A Hierarchical Clustering Approach to Support the Data Verification Process in Master Data Management

Frank Beer, Kai-Uwe Baryga SYDECON GmbH Wolfratshausen, Germany {frank.beer, kai-uwe.baryga}@sydecon.de

Abstract: Over the past decades, quality on core data has become a major factor on daily business activities. Therefore enterprises are exerted to develop data management strategies in order to ensure a smooth execution of business transactions. As a result, software portals are introduced to either conduct business on maintaining and analyzing master data. In this work we are outlining a clustering approach that is useful for business-drivers in identifying and verifying hidden pattern in that discipline. In addition our method can be applied to bring content-based support to purely business-oriented master data portals.

16th International Conference on Information Quality, 2011

Table of Content

Motivation

Technical Preliminaries

The MD Clustering Approach

Experimental Results

Conclusion and Future Work

References

Motivation

Verification on Maintaining MD Entities

- The quality of master data (MD) can rely on many specific criteria (e.g. poor data definitions, processes, expiration). Additionally a major factor is data acquisition [2]
- Software **portals** supporting data acquisition (e.g. create, update, block) are covering formal business requirements, but often its pure and ideal business orientation let data-driver struggle because of poor content-based or data-driven support

Figure: Typical data aquisition portal system

```
Motivation
```

16th International Conference on Information Quality, 2011

Verification Process on Cleansing

- Once data is approved and running, still problems occure within daily business transactions:
 - Erroneous delivery of invoices or purchasing due to wrongly maintained MD entities
 - Anomalies (e.g. duplicated data) confuse on settling invoices Pay a bill multiple times to same vendor

 - Breaking payment terms
 - Order fulfillment process collapses, because material (e.g. spare parts, configuration kits) have incomplete configuration
- Typically MD analysis tools provide support to cover these daily affaires based on query languages. Often this is not sufficient, because of limited support to adaptive or fuzzy considerations:
 - Identifying similarities
 - Find hidden taxonomies

Motivation

Figure: Advanced data analysis to support the verification process

Motivation

16th International Conference on Information Quality, 2011

Pattern Identification to improve Data Quality

- In this work, we introduce a semi-unsupervised learning approach supporting business to understand MD in a transparent format:
 - Extracting groups of similar MD entities
 - Identify hidden taxonomies by the data itself
 - Providing content-based support for complex structures
- Unfortunately no perfect model exists tackling all those affairs
- **But** initially a hierachical clustering approach would come close
 - accepting some drawbacks [13]:
 - Computational complexity on huge data sets
 - Cluster identification process does not support distinct groups

Figure: Pattern recognition and technical limitations

Motivation

Table of Content

Motivation

Technical Preliminaries

The MD Clustering Approach

Experimental Results

Conclusion and Future Work

References

Technical Preliminaries

16th International Conference on Information Quality, 2011

Data Clustering, Properties and its Techniques

- Cluster Analysis is a well-known task in the field of Data Mining. Its goal is to discover interesting data distributions represented by groups, classes or clusters of similar data entities [9]
- The **characteristic of** such **clusters** should fulfill the following 2 properties [3]:
 - Cluster member should share some kind of similarity
 - Different clusters should be dissimilar to each other
- A wide range of clustering algorithms have been introduced over the past 4 decades. In accordance with [5, 7], most of these approaches can be led back to 2 categories:
 - Relocation or partitioning (e.g. k-means, EM-Algorithm)
 - Hierarchical clustering approaches (e.g. CURE, BIRCH)

Technical Preliminaries

Hierarchical Clustering

- Ways to identify hierarchies (agglomerative vs. divisive)
- Linkage strategies (i.e. complete, single and average)
- Iterations for Agglomerative Hierarchical Clustering (HAC) and its visualization

Figure: Agglomerative iterations and its resulting dendrogram

Technical Preliminaries

16th International Conference on Information Quality, 2011

Graphs and Information Representation

- A graph can be expressed within a triple $G = \langle V, E, \beta \rangle$:
 - $V = \{v_1, ..., v_n\}, n \in \mathbb{N}$ is the set of vertices
 - $E = \{e_1, ..., e_m\}, m \in \mathbb{N}$ is the set of edges with $\langle x, y \rangle \in E, x, y \in V$
 - $\beta: E \to \mathbb{N}$ is the length mapping
- Data representation through an Information System [11]
 - $\mathcal{A} = \langle \mathbb{U}, \mathcal{A}
 angle$:
 - $\mathbb{U}=\{x_1,...,x_p\}, p\in\mathbb{N}$ is the universe containing all objects
 - $A = \{a_1, ..., a_q\}, q \in \mathbb{N}$ is the attribute set such that $a : \mathbb{U} \to V_a, \forall a \in A$

Figure: A graph and an information system

Technical Preliminaries

Table of Content

Motivation

Technical Preliminaries

The MD Clustering Approach

Experimental Results

Conclusion and Future Work

References

The MD Clustering Approach

16th International Conference on Information Quality, 2011

Challenges in Clustering Master Data

- The organization of MD varies, but typically enterprises build on stable relational database systems in order to store huge data volumes
- Format of data: Complete MD information is spread through multiple customized relations
- Capturing the varity of mixed data types (generally vendor and customer MD rely on categorical data but material related data consists of versatile types, e.g. price unit, status, description)
- Finding adequate methods to measure data (dis)similarity which is transparent and accepted by data-drivers
- Analysis of hierarchies to identify data clusters

Dissimilarity and Distance of Objects

- Commutative dissimilarity operator mapping $\alpha : A \to C$ with $C = \{\neq, \text{Levenshtein}, \text{SOUNDEX}, ...\}$ and $A = \{a_1, a_2, ...\}$, the feature set. We write \neq_b to indicate $\alpha(b) = c, b \in A, c \in C$
- **Dissimilarity** of 2 MD entities *x*, *y*:

$$d_{xy} = |\{a \mid a(x) \neq_a a(y), \forall a \in A\}|$$
(1)

- **Penalty mapping** $\omega : A \to \mathbb{N}_0$
- Weighted distance metric:

$$d_{xy}(\omega) = \sum_{\forall a \in A} \omega(a) \cdot \chi_{xy}(a) = \sum_{\forall a(x) \neq_a a(y)} \omega(a) \qquad (2)$$

$$\chi_{xy}(a) = \begin{cases} 1 & , a(x) \neq_a a(y) \\ 0 & , \text{else} \end{cases}$$
(3)

The MD Clustering Approach

16th International Conference on Information Quality, 2011

Tackling the Data Volume in MD Environments (I)

- Creating the distance matrix within a HAC is a tough and crucial job even on modern machines, because ...
 - All object combinations must be determined
 - All object combinations has to be stored in order to find the minimal distance in each iteration
- Considering a graph G = (V, E, β), the initial size of the distance matrix can be expressed through:

$$|E| = \binom{|V|}{2} = \frac{|V| \cdot (|V| - 1)}{2}$$
(4)

- To overcome the complexity, a varity of simplifications exist:
 - Random sampling
 - Build hierarchies based on representatives
 - ...

Tackling the Data Volume in MD Environments (II)

- Our approach is based on the ideas in [10, 14], i.e. growing a minimum-spanning tree (MST)
- The motivation comes from the fact, that we are able to reduce the numbers of edges to the size of vertices within a complete graph
- As a result: Only nearest neighborhood analysis can be performed (i.e. single linkage)
- Our MST construction relies on the efficient Prim-Jarnik algorithm [8] which makes use of the MST property as shown below:

Figure: MST Property - Shortest edge between a partition of vertices The MD Clustering Approach

16th International Conference on Information Quality, 2011

HAC Algorithm - Important Steps

1 Compute MST $G = \langle V, E, \beta \rangle$ 2 Transform G to $DM \subseteq \mathcal{P}(V) \times \mathcal{P}(V) \times \mathbb{N}_0, \forall \langle A, B, n \rangle : A \neq B$ 3 while |DM| > 0 do 4 $g \leftarrow \langle A, B, n \rangle \in DM :=$ Find min distance in DM $C \leftarrow A \cup B$ // build new cluster C5 $DM \leftarrow DM - \{g\} // \text{ remove } g \text{ from } DM$ 6 foreach $h \leftarrow \langle X, Y, m \rangle \in DM$ do 7 if $X - A = \emptyset \lor X - B = \emptyset$ then $h \leftarrow \langle C, Y, m \rangle$ 8 else if $Y - A = \emptyset \lor Y - B = \emptyset$ then $h \leftarrow \langle X, C, m \rangle$ 9 10 end // store all relevant info into cluster protocol 11 12 end 13 // return cluster protocol Figure: Pseudocode to construct hierarchical clusters

-	a ₁	a ₂		a 3		a4	<i>a</i> 5
$\omega(a)$	10	3	3		5	3	7
≠a	≠	\neq		<i>≠</i>		<i>≠</i>	\neq
<i>x</i> ₁	zz Software	986	98632		g Island	Ocean Drive	US
<i>x</i> ₂	Novel Food	986	98632		g Island	Laurel Road	US
<i>x</i> 3	ABC AM	630	63073		Berlin	Flottenstr.	DE
<i>x</i> 4	ABC AM	-	-		Berlin	-	DE
<i>x</i> 5	Cityprint	63073		London		Laurel Road	GB
		x	y	d _{xy}	$d_{xy}(\omega)$		

16th International Conference on Information Quality, 2011 Bringing it all together - An illustration (I)

1)	10		5		5	5	
a	≠		\neq		¥	<i>≠</i>	
	zz Software	9	8632	Lon	g Island	Ocean Drive	
2	Novel Food	9	8632	Lon	g Island	Laurel Road	
;	ABC AM	6	3073	E	Berlin	Flottenstr.	
	ABC AM		-	E	Berlin	-	
;	Cityprint	6	3073	L	ondon	Laurel Road	
		X	y	d_{xy}	$d_{xy}(\omega)$]	
	Γ	<i>x</i> ₁	<i>x</i> ₂	2	13		

2 25 4 х3 *X*5

Х3 *X*4 6

Figure: Input data set and important object distances

The MD Clustering Approach

16th International Conference on Information Quality, 2011

Bringing it all together - An illustration (II)

Figure: Construction of the MST and the distance matrix

	it	ClusterID	ChildCluster1	ChildCluster2	Cluster1IsInit	Cluster2IsInit	Distance
1	0	1	-1	-1	0	0	-1
2	0	2	-1	-1	0	0	-1
3	0	3	-1	-1	0	0	-1
4	0	4	-1	-1	0	0	-1
5	0	5	-1	-1	0	0	-1
6	1	761b38b2-76b0-45fe-855f-791a9479ea48	3	4	1	1	6
7	2	34c158ee-778a-4f60-8b89-eb4aa091cada	2	1	1	1	13
8	3	125e6032-2f7f-4191-8115-c585752bc6f1	761b38b2-76b0-45fe-855f-791a9479ea48	5	0	1	25
9	4	6700a44c-b157-4e5a-abe7-c3529adc1cc2	125e6032-2f7f-4191-8115-c585752bc6f1	34c158ee-778a-4f60-8b89-eb4aa091cada	0	0	25

Figure: Relational representation of the cluster protocol

The MD Clustering Approach

16th International Conference on Information Quality, 2011

Table of Content

Motivation

Technical Preliminaries

The MD Clustering Approach

Experimental Results

Conclusion and Future Work

References

Experimental Results

<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header> **Clustering based on single Word Similarity**

16th International Conference on Information Quality, 2011

Figure: Address grouping by fuzzy city comparison

Experimental Results

16th International Conference on Information Quality, 2011

Clustering based on multiple Attributes

Figure: Vendor clustering by name and country

Experimental Results

Empirical Time Analysis

Figure. Time consumption o

Experimental Results

16th International Conference on Information Quality, 2011

Table of Content

Motivation

Technical Preliminaries

The MD Clustering Approach

Experimental Results

Conclusion and Future Work

References

Conclusion and Future Work

Conclusion and Future Work (I)

- Presentation of adaptive agglomerative clustering approach which:
 - Is applicable in the field of Master Data Management
 - Comes without preprocessing techniques, e.g. discretization
 - Produces valueable and previously unknown pattern, i.e. knowledge
- Our model makes use of a MST construction based on the ideas in [10, 14] in order to reduce the massive amount of considerable object distances
- As a result we only can make use of nearest neighborhood considerations, what often is **not competitive** in comparison to complete linkages (review discussed chaining effect in [9])

Conclusion and Future Work

16th International Conference on Information Quality, 2011

Conclusion and Future Work (II)

- Increase performance by utilizing parallel computation as proposed by the authors in [1]
- Experiencing further techniques from Information Theory and further statistical methodology to handle other linkage strategies in a scalable way
- Annotate cluster model for complete automated deployment
 - Transforms our master data taxonomies into a conceptual clustering such as [4, 6]
 - Introduction of insert and update operations to the clustering tree decreasing running time
- Extend approach to bag-oriented object similarity measures that analyze relational data in a native fashion [12]

Conclusion and Future Work

Table of Content

Won sate in

) hold a feath (greep a solution).

The MD Chr. Gross Apparach

Line miental Desoits

to onclusing and Epidea Month

References

References

16th International Conference on Information Quality, 2011

[1] Micah Adler, Wolfgang Dittrich, Ben Juurlink, Miroslaw Kutylowski, and Ingo Rieping. Communication-optimal parallel minimum spanning tree algorithms. In <i>Proceedings of the 10th annual ACM symposium on Parallel algorithms and architectures</i> , pages 27–36. ACM, 1998.
[2] Detlef Apel, Wolfgang Behme, Rüdiger Eberlein, and Christian Merighi. Datenqualität erfolgreich steuern. Praxislösungen für Business-Intelligence-Projekte. Carl Hanser, 2009.
[3] Johann Bacher, Andreas Pöge, and Knut Wenzig. <i>Clusteranalyse: Anwendungsorientierte Einführung</i> . Oldenbourg, 1996.
[4] Gautam Biswas, Jerry B. Weinberg, and Douglas Fisher. Iterate: A conceptual clustering algorithm for data mining. <i>IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS</i> , 28(2):100–111, 1998.
[5] Daniel Fasulo. An analysis of recent work on clustering algorithms. Technical report, University of Washington.
[6] Douglas Fisher. Improving inference through conceptual clustering. In AAAI-87 Proceedings, pages 461–465. The AAAI Press, 1987.

References

- [7] Chris Fratey and Adrian E. Raftery. How many clusters? which clustering method? answers via model-based cluster analysis. *The Computer Journal*, 41:578–588, 1998.
- [8] Michael T. Goodrich and Roberto Tamassia. Data Structures and Algorithms in Java. Wiley, 1998.
- [9] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient clustering algorithm for large databases. In *Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data*, pages 73–84. ACM, 1998.
- [10] F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. The Computer Journal, 26:354–359, 1983.
- [11] Z. Pawlak. Rough Sets Theoretical Aspects of Reasoning about Data. Kluwer Academic Phublishers, 1991.
- [12] Tae-Wan Ryu and Christoph F. Eick. A database clustering methodology and tool. Inf. Sci. Inf. Comput. Sci., 171:29–59, 2005.
- [13] Tony Segaran. Programming Collective Intelligence. O'Reilly, 2007.
- [14] Robert E. Tarjan. Data Structures and Network Algorithms. Society for Industrial Mathematics, 1983.

References

Track: IQ Measurement