater contextual understanding of the multi-dimensional phenomena that is user perceptions of information quality.

Future Research

Presented in the current paper are the whole-group participant results for the IQ dimension aspects of a study investigating user perceptions of IQ in Web IR behaviour. The relatively strong internal validity associated with the participant group and collected data will provide a number of robust ways to examine variations in user results according to individual differences within the target participant group. Some of these differences were anticipated – from previous literature – and were included in the design of the registration form and four surveys investigating:

1. user perceptions of their interactions with, and expected outcomes from, web technologies;
2. user perceptions of their interactions with, and expected outcomes from, search engines;
3. general IR strategies employed while looking for information in a Web environment;
4a. user perceptions of Web IQ; 4b. perceptions when encountering IQ related problems on the Web.

Other individual differences between participants revealed themselves in the early stages of data review and analysis. These were gleaned from participant results to some of the 109 questions answered. The various individual differences provide interesting partition points for data analysis, allowing for a number of new research questions. Future research associated with the study then, will include analyses of whether and how some of the following constructs might impact user perceptions of Web-IQ: (1) user level of experience; (2) type of information being sought; (3) cognitive style in information search strategies; (4) expectations of IR strategy outcomes; (5) academic role; (6) academic discipline; (7) user self-efficacy; and more. For example, a preliminary review of the data demonstrates that a user’s information task can cause their perceptions of IQ to vary by around 36% from normal variation. Specifically, users’ target information can have a profound impact on how users perceive and approach whole categories of IQ. Users’ age also seems to have a significant influence on perceptions of IQ (28% variance) although further analysis is required to see whether this a direct relationship or through age’s influence on other constructs such as academic role or information task. So too, Users’ academic discipline (24%) appears to significantly influence Web-IQ perceptions – which again might provide fertile ground for future research.

CONCLUSION:

The proposed CCLC model of IQ seeks to contextualise user/information interaction in a way that provides a better investigative framework from which to examine user perceptions of IQ. By conceptualising user perceptions of IQ in terms of the information life cycle, the model is able to demonstrate where in the information life cycle users are most likely to engage specific perceptions of IQ, and predict the relative impact those perception might have on the user’s general perception of IQ.

Structurally, the model is comparable to Wang & Strong’s [74] in that it conceptualises the IQ dimensions into four IQ categories, although there has been a vocabulary shift with all four categories adjective named. This is consistent with the conceptual building of investigative frameworks. Conceptually, the model is like Liu & Chi’s [42] in that is sees IQ in terms of the information life cycle and contends that users engage specific dimensions of IQ at various stages of information interaction.
during this life cycle. The user results discussed in this article are not only consistent with the above postulate, but also reveal something of how users engage the dimensions and how these dimensions impact on more general user perceptions of IQ during information retrieval on the Web.

It is acknowledged that the need to engage a user-group with a high degree of cognitive ability and high demand on quality characteristics of the information they typically seek, means the study should now be replicated in different user-group populations to determine its degree of generalisability to all IQ contexts. In addition, a new user-group associated with the newer social/professional networking uses of the Web might provide a promising investigative context for the CCLC model given that this cohort blurs the lines between information generation and information retrieval in ways not seen in information interaction before.

ACKNOWLEDGEMENTS:

This research comes from the PhD “User Perceptions of Information Quality in World Wide Web Information Retrieval Behaviours” and was generously funded as part of the ARC-Discovery Project DP0452862: “Building an Internet Search Engine for Quality Information Retrieval”. The author would like to acknowledge the support of Professor Janice Burn, who supervised the PhD and provided much mentorship and input between 2005 and 2008. Thanks also to the other project researchers at University of Wollongong.

REFERENCES

APPENDIX 1: TABLE OF 20 IQ MODELS (1996-2006)

<table>
<thead>
<tr>
<th>Year</th>
<th>Author</th>
<th>Model</th>
<th>Constructs/Components</th>
<th>Category</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Accessibility IQ</td>
<td>Accessibility, Security</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contextual IQ</td>
<td>Relevancy, Value-Added, Timeliness, Completeness, Amount of Info</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Representational IQ</td>
<td>Interpretability, Ease of Understanding, Concise Representation, Consistent Representation</td>
</tr>
<tr>
<td></td>
<td>Zeist & Hendriks [77]</td>
<td>Extended ISO Model</td>
<td>Summary: >6 Quality characteristics >32 Sub-characteristics</td>
<td>Functionality</td>
<td>Suitability, Accuracy, Interoperability, Compliance, Security, Traceability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reliability</td>
<td>Maturity, Recoverability, Availability, Degradability, Fault tolerance</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Efficiency</td>
<td>Time behaviour, Resource behaviour</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Usability</td>
<td>Understandability, Learnability, Operability, Luxury, Clarity, Helpfulness, Explicitness, Customisability, user-friendliness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maintainability</td>
<td>Analysability, Changeability, Stability, Testability, Manageability, Reusability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Portability</td>
<td>Adaptability, Conformance, Replaceability, Instalability</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Authority</td>
<td>attributed authorship, publisher - info origin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Objectivity</td>
<td>free of bias, purpose of the web page</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Currency</td>
<td>last update, working hyperlinks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Coverage</td>
<td>topics, depth of material, uniqueness of material</td>
</tr>
<tr>
<td></td>
<td>Harris [23]</td>
<td>User-focused checklist (CARS) help researchers look for clues regarding website IQ</td>
<td>Summary: >4 contexts >at least 16 dimensions</td>
<td>CARS (context)</td>
<td>Dimensions to be assessed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Authority</td>
<td>trustworthy source, author’s credentials, evidence of quality control, known or respected authority, organizational support.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Accuracy</td>
<td>up to date, factual, detailed, exact, comprehensive, audience and purpose reflect intentions of completeness and accuracy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reasonableness</td>
<td>fair, balanced, objective, reasoned, no conflict of interest, absence of fallacies/slanded tone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Support</td>
<td>listed sources, contact information, available corroboration, claims supported, documentation supplied</td>
</tr>
<tr>
<td>1999</td>
<td>Alexander & Tate [2]</td>
<td>Applying a Quality Framework to Web Environment</td>
<td>Summary: >6 Criteria</td>
<td>Authority</td>
<td>validated information, author is visible</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Accuracy</td>
<td>reliable, free of errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Objectivity</td>
<td>presented without personal biases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Currency</td>
<td>content up-to-date</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Orientation</td>
<td>clear target audience</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navigation</td>
<td>Intuitive design</td>
</tr>
<tr>
<td></td>
<td>Katerattanakul & Siau [27]</td>
<td>IQ of Individual Web Site</td>
<td>Summary: >4 Quality Categories (adapted from Wang & Strong)</td>
<td>Intrinsic IQ</td>
<td>Accuracy and errors of the content, Accurate, workable, and relevant hyperlinks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Contextual IQ</td>
<td>Provision of author’s information</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Representational IQ</td>
<td>Organisation, Visual settings, Typographical features, consistency, Vividity/attractiveness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Accessibility IQ</td>
<td>Navigation tools provided</td>
</tr>
</tbody>
</table>
Table of 20 IQ Models (1996-2006) cont.

<table>
<thead>
<tr>
<th>Yr</th>
<th>Author</th>
<th>Model</th>
<th>Constructs/Components</th>
</tr>
</thead>
</table>
| 1999 | Shanks & Corbitt [60] | Semiotic-based FW for Data Quality | Syntactic: Consistent
Semantic: Complete and Accurate
Pragmatic: Usable and Useful
Social: Shared understanding of meaning | Well-defined / formal syntax
Comprehensive, Unambiguous, Meaningful, Correct
Timely, Concise, Easily Accessed, Reputable
Understood, Awareness of Bias |
Accessibility: Technical access, System availability, Technical security, Data accessibility, Data sharing, Data convertibility
Controlability: Error tolerance, Adaptability, System feedback, Efficiency, Responsiveness
Contextual Quality: Value added, Relevancy, Timeliness, Completeness, Appropriate data
Representation Quality: Interoperability, Consistency, Concision, Structure, Readability, Contrast |
| Naumann & Rolker [47] | Classification of IQ Metadata Criteria | Assessment Class: IQ Criterion
Subject Criteria: Believability, Concise representation, Interpretability, Relevancy, Reputation, Understandability, Value-Added
Process Criteria: Accuracy, Amount of data, Availability, Consistent representation, Latency, Response time |
| 2001 | Zhu & Gauch [78] | Quality metrics for information retrieval on the WWW | Assessment Class: IQ Criterion
Quality metrics: currency availability
infor-noise ratio
authority
popularity
cohesiveness | measured as the time stamp of the last modification of the document.
calculated as the number of broken links on a page divided by the total numbers of links it contains
computed as the total length of the tokens after pre-processing divided by the size of the document
based on the Yahoo Internet Life (YIL) reviews, which assigns a score ranging from 2 to 4 to a reviewed site.
determined by how closely related the major topics in the Web page are |
| 2001 | Leung [40] | Adapted Extended ISO Model for Intranets | Functionality: Suitability, Accuracy, Interoperability, Compliance, Security, Traceability
Reliability: Maturity, Fault tolerance, Recoverability, Availability, Degradability
Usability: Understandability, Learnability, Operability, Luxury, Clarity, Helpfulness, Explicitness, user-friendliness, Customisability
Efficiency: Time behaviour, Resource behaviour
Maintainability: Analysability, Changeability, Stability, Testability
Portability: Manageability, Reusability |
Useful Information | Free-of-Error, Concise, Representation, Completeness, Consistent Representation
Appropriate Amount, Relevancy, Understandability, Interpretability, Objectivity |
| 2002 | Liu & Chi [42] | Evolutinal Data Quality | Collection Quality: Accuracy, Objectivity, Trustworthiness, Completeness, Clarity
Organisation Quality: Reliability, Consistency, Storage Efficiency, Retrieval Efficiency, Navigability
Semantic Stability: Faithfulness, Neutrality, Interpretability, Formality
Application Quality: Ease of Manipulation, Timeliness, Privacy, Security, Relevancy, Appropriate Amount of Data |
Sound Information | Comprehensive, Accurate, Clear, Applicable
Concise, Consistent, Correct, Current |
Completely: Lack of Depth, Technical Problems, Missing Desired Information, Incomplete When Compared with Other Sites, Lack of Breadth
Relevance: Irrelevant Hits When Searching, Bias, Too Broad, Purpose of Web Site
Timelessness: Information is Not Current, Technical Problems, Publication Date is Unknown
Amount of Data: Too Much Information, Too Little Information, Information Unavailable |
Object: Accuracy, Completeness, Timeliness
User: Believability, Relevance |
Purpose/Audience: consistency, appropriateness
Content: accuracy, authority, copyright, currency, uniqueness, links, quality, and overall quality
Graphic & Media Design: attractive, well organised, good quality illustrations, navigational aids
Workability: user friendliness, computer environment, searching, browsability and organization, interactivity, connectivity |

589
Table of 20 IQ Models (1996-2006) cont.

<table>
<thead>
<tr>
<th>Yr</th>
<th>Author</th>
<th>Model</th>
<th>Constructs/Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>Stvilia, Twidale, Smith & Gasser [66]</td>
<td>Application of 7 known IQ metrics to automated system (evaluation) tool, to measure IQ of Wikipedia content</td>
<td>Authority/Reputation: by the authors of the material
Completeness: by broken hypertext links within articles
Complexity: by the readability of the content
Informativeness: by diversity of content
Consistency: by number of non-unique authors
Currency: by how current (up-to-date) content is
Volatility: by time taken to fix erroneous content</td>
</tr>
<tr>
<td>2006</td>
<td>Song & Zahedi [61]</td>
<td>IQ dimensions that influence users judgments of Web-based Health Infomediaries</td>
<td>Adequacy: completeness, coverage (scope), and level of bias in information
Relevance: practical (personal) applicability of information to individual user
Usefulness: (overall) perceived usefulness of information [TAM of info not system]
Reliability: accuracy and credibility
Understanding: clarity and ease of comprehension – i.e.; accessibility of health jargon [TAM of info, not system]
Ease of Use: [TAM] ease of (system) navigation
Interactivity: benevolence and personalisability
Hi’s Trust signs: policies & security, disclosures & ownership,</td>
</tr>
</tbody>
</table>

APPENDIX 2: KNIGHT’S (2008) ADDITION TO IQ MODELS

<table>
<thead>
<tr>
<th>Yr</th>
<th>Author</th>
<th>Context</th>
<th>Info Action</th>
<th>Category</th>
<th>Dimensions</th>
</tr>
</thead>
</table>