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Abstract: With the proliferation of unstructured data sources and the growing role of crowdsourcing, new data 
quality challenges are emerging. Traditional approaches that investigated quality in the context of structured 
relational databases viewed users as data consumers and quality as a product of an information system. Yet, as users 
increasingly become information producers, a reconceptualization of data quality is needed. This paper contributes 
by exploring data quality challenges arising in the era of user-supplied information and defines data quality as a 
function of conceptual modeling choices. The proposed approach can better inform the practice of crowdsourcing 
and can enable participants to contribute higher quality information with fewer constraints. 
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INTRODUCTION 
Data quality is an important concern for organizations, individuals and societies [29, 31]. The quality of 
data has a direct impact on the quality of decisions made based on that data. This paper attempts to 
account theoretically for the impact of data modeling activity on the quality of data in a database and 
introduce additional and potentially significant modeling considerations into data quality research. The 
motivation for the research comes from the proliferation of participative information systems, which pose 
unique challenges to traditional conceptual modeling and data quality approaches. Close examination of 
the nascent participative domains can lead to advances in data modeling and shed new light into the 
nature of data quality in general. Much of the existing research on data quality has focused on traditional, 
corporate use of databases, in which data is typically stored in a highly structured form. Studies have 
explored such dimensions as accuracy, completeness, consistency, and fitness for use [e.g. 5, 29, 30, 57]. 
Prior research viewed users as information consumers, and considered data quality to be a product of an 
information system. Yet, the distinction between information consumers and creators is rapidly 
disappearing. As users become information creators, and large data sets are increasingly being generated 
by amateur and inexperienced users (e.g. social networks and crowdsourcing projects), database 
structures make it difficult to accommodate discretionary and often unstructured information without 
having to constrain user input. Managing the quality of semi-structured and unstructured information is 
emerging as a new research challenge [34].  
 
We argue it may be possible to address some of the emerging concerns by changing the way information 
is collected and stored. This paper presents a conceptual modeling approach to data quality that promises 
both theoretical and practical advantages. We claim that data quality is, to a large extent, a function of 
conceptual modeling choices. In particular, the choice to record data in terms of classes has significant 
data quality implications. Once defined, classes affect the degree to which an information system is able 



 

to reflect users‟ view of reality. Thus, conceptual choices a priori impose an upper bound on quality 
dimensions, such as accuracy, completeness, and representativeness. Relaxing the rigid constraints 
resulting from the use of “class-based” data models can help in capturing user input more objectively, 
leading to higher quality of stored data. 
 
Keeping the user in mind is important in the context of data quality. Relational databases are being used 
for an increasingly diverse set of tasks and by different categories of users, each of whom may have 
his/her own criteria for data quality [4]. Theoretical work on data quality by Wand and Wang [54] 
emphasizes that it is impossible to anticipate all potential uses of data. As a result, the quality of 
information stored in a database depends on the design of the database itself. This conceptualization 
moves beyond prevailing “data-centric” approaches to data quality. 
 
However, with the rapid growth of applications that allow users to create content, another issue needs to 
be recognized: it may be impossible to anticipate all kinds of information that users might want to 

record in the information system. Discretionary data input is growing and databases are being 
increasingly used to collect diverse information from broad audiences. One example of such data 
collection is crowdsourcing, the engagement of individuals in purpose-driven projects online [15]. Here, 
we focus on a particular kind of crowdsourcing – citizen science – the voluntary participation of amateur 
scientists in scientific endeavors [51]. Due to its potential to dramatically lower research costs and 
facilitate discoveries, citizen science is rapidly becoming popular.  Recently, citizen science issues have 
been receiving increased attention from the IS community [e.g. 2, 32, 38, 60]. 
 
Citizen science illustrates the data quality challenges of crowdsourcing. Online citizen science projects, 
such as eBird (ebird.org) or iSpot (ispot.org.uk), attempt to harness valuable insights of ordinary people 
for use in scientific research. It is clearly difficult to a priori anticipate what kind of information non-
experts can provide, and creating unnecessary constraints can undermine potential gains from such 
initiatives. Moreover, amateur observers are often unable to record information consistently and in 
compliance with the  requirements of a given scientific domain, leading to what appears to be a tradeoff 
between levels of participation and data quality [40].  
 
The prevailing method of storing information is recording individual data in terms of classes [cf. 42] and 
populating attributes that characterize classes with a set of values [see 10]. For example, Tsichritzis, and  
Lochovsky [53] define datum (data item) in a strictly-typed data models as members of an a priori 
category. Therefore “data that does not fall into a category have either to be subverted to fall into one, or 
they cannot be handled in the data model” [53, p. 8]. Similarly, Redman [47] defines data item in the 
context of data quality “as a triple <e, a, v>, where value v is selected from the domain of attribute a for 
the entity e” (p. 230). The class (also referred to as category, entity set, kind) is thus an important 
modeling construct. Classes act as filters upon information, essentially defining the types of information 
(e.g. attributes and attribute values) a system can store. Identification of classes is traditionally the first 
step of conceptual modeling [62, p. 221].  The central thesis of this paper is that both the process of 
creating classes, as well as the choice of specific classes, have a strong (and for reasons discussed below, 
negative) impact on data quality. This research further contributes by deriving data quality from the 
process of conceptual modeling and explores data quality deficiencies inherent in a class-centered 
database design.  
 
The remainder of the paper is organized as follows. The next section provides a review of data quality 
literature followed by the motivation of the current research. We then discuss the theoretical foundation of 
the new approach and derive specific data quality propositions. A case study is presented to illustrate the 
new approach to data quality. The paper concludes with a general discussion and a summary of key 
findings.  



 

REVIEW OF DATA QUALITY LITERATURE 

Overview of Data Quality Research 
A taxonomy of approaches to data quality has been proposed by Wang and Strong [57], who classified 
prior research on data quality as intuitive, theoretical, or empirical. Intuitive approaches often use a 
contextual or utilitarian definition of data quality and typically explore such dimensions as accuracy or 
reliability. Theoretical approaches, such as that of Wand and Wang [54], examine data deficiencies 
inherent in data products and attempt to derive data quality dimensions from fundamental theoretical 
principles. Empirical work, such as by Wang and Strong [57], empirically examines data quality‟s nature 
and impact.  
 
Much data quality research considers data quality to be a multidimensional construct [24, 29, 44, 57]. One 
grouping of the dimensions based on data consumers‟ needs includes intrinsic (e.g. accuracy, 
believability, reputation), context (e.g. completeness, timeliness), representation (e.g. consistency in 
representation, ease of understanding) and accessibility (e.g. ease of accessing the data) factors [57]. 
Another way to classify dimensions is to consider some representing internal (design, implementation, 
operation) and some, external (use, impact, evaluation) views of information systems [54]. Following that 
distinction, an internal view can include such dimensions as accuracy, reliability, consistency, while an 
external view can be associated with timeliness, relevance, understandability, efficiency, and usefulness 
[for a complete list see 54]. There is also considerable variability in the scope and granularity of 
dimensions. For example, completeness can be viewed at an abstract level as the degree to which a 
database schema contains all required real world objects. At the same time, completeness can be treated 
similarly to column integrity, requiring column values to be drawn from a set of permissible, “lawful” 
values [30]. Definitions of accuracy, one of the most widely cited dimension, vary considerably, mostly 
due to the intended scope [54]. Similarly, Wand and Wang  [54] lament, “there is no generally accepted 
notion of reliability and … it might be related either to characteristics of the data or of the system.” The 
variability of the data quality concept and its dimensions makes attempts to develop a theoretical model 
especially important. Unlike ad hoc heuristics, a solid theory can guide practice and make evaluations of 
data quality more objective. 

Data Quality as a Product, Users as Consumers 
It is common to consider data quality a product or service produced by an information system and 
consumed by users. Ballou et al. [5] introduced the concept of information manufacturing to “encourage 
researchers and practitioners alike to seek cross-disciplinary analogies that can facilitate the transfer of 
knowledge from the field of product quality to less well-developed field of information quality.” The term 
information manufacturing system designates “information systems that produce predefined information 
products” [5]. 
 
The manufacturing approach to data quality treats users as consumers of data and, as a consequence, of 
data quality. Thus, the marketing concepts of consumer needs and wants can be applied to data quality. 
Both marketing and psychology have long recognized a hierarchical nature of needs. Similarly, Wang and 
Strong  [57] examined the impact of data quality on information users. Supporting the “fitness for use” 
definition of data quality, Wang and Strong  [57] include use characteristics as data quality attributes and 
present a hierarchical grouping of data dimensions that correspond to certain quality needs. The 
manufacturing-marketing view of data quality has been extended in Kahn et al. [27] to include service 
quality. Both product and service aspects of information quality can conform to specifications or meet 
expectations.  
 



 

In any production or manufacturing system, the setup of the system itself becomes important in shaping 
its product. Recognizing this, Wand and Wang  [54] note “the quality of data depends on the design and 
production process involved in generating the data.” In this design-centered view, data quality can be seen 
as the degree of discrepancy between the view of reality that can be inferred from an information system 
and what can be directly observed in the real world. This definition is grounded in Bunge‟s ontology [9, 
55].  
 
Our review of the literature shows that most studies consider data quality in the context of structured 
relational databases and use a manufacturing analogy for useful knowledge transfer. In contrast, we 
reconceptualize data quality based on an analysis of less structured datasets typical in participative 
domains for which user input is often difficult to anticipate. The next section discusses emerging issues 
that motivate this conceptual shift. 

MOTIVATING THE CONCEPTUAL SHIFT IN DATA QUALITY 

Design vs. Data-centric Data Quality 
While data modeling is often mentioned in the context of data quality [e.g. 48], much data quality 
research focuses on issues arising after the design of a database is finished and the database is put into 
production. This is consistent with the view of data quality as a product of consumption and the fitness 
for use paradigm. In fact, Wang et al. [56] advanced an attribute-based data model to facilitate cell-level 
tagging of existing data sets with relevant data quality dimensions (e.g.  “useful,” “relevant,” “timely”). 
Alternatively, a source can be attached to the values themselves [see 56].  
 
Data-centric, a posteriori approaches have a number of shortcomings. First, scanning information to 
determine its degree of data quality can be costly, and often difficult. This is recognized by Inmon et al. 
[25], who suggest that a scouting of data before full scale consumption is more efficient. Second, such 
approaches cannot support early specification of data quality requirements [54]. Finally, the same piece of 
information can be “timely” and “accurate” in one situation and “outdated” and “incorrect” in another. 
Since it is difficult to anticipate all potential uses, and difficult to represent corresponding views of reality 
in a single data model, preferential treatment of some uses appears necessary. For example, a database of 
corporate assets that is intended for an accounting department may be modeled using classes and 
properties pertinent to the accounting domain. Those classes and properties, however, may neglect or be 
in conflict with some potential ad hoc uses of data by other corporate units.  Thus, while the fitness-for-
use paradigm is ostensibly data-centric, it appears to carry design-centric implications because the focus 
on use may introduce a modeling bias at the stage of systems analysis and design.  
 
Addressing some of the shortcomings of a data-centric data quality is possible by exploring quality 
implications of conceptual modeling choices. This approach carries a number of desirable outcomes. 
First, certain quality standards and thresholds can be specified before data entry. Such proactive design 
can minimize future changes. Redesigning a database schema after application deployment can be 
extremely costly and highly undesirable. Second, as recognized by Wang and Strong [57] and illustrated 
by Wand and Wang [54], an a priori focus can uncover fundamental relations that transcend specific 
idiosyncratic implementations and data sets. The focus on fundamental conceptual modeling principles 
can be more universal and flexible, and thus potentially applicable to a greater spectrum of situations (e.g. 
citizen science or business).    

Users as Information Providers: Beyond the Manufacturing Model 



 

In the information manufacturing paradigm, data quality is a product consumed by users. This analogy 
has shown to be useful in knowledge transfer from the quality control field to IS. The manufacturing 
view, however, implies that a consumer is largely removed from the process of product creation. In 
marketing research, information asymmetry suggests that consumers do not know exactly how the 
product is manufactured and what features it may possess [26]. Yet, the relationship between product 
quality and the user may be different if the consumer shares the role of a product creator.  
 
The last decade has seen a rapid rise of Web 2.0 technology, which embraces user-supplied information 
and increased user interaction.  Successful Web 2.0 applications (e.g. Facebook, Wikipedia, Youtube, and 
Twitter), have many millions of users. Ordinary people are becoming more comfortable in the new role of 
information creators. Concepts such as customer-driven innovation [37] and crowdsourcing [15] are 
being actively explored. A growing body of research aims to harness collaborative and participative 
computing for business needs [3, 37]. Yet, active solicitation of content from users carries a new set of 
challenges related to data quality, leading to a new data quality research frontier. This is evident from 
research and practice of IT-driven citizen science.   

Data Quality Challenges of Discretionary Data Collection 
With the evolution of Internet technologies, it has become easier for ordinary people to participate in 
scientific projects, known as citizen science [51]. Humans can be effective sensors of their environment 
[21] and human volunteers are now engaged in a variety of scientific projects online – from folding 
proteins to finding interstellar dust; from identifying birds to classifying galaxies [see 23]. Yet, given the 
expertise and language gap between scientists and ordinary people, information transfer in citizen science 
projects is not straightforward. Despite the potential of citizen science, serious doubts about quality of 
citizen science data preclude it from playing a more important role in research and decision-making [see, 
for example, 17]. Although intrinsically motivated, volunteers may have little invested interest in projects 
run by scientists and as one volunteer remarked: “Despite your best efforts, your mind wanders. You start 
thinking about lunch or whatever” [23, p. 686]. According to Foster-Smith and Evans [19] while citizen 
scientists can offer insights and generate new ideas, their lack of training and expertise often results in 
inconsistent and incorrect data [see 11, 17, 59]. 
 
There is no universally acceptable approach to improving the quality of citizen science data. Research on 
database information quality offers little guidance to deal with specific challenges of citizen science data 
quality. Citizen science is based on the recognition that non-experts can possess valuable scientific 
information. Yet, this information comes from users who do not necessarily understand the scientific 
domain, its language or structure. It has been suggested that an information system should faithfully 
represent reality [58]. For example, the theoretical framework by Wand and Wang [54] measures data 
quality as a discrepancy between digitally transformed and directly observable reality. In crowdsourcing 
each user may have a unique view of reality. This means that the same crowdsourcing project may need 
many data models, each with own data quality specifications. The absence of a theoretical framework 
underpinning quality of user-generated data means that practitioners have to rely on ad hoc heuristics.  
 
One of the most popular ways to increase data quality is to train volunteers. The focus on training and 
procedures is advocated by Dickinson, Zuckerberg and Bonter  [13],  and by Foster-Smith and Evans 
[19]. Training however can sometimes introduce biases as participants may guess the objective of the 
study and overinflate or exaggerate information [1]. 
  
Another approach to increasing quality is expert verification. For example, in a project where volunteers 
were asked to identify carcasses of by-catch and beached birds, the results were later verified by experts 
[22]. However, with the increasing size of data sets [59] extensive expert verification of user-supplied 
data is unrealistic and in many ways contrary to the spirit of citizen science. 



 

 
Exploiting the advantages of Web 2.0, collaboration between citizen scientists has been suggested as a 
key to increasing data quality. Seeing trust as a proxy for data quality, Bishr and Mantelas [7] propose 
trust and reputation model for classifying knowledge. This approach is the basis for a UK-based iSpot, a 
website that relies on social networking for collaborative identification of species [52]. While the social 
networking/trust approach appears promising, it has a number of serious limitations. Despite being 
likened to the “scientific peer review process” [7], social networking is appropriate only for popular 
citizen science projects with a significant user base. Web sites with a small number of users will not have 
sufficient user activity per unit of data to ensure adequate scrutiny. The peer review process also raises a 
philosophical issue of whose reality is being represented and stored: the original user who submitted data 
or the expert user who verified and corrected it? We elaborate on this issue below using a case study. 
 
In summary, conventional wisdom in citizen science holds that, in order to increase the quality of the 
supplied information, the experience and expertise of the information creators must be enhanced (through 
training or verification by experts or peers). Yet, training can be expensive and, since only a small number 
of people can be experts in something, this implies that the best data quality can come from a limited 
number of people.  Such an approach can thereby severely limit the potential scope of citizen science. We 
argue, however, that this can be avoided by changing the way data is collected and stored. In fact, the 
challenges of citizen science projects help reveal a general principle of data quality: data quality is a 

function of the data structures used to hold user-supplied information.  

RECONCEPTUALIZING DATA QUALITY  
In order to understand and address the emerging data quality challenges, several assumptions need to be 
clarified. First, unless the interface is supportive, it is unlikely that uncommitted users such as citizen 
scientists will communicate all the information they might want to. Coleman et al. [11] described a 
neophyte volunteer as one who “uses … information provided at a given Website without question.” For 
example, a typical citizen science project may ask a user to classify an observation at the species level 
(e.g. eBird.com). Suppose a user can only be sure of the higher genus level. In this case, a user might 
therefore choose not to participate, or might make a potentially incorrect guess. Alternatively, suppose a 
user knows not only the species, but also a variety or subspecies. To satisfy the interface requirements 
species classification is enough. In this case, finer-grain and potentially valuable information may be lost 
unless a user puts in extra effort to communicate it. 
 
Second, we assume that the data collection process and the user interface are strongly influenced by the 
underlying data structure. Application design typically follows database development and closely reflects 
objects defined in a database. Ultimately it is the database schema that impacts the information collection 
activities [32].  
 
Wand and Wang [54] define data quality deficiency as “an inconformity between the view of the real-
world system that can be inferred from a representing information system and the view that can be 
obtained by directly observing the real-world system” (p. 89). Using this definition in a real context 
suggests the need to examine the impact of classification, the process by which data storage is organized. 
    
The prevailing method of storing information in databases is recording instance information in terms of 
(usually one) a priori defined class [cf. 42]. Classification is a fundamental activity in which humans 
engage to manage what some call “infinity” of real world stimuli [49]. Raven et al. [46] put it more 
bluntly: “Man is by nature a classifying animal.” While much of the database design research draws 
parallels between computer classes and human cognitive processes, few have noticed fundamental 
differences. Although humans and databases use classes for the same reasons [cognitive economy, 



 

inferential utility, see 12, 39, 43], in each case the classification process and its consequence are not the 
same. We claim that this difference is a fundamental cause of many data quality problems in modern 
relational databases.  
 

Proposition 1: Data quality in an information system is necessarily reduced whenever a class is used to 
store instances.  
 
Since many classes can be used to represent the same phenomena, it is unclear which class is better. 
Parsons and Wand proposed cognitive guidelines  for choosing classes that could be used for “reasoning 
about classification, and their violation indicates something is „lost‟ from a cognitive point of view” [41, 
p. 69; emphasis added]. Choosing the “wrong” one means that information stored will be deficient with 
respect to perceived reality. Extending this idea further, we claim that using classes for storage will 
always fail to fully capture reality, no matter how “good” the chosen classes are.  
 

Proposition 2: An instance can never be fully represented by a class. 
 
Any complex object has a large number of features and no one class can encompass them all. In fact, 
storing instances in terms of classes always means that some potentially valuable properties are sacrificed 
for the cognitive efficiency provided by classification. For example, if we define a class student 
(assuming it has no subclasses), then any individual instance of that class will possess only those 
attributes that are part of the class definition. This also means that all other potentially useful attributes 
will be lost. To classify is to abstract from the diversity of the world by focusing on properties that satisfy 
some utility. In this process, certain properties that are not of immediate interest are neglected. Yet, they 
can be invoked at a later time should it be necessary. Here lies the difference between human and 
computerized representation. When humans classify, they focus on relevant features but remain aware of 
other ones. In contrast, when we record data into a database, the information that is not committed to 
storage is lost. We call this loss the loss of properties principle, which is a corollary to Proposition 2.  
 
Corollary 1: Every time an instance is stored as a member of a class, loss of properties occurs. 
 
The following scenario illustrates the loss of properties principle and its implications. Suppose a citizen 
scientist observes a kind of bird that he/she has not seen before. Lacking expertise, a non-expert may 
resort to analogies (seagull-like), basic-level categories (birds) or superodinate categories (living things, 
animals) to classify or simply reason about the observed phenomenon. Suppose, later he or she 
enthusiastically tells friends about a recently sighted unusual seagull (the category that best describes the 
observed phenomenon). As a consequence, the friends can visualize the birds and infer properties unusual 
seagulls may possess (e.g. lay eggs, live by the sea, eat fish, can fly) without having to observe them or 
being explicitly informed of what they are. Later, the same citizen scientist comes across a similar-
looking bird in a birding field guide, and quickly notices the striking similarities to the birds observed 
before. This happens because the human brain retains many details that persist over time [8]. After 
examining the field guide, the non-expert knows that the observed birds were actually northern gannets. 
In other words, the instance has been reclassified based on the originally observed features. The fact that 
the original class was unusual seagulls does not preclude humans from retaining those features that, at a 
later time, allow the observation to be classified as gannet. Seagulls and gannets are different classes and 
storing instances as one or the other class carries different data quality implications on dimensions such as 
accuracy. In contrast, natural classification does not impact data quality in the same way. Thinking of 
gannets as seagulls does not preclude humans from capturing features that were different from a typical 
seagull and using the class seagull to efficiently communicate information that is appropriate for the 
casual conversation (i.e., fit for use).  
 
The above example illustrates why classification works well for humans. However, it may be ill-suited for 



 

the prevailing methods of recording data in databases. Cognitively, classifying an observed phenomenon 
does not preclude humans from retaining individual details not implied by the class. A database is 
different in four important ways.  
 
First, in a strictly-typed data model, a class definition is a hard constraint on the types of data that can be 
recorded. A data model cannot accept a gannet as a seagull unless all the attributes supplied match the 
conceptual definition of a seagull. Once a data entry operator chooses seagull as a class, all gannet-like 
attributes that do not “fit” the schema definition of a seagull will be rejected by the system.  After data is 
captured, it may be taken at face value: “seagull”, and there will be no way to ever reclassify as it as 
gannet. In this sense, storing instance data as a member of a class means some individuality carried by 
properties not included into the schema is irreversibly lost.  
 
Second, the details of a classification decision (i.e., uncertainty) are not stored with the data. The issue of 
dealing with database uncertainty is being increasingly researched in part to provide support for the 
Semantic Web [20, 33]. Here, we emphasize two different aspects of uncertainty: the uncertainty of 
classifying real-world phenomena by humans and the related uncertainty of matching the classification 
hypotheses with (usually one) data storage equivalent. In the above scenario, a user was clearly unsure of 
the initial classification. In fact, this uncertainty might trigger a quest for a better answer, which can also 
explain why some details irrelevant to the original classification were retained. It appears humans know 
the choice is not final, and retain as much “evidence” as possible for a later time. Databases can 
accommodate some of the uncertainty using fuzzy data models [61]. Based on Proposition 2, however, 
there can be many probabilistic class memberships for any given instance, each with different degrees of 
correspondence to the set of classes considered by a user and thus, with different data quality implications 
(discussed later). 
 
Third, both databases and human memory can be used for later information retrieval and decision-
support. Data warehouses powering business intelligence are frequently designed using predefined class-
based structures. The quality of warehouse data is of a paramount concern [16, 25]. When data is 
aggregated into warehouses, it needs to be transformed (e.g. using ETL tools) to conform to the unified 
structure. This process is known as schema matching and is considered to be “extremely difficult” with 
dearth of a universal theoretical foundation and a large number of ad hoc heuristic solutions [for review of 
the discipline see 14, 45]. Propositions 1 and 2 discussed in the present paper suggest that the process of 
data transformation can lead to inherent deficiencies of the aggregate product. Such deficient data can 
lead to ill-informed decisions. 
 
Finally, data quality is impaired by the requirement of information systems to classify at a prescribed 
level, which does not exist in reality. Classification is intuitive for humans [46]. Yet, classification is not 
always possible at the level of specificity defined by the database schema, and while a user is flexible 
with the level or classification granularity, the schema is usually not. In the case of gannets, a user could 
not objectively classify at the species level, yet many information systems require or imply exactly that 
[40]. Further, soliciting a probability of classification from a user, which may be necessary to support 
fuzzy data models appears counterintuitive to the way humans think. Humans may sense uncertainty, but 
translating it into a numerical equivalent (e.g. 90% certainty the observed bird is a seagull, and 10% 
certainty it is something else) is both awkward and arbitrary. 
 
In the real world, humans employ a large number of alternative categories they feel more comfortable 
with. In fact, depending upon a particular goal, humans may create ad hoc categories, which never existed 
before [e.g. "things to take from a burning house", see 6]. Unlike in a database schema, ad hoc classes are 
usually discarded after use. Clearly, human categorization is dynamic and flexible in ways that are 
difficult to a priori predict and probabilistically quantify. In a database, however, the choice is usually (1) 
select classes (usually one) defined by the database schema, (2) choose “other” or “unknown,” or (3) 



 

refrain from data entry. And while “other” or “unknown” seem to be the optimal choice for strict data 
model uncertainty, it is probably the least desirable: little inferential utility can be drawn from a category 
which potentially lumps together dissimilar objects. The other two options engender a potentially 
incorrect guess or constrain participation. 
 
A choice of a specific class can have varying impact on data quality. Different designers can model the 
same reality differently. As Parsons and Wand [42] observe, an “information model is constructed to 
reflect the views of a single user at a given point in time.” The instances that are being recorded in a 
database can belong to multiple classes. While there have been attempts to support multiple classification, 
the prevailing database practice is to reserve one class. 

Data Quality as a Gradient Fit 
In a general sense design-centric data quality can be understood as a gradient fit between a data storage 
“container” and its real-world source. The degree of the fit affects such quality dimension as accuracy 
and completeness. The gradient fit can be seen at class, attribute and value levels of information 
conceptualization.  
 
To understand the class-instance fit, let us consider a case of data values first. Suppose a financial analyst 
wants to record exchange rates of 0.567 and 0.54 in a data field that holds two decimal places. In this case 
only the second value will be a “perfect” fit for that data container, while the first one will have to be 
rounded. Value-based data quality is gradient in nature. Assuming that a rounding rule to the hundredth 
decimal is triggered, values of 0.569 and 0.566 will have different degrees of information loss (i.e. 0.001 
and 0.004 respectively).  
 
This relationship is often difficult to quantify. Suppose an account manager responsible for placing credit 
offenders on prepay needs to ensure that an extremely high risk customer stays on prepay indefinitely. A 
credit database contains date off prepay field, which is linked to certain business rules (e.g. allowing 
customers to use credit). Thus, a specialist may choose to assign a value far in the future as a proxy for 
infinity. In this case, years 2015, 2020 and 2120 will have different degrees of correspondence to what the 
data creator had in mind. The third option is more satisfactory, while the first one is less so. Thus, we can 
consider the three stored values, 2015, 2020 and 2120 as having different degrees of correspondence to 
the data creator‟s intentions and thus, different degrees of data quality. 
 
A similar relationship between stored and real-world phenomena exists at the class level as well. Any 
given instance has different degrees of correspondence to a given conceptual class. According to 
Proposition 1 and 2, no class can be a perfect fit for an instance.   
 
Well-researched notions of prototyping and typicality are analogous to the gradient nature of data quality 
at the instance-class level. Observations such as “robin is a more typical bird than penguin” suggested 
gradient structure of categories for a number of cognitive researchers [28, 50]. Rosch and Mervis [50] 
defined prototypes as “best examples of a category” (p. 574), and later Rosch [49] argued that “to 
increase the distinctiveness and flexibility of categories, categories tend to become defined in terms of 
prototypes or prototypical instances that contain the attributes most representative of items inside and 
least representative of items outside the category” (p. 31). Barsalou [6] suggested that gradient structure is 
also applicable to non-natural, ad hoc categories (e.g. things to take from a burning house).  
 
While prototyping research has been questioned and is not universally accepted by the cognitive 
community (e.g. category composition [18] and others issues, see [35]), it provides a useful analogy and 
enables knowledge transfer from a well-developed field of psychology into the field of data quality. The 
notion of gradient structure of categories is consistent with Propositions 1 and 2. Since a class can never 



 

fully represent an instance due to individual differences of each instance, instance individuality assures 
different conceptual correspondence between an instance and any class.  
 

Proposition 3. There are different degrees of conceptual fit between any instance and any given class. 
 
Corollary 2: Data quality of instances in class-based data structures exhibits a gradient nature.  
 

Consider several examples. For a university, students who are registered for full-time course work are 
more “typical” than those taking one or two correspondence courses. Thus, a decision can be made to 
model full-time students and correspondence students as separate conceptual classes, which affects the 
kinds of properties that will be collected and retained by an information system. For a library, a person 
who borrows books and has an account with a library is a more typical exemplar of a patron than a person 
who visits the library‟s webpage and searches its catalog. Since there can be a degree of engagement with 
library services and each engagement may be unique, who gets recorded and what properties get stored 
becomes discretionary. In citizen science, identifying robins may be easier than identifying boreal 
lichens, thus robins appear to be better fitting for the species level of specificity, given a normal level of 
user expertise. In each case, instances exhibit similar data quality patterns as values and dates discussed 
earlier: some fit better than others into their intended storage containers. Unlike conceptual values, where 
a real-world value of 1960 can have a perfect equivalent in a database, in a class-instance pair no perfect 
fit is possible. Some properties are invariably lost. And much in the same way as information is lost when 
storing 2050 as a proxy of infinity or 0.6 as the result of rounding 0.56, more properties are lost when the 
conceptual fit between an instance and a class becomes coarser.   

DATA QUALITY CASE STUDY  
We present a case study to illustrate how data quality is affected by the way information is stored.  
Suppose a number of unusually looking barn swallows decided to nest in a neighborhood full of citizen 
scientists. Multiple sightings took place by observers with different levels of domain expertise. Each 
sighting has been recorded in a hypothetical database shown in Figure 1. The structure is typical of an 
ecological citizen science database and is based on the authors‟ correspondence with the Cornell Lab of 
Ornithology (eBird.org). The design also uses prevailing ER model and asks users to classify observed 
phenomena at a species level. Below we consider two possible scenarios. 

 

 
Figure 1. Typical ER diagram of a citizen science project 

 
Scenario 1. Citizen scientist John is a domain expert. John goes to a popular online birding website to 
record his sighting. John chooses Barn Swallow (Hirundo rustica) in the interface and populates 
remaining attributes of the OBSERVATIONS table. While this in some sense is an accurate observation, it 
is still deficient. When John records a sighting of a barn swallow a SpeciesID of barn swallow is entered 
in the table holding transaction details. This suggests that the schema describing barn swallows as a class 
is sufficient to represent the exact individual observed. In other words, the same schema can be used for 



 

all future observations of barn swallows no matter how many different attributes may be present. Inherent 
to class-based data models, the individuality of observed attributes escapes structured storage. 
 
Suppose, however, that John also notices unusual coloration of the swallows and describes it in the 
comments. Comments are unstructured and difficult to analyze.  As a result, the fact that birds were 
unusual may never be uncovered and other observations of the same abnormality will not be linked to 
each other. Further, aggregating text fields is challenging. Yet, such individual variations can be 
important and valuable for science. For example, it has recently been noticed that “male barn swallows 
from Chernobyl have a pale red coloration compared to males from a control area” [36].  
 
Such individual attributes can also be captured using extra columns, but this is inefficient as most other 
records in the table will have corresponding null values. Each individual has something unique, but 
creating an extra column each time a new attribute needs to be stored is not realistic, as this means the 
schema is changed and all the objects that depend upon it need to be updated.  
 
Alternatively, an additional table of attributes can be stored with the observations table, allowing none, 
one, or many additional attributes to be recorded with each observation (Figure 2). Yet, this can cause 
redundancy as some of the additional ad hoc attributes can conceptually overlap with those used in the 
original class definition. For example, a user may observe how many legs something has, or what color it 
is and supply these attributes to be recorded in the OBSERV-ATTRIBUTES table. Yet, such attributes may 
be redundant if SPECIES table already include them in the schema.  

 

 
Figure 2. Possible solution to capture individuality 

Scenario 1 shows that, in spite of John‟s domain expertise, data supplied by John lacks individuality due 
to the way information is stored. If at a later date attributes other than those defined by the class barn 
swallow are required, a database may fail to provide them. Further, if a different view of reality becomes 
important, classifying a bird at the species level may no longer be sufficient. Thus the existing database 
structure focuses on one prescribed aspect of the world and ultimately underrepresents the observed 
reality.  
 
Scenario 2. Unlike John, Jane is an amateur birder. Jane observed the same birds, but does not know what 
they are. The field guide does not help, as they are somewhat different from the birds described in it. 
Without domain expertise, it is difficult for Jane to classify at the required level of specificity. She knows 
the phenomenon is a bird, but the implied objective of the system is to classify at a lower level. Several 
options are possible.  
(1) Jane can record species as unknown and let others decide on what it is, and possibly reclassify it. This 

is advocated by the UK-based citizen science website iSpot [52]. This approach has a number of 
limitations. If Jane‟s sighting remains unnoticed by the experts, it will add to a category with little 
inferential value. It is also possible that one expert says it is a barn swallow while two more suggest 
that it is not, and the information system will have to make a choice to store it as an unknown or barn 
swallow. In each case, none of the options are optimal [15]. But even if the experts are successful at 
reaching a consensus, it means it is not Jane‟s, but others’, view of reality that will be recorded and 



 

used for decision-making purposes by the database. Consequently, the database will fail to faithfully 
represent the original view of reality. 

(2) Another possibility is that Jane will simply choose the species that she thinks is the best choice in 
order to satisfy the interface requirements. How good this choice is remains unknown to the 
information system. Typical applications are not concerned with recording the human rationale for 
classifying, but are instead concerned with its outcome. Data can be verified by experts after creation, 
but this may not be realistic in large data sets. How much of this kind of data of dubious quality 
(guesses to satisfy the requirement to classify) exist in the modern databases and are routinely used at 
face value has not, to our knowledge, been surveyed. 

(3) Finally, Jane may opt not to participate, as she may reason it is objectively impossible to classify at 
the required level. This means that while accuracy of the overall dataset is unaffected the data 
completeness dimension is lowered. The database represents fewer phenomena in the real world and 
the reality that is stored is biased towards (1) instances that were easier to classify and (2) instances 
recorded by more expert or assertive users. 

Thus, in both Scenario 1 and Scenario 2 data quality suffers with respect to accuracy, completeness, and 
representativeness. In each case, the root cause is the need to record an instance as a member of a class.  

 
Figure 3. Data quality scenarios 

The two scenarios are summarized in Figure 3, which shows both the universality of property loss and 
potential ways information can be distorted due to the way it is stored. The diagram clearly implies that 
no matter what the scenario is, the resultant data set is adversely affected.  

DISCUSSION AND CONCLUSION 
In this paper we offered a theoretical approach to data quality that derives data quality from the prevailing 
practice of storing information in terms of classes. We motivated a reconceptualization of data quality by 
examining the difficulty of accommodating data from the emerging domains such as crowdsourcing. 
While we used the citizen science domain to illustrate the deficiencies of class-based storage, it should be 



 

noted that it may be applicable to any complex domains, including those with established structure. In the 
business environment, for example, a customer may have different definitions across the enterprise. 
Without details behind each record, simply querying Customers table may provide a misleading picture 
about the number of customers a company has and lead to ill-informed decisions.  
 
Unlike biology, the business domain often operates with more abstract objects. Much of the theoretical 
foundation on classification, however, uses material objects (e.g. bird, rose, tree) to understand principles 
of human cognition. Such material objects are observable, and have a stable and often intuitive set of 
intrinsic attributes. In contrast, business classes often describe invented entities (e.g. account, customer, 
contract). Forming class definitions of such phenomena can be difficult without domain expertise. 
Building a database system that avoids the pitfalls of forced classification has the potential to save 
training expenses while improving the quality of corporate data.  
 
Such a system may be based upon the instance-based data model (IBDM) developed by Parsons and 
Wand [42]. In an instance database users are not required to classify observed phenomena and can record 
any observable attributes associated with the information they are contributing. This addresses the 
consequences of Propositions 1 and 2. By allowing instances to exist independent of classifications, a 
database does not place an a priori constraint on the potential information that can be stored.  Thus, 
citizen scientists and corporate database operators alike can supply attributes based on their respective 
levels of domain expertise. Once several attributes are recorded, the system can match them with pre-
existing sets of identifying attributes for a phenomenon (such as biological species), and either infer a 
species or ask for additional attributes that could also be automatically deduced from those previously 
supplied. The final attribute set can potentially match to a class or simply record data without classifying 
it. Doing so avoids inherent data quality deficiencies of the class-based models. 
 
In many classification situations, a mismatch is possible between the observer‟s view of a phenomenon 
and the rigid model of the database schema used to store information about phenomena.  As end-users are 
generally unable to change the way information is stored, they have no choice but to comply and force-fit 
their observations to the structure imposed by the schema. The result is stored information that may 
inaccurately represent the perceived reality, or that is biased towards user expertise and easier 
classification choices. By considering the impact of conceptual modeling on data quality, the research and 
practice of database design can focus on better ways to store user input and make both participative and 
corporate data sets more reflective of the domains they aim to represent. 
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