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Abstract: Cellular networks carry vast amounts of voice, text and data traffic every second. The networks are 
monitored constantly to measure network performance, detect traffic congestion, identify anomalies, and to serve 
other customer service and network support functions. The data collected from mobility networks is used to make 
many critical decisions. The quality of the information plays an important role in the effectiveness of these 
decisions. Therefore it is important to ensure that the data collected from cellular networks meets quality standards. 
In particular, identifying glitches that are correlated can help in identifying root causes and facilitate more efficient 
problem solving in the network as well as quicker data repairs.  
 
In this paper, we present a methodology for automated auditing of massive, complex data streams with a focus on 
correlated glitches, and a case study that illustrates the application of this methodology. The methodology has two 
main components, a set of logical constraints that embody domain specific information, and statistical methods for 
identifying correlated glitches to enable automated quantitative cleaning of data. Together, the two components 
provide a comprehensive yet customizable set of criteria for evaluating information quality as a function of time and 
network topology. We demonstrate the use of the cross g function to identify correlations in glitches. In the case 
study, we focus on duplicate, missing, inconsistent and anomalous data, and correlations between glitches across 
time, space and topology.   
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INTRODUCTION  
 
The advent of new technologies that enable video chat, gaming, movies and other data-intensive 
applications on mobile devices such as cell phones and iPads, together with the ubiquity of these mobile 
devices caused by a radical shift in people’s behavior in the consumption of entertainment and 
information, has led to a phenomenal growth in voice and data traffic in cellular networks. In order to 
provide reliable, high quality service to their customers, operators of cellular networks collect and 
maintain vast amounts of data to monitor their networks. This data is used for network management and 
optimization. Given the critical nature of the decisions that are supported by this data, it is important to 
ensure that the data quality is kept at a high level, with timely diagnosis and mitigation of data quality 
issues. 
 
In this paper, we present a methodology for automatically auditing massive streams of network data, with 
an emphasis on identifying data glitches with spatial and temporal correlations. The methodology uses a 
combination of logical constraints based on specific network characteristics, and time series and spatial 
statistical methods. We use a combination of univariate and multivariate outlier detection methods. We 
measure the extent to which outlier sequences generated by different variables or different network 
components match. In addition, we also explore how the degree to which the outlier sequence match  
varies with time, space and network topology. 
 
While we focus on mobile telecommunication data streams in our case study, the methodology is 
generally applicable. See Wang et al [10] for a general overview of maintaining, monitoring and 
measuring data quality in databases. 



 

 
Challenges 
Monitoring cellular network data streams is a challenging task for several reasons. (1) An extremely 
complex network with hundreds of thousands of components organized in a hierarchical structure; (2) 
massive numbers of data streams that accumulate at a rapid rate; (3) glitches, or data quality issues that 
exhibit intricate spatio-temporal dependence patterns due to complex underlying root causes. We describe 
these challenges in detail below. 
 
(1) Cellular Network  
A telecommunications network has a complicated hierarchical structure consisting of multiple layers with 
interconnected sub-networks. Each sub-network has numerous software and hardware components that 
are constantly being repaired, upgraded, removed or added. The network is a dynamic and evolving 
entity.  
 
Figure 1(a) shows a highly simplified telecommunications network structure. The conventional Circuit 
Switched network (CS-Core Network), the Packet Switched network (PS–Core Network), and the 
Universal Terrestrial Radio Access Network (RAN) communicate with each other to transfer different 
types of telecommunications traffic – voice, data and internet traffic – from source to destination. These 
sub-networks are controlled by a signaling system (SS7) that routes traffic between conventional phone 
service (PSTN), the Internet (IP) and mobile phone networks (RAN). More detailed information is 
beyond the scope of this paper and the reader is asked to refer to Lin and Chlamtac [7].
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The data analyzed in the case study comes from the Radio Access Network (RAN), the components of 
which are shown in Figure 1(b). To convey the complex nature of our data, we briefly describe in a 
simplified manner the process that the RAN goes through to facilitate end-to-end completion of a mobile 
call. Note that terminology is specific to the technology underlying the RAN. We use 3G (broadband) 
network terminology here. 
 
When a user initiates a call on a handset (labeled user equipment (UE) in Figure 1(b)), the signal is picked 
up by a directional antenna that covers the current location of the handset. This antenna is one of many, as 
many as nine, antennas mounted on a cell tower. A “Node B” associated with a cell tower passes the call 
signal onto its controller (RNC). The RNC manages signals from many Node Bs which are often located 

Figure 1 (a) Figure 1 (b) 



 

in the same geographical region. The RNC then contacts the appropriate sub-network, e.g. the CS-Core 
Network if the destination is a public switched telephone service (PTSN), or the PS-Core Network if the 
traffic is headed towards the Internet. 
 
In order to properly address data quality issues, it is important to understand the processes that generate 
the data. Acquiring sufficient domain knowledge is necessary. A lack of accurate, complete and timely 
documentation increases the likelihood of misinterpretation of the data and of the incidence of glitches. 
 
(2) Computing with Data Streams 
A mobility network consists of hundred of thousands of components in a hierarchical structure. Counters 
measure various performance and traffic volume metrics on each of these components, with the data 
collected at very fine time intervals. Essentially, we have a set of N time series, where N is extremely 
large, each with a very high rate of data accumulation. It is not feasible to store or access the raw data. We 
need to summarize the data to make further analyses possible. The choice of summarization and modeling 
techniques determines the usability of data. For instance, aggregating data too coarsely across time and 
devices could mask data quality issues specific to time periods or devices. 
 
(3) Complex Glitch Patterns  
Given the hierarchical nature of the network elements and longitudinal propagation of errors, data glitches 
exhibit temporal and spatial correlations. Furthermore, different types of glitches have a tendency to co-
occur. For example, missing values are often accompanied by outlying values of other attributes. A high 
load on the network might suppress pollers, resulting in a lagged or simultaneous co-occurrence of 
outliers and missing values. 
 
Berti-Equille et al [2] propose exploiting dependence between glitches, and other glitch patterns to 
formulate effective data cleaning strategies.  Berti-Equille et al [1] provide a comprehensive overview of 
advances in data quality mining, for using data mining techniques to identify, measure and treat complex 
data glitches in massive amounts of data.  
 

TYPES OF GLITCHES 
 
While the methodology is generally applicable, our case study uses cellular network data. We define here 
the specific glitches we focus on – duplicates, inconsistencies, missing values and anomalies.  
 
Duplicates 
We define duplicates as records that have the same supposedly unique identifier but different attribute 
values. In principle, there should be no duplicates in the data set. Data repair consists of eliminating the 
duplicates either by retaining a random record or fusing the duplicates into a single unique record. See 
Elmagarmid et al [4] for an overview of duplicate detection in databases. 
 
Inconsistencies 
Inconsistencies come in many flavors. Some can be inferred from the data description. For example, 
“duration should be non-negative”, or “if US ZIP code = 07932 then state=NJ”. Some constraints can be 
formulated based on heuristics or consultation with experts. For instance the purely fictional example, “if 
service=voice_only, then text_traffic=0”. Any record that violates this rule is deemed inconsistent. Data 
repair consists of imputing consistent values using either functional dependencies or other criteria. See 
Golab et al [5] for details.  
 
Missing Data 
When an attribute value is not populated, it is considered missing. Occasionally, a default value, such as 



 

9999 or -10000 is used to denote missing values. Usually, these are easy to detect, unless a common value 
like 0 is used to denote missing values, or there is no standard representation resulting in multiple 
representations of missing values. A data browser can be used to identify such non-standard 
representations. See Dasu et al [3] for details. Data repair consists of imputing missing values or dropping 
records that have missing values. Different imputation techniques often result in different “clean” data 
sets and can lead to different results and conclusions.  
 
Outliers & Anomalies 
A significant portion of our paper is devoted to outlier detection. Outliers and anomalies are the most 
prevalent glitches, but hard to determine with certainty. Our approach entails using multiple methods to 
screen for outliers. Outlier detection through multiple methods presents some interesting theoretical 
questions that are described later in the paper.  

OUR APPROACH 
 
The methodology consists of two parts. (1) A set of constraints, either developed in consultation with 
experts or constructed from data properties and functional dependencies, that the data must satisfy, and 
(2) statistical spatial and temporal analyses on the output of anomaly detection techniques. 
 
In our experience, an effective data quality auditing methodology must have both components. Data 
quality is highly domain and context dependent, and therefore it is important to incorporate domain 
knowledge gathered from experts into a set of rules or constraints that the data must satisfy. In addition, 
given the vast amounts of rapidly accumulating data, statistical anomaly detection techniques are essential 
to screen the data and identify smaller subsets of data for further analyses in order to identify patterns and 
co-occurrences that can then aid root cause identification and more effective data repair.  
 
Statistical Methods 
 
The statistical methods we use fall into two broad categories, anomaly detection methods and techniques 
for analyzing the spatial or temporal correlation of detected anomalies. We describe these methods in 
more detail below. 
 
Univariate and Multivariate Outlier Detection Techniques 
 

There are many outlier detection methods. Most are univariate, i.e. they 
detect outliers in each attribute separately. Common univariate methods 
include 3-! limits of a Gaussian distribution and quantile-based methods 
such as the 5th and 95th percentiles of a distribution. See Kriegel et al [6] 
for a comprehensive overview of outlier detection methods. A common 
multivariate outlier detection method is the Hotelling’s T2 statistic. 
Details of this method can be found in Rao [8].  
 
It is possible for univariate and multivariate outlier detection methods to 
identify different outliers. Such differences could be caused by 
fundamental conceptual differences in the detection methods rather than 
by random chance due to Type 1 (false positive) and Type 2 (false 
negative) error rates. Figure 2* (courtesy of Dr. Laure Berti-Equille) 
shows a bivariate Gaussian represented by the green ellipse and the 

outlying region of the joint distribution shaded in red. The dotted blue lines represent univariate bounds 
for outlier detection in the X or Y dimension. The bold green dots are univariate outliers that lie outside 

!"

#"

Figure 2*: Bivariate (green) 
and univariate (red) outliers 
 



 

these dotted blue lines. These are however not multivariate outliers with respect to the bivariate Gaussian. 
On the other hand, the bold red dots are outliers based on the bivariate Gaussian but are not univariate 
outliers since they lie within the univariate bounds. 
 
In general, multivariate outliers can be more informative because they take into account the dependence 
structure between the attributes, but they are more difficult to compute because finding outliers in 
multiple attributes simultaneously entails specifying and estimating a joint distribution.  
 
In this paper, we do not develop new outlier detection techniques. Instead our methodology uses a 
combination of univariate and multivariate techniques to harness the strengths of each approach. 
Specifically, we report detections from the Hotelling’s T2 statistic, but use the detections from the 3-σ 
limits of the Gaussian distribution as an additional performance check. 
 
Setting Thresholds 
In a statistical hypothesis-testing framework, the level of significance, α, plays a crucial role as a 
threshold for determining whether a data point is an outlier. This quantity is also known as the Type I 
error and corresponds to the false positive rate under the null model. It is not straightforward to establish 
an equivalence between the significance levels for univariate and multivariate methods. If we fix the false 
positive rate to be 5% for each of the two attributes, what is the comparable level of significance for the 
joint distribution? This is an interesting theoretical question that needs further investigation. In this paper, 
we compare methods by choosing thresholds so that about the same number of outliers are detected by the 
individual methods.   
 
Temporal and Spatial Correlations 
Consider an outlier sequence as a sequence of points in time, say 

! 

x1,x2,...,xNx
. With another outlier 

sequence 

! 

y1,y2,...,yNy
, we are often interested in measuring the degree at which these outlier sequences 

match. The outlier sequences may be univariate outliers from different variables measured at the same 
network component, or multivariate outlier sequences measured at neighboring components. More 
specifically, we are interested in how much the sequences match temporally, and how the degree of match 
varies with spatial separation and network topology. For example, since a Node B manages multiple 
sectors in the same physical location, one might expect that technical issues at that location can manifest 
themselves in the data collected from these sectors as outliers that occur around the same time. If outlier 
sequences from nearby Node Bs match to a high degree, it may be indicative of more widespread network 
problems. 
 
There are many ways to compare two outlier sequences. A comprehensive study is beyond the scope of 
this paper and we defer a detailed comparison to a later work. Here, we treat outlier sequences as one-
dimensional point processes and focus on using the cross g function to compare pairs of outlier 
sequences. The cross g function is a variation of the usual g function (also called the pair correlation 
function) commonly used in the analysis of spatial point patterns. Given a lag l, the cross g function is 
estimated by counting the number of points separated by distance l, 

! 

ˆ g (l) =
i=1

Nx

"
j =1

Ny

" 1{| xi # y j |$ (l # dl,l + dl)}/(NxNy ). 

 
Thus, instead of a metric that yields a single distance between two outlier sequences, the cross g function 
is a function of lag l and measures the strength of the correlation between two outlier sequences at each 
lag l. It is related to the probability of finding a point pair separated by distance l. Large values of the 
cross g function at the very small lags, say, l=0 or 1, are indicative of a match between the two outlier 
sequences. Peaks at other values of l may suggest periodicity in the patterns or time lags between the 



 

sequences. See Stoyan et al [9] for details. 
 

CASE STUDY: APPLICATION TO MOBILITY DATA 
 
In this section, we present results from our case study of applying the techniques described above to 
network monitoring data collected by a United States telecommunications company. For proprietary 
reasons, we will describe the data in somewhat general terms, and present results at a high level on a 
limited number of attributes. The methodology however, can be applied in general at any level of 
granularity. All the data processing and statistical analysis is done using a combination of SAS routines 
and R code. 
 
Motivation 
Many important decisions related to the management and optimization of telecommunications network 
are based on monitoring data collected from switches that control voice, data and text traffic on the 
cellular network. Since such decisions cost the company millions of dollars in equipment and 
significantly impact customer experience, it is important that the data be of good quality. However, the 
sheer volume of the data makes it impossible to monitor it in any manual fashion. Furthermore, some 
glitches can only be detected at a fine granularity and can be lost when the data is aggregated to make it 
more manageable.  
 
Data Description 
The original data set consists of performance metrics of antennae on cell towers gathered from counters 
that are polled at regular time intervals. In this paper, we focus on three attributes that we denote USAGE, 
SAMPLES and PERFORMANCE, where USAGE refers to the load handled by the network element 
during the interval between consecutive polls, SAMPLES to the number of samples collected during the 
same interval, and PERFORMANCE to a performance metric measured over that same interval.  
 
A typical data record contains the time stamp, the values of these three quantities and information about 
the network component and its hierarchy, i.e. the Sector ID, and the IDs of the Node B and RNC that it 
falls under. The components RNC, Node B and Sector were briefly described in the Introduction and 
illustrated in Figure 1. Thus the data consists of rows of the form 
 
TIME|RNC|NODE B|SECTOR|USAGE|SAMPLES|PERFORMANCE 
 
with more than 100 million such records collected over a period of several months. The data arrive as a 
sequence of flat files, each file containing multiple records. At any point in time, we have access to the 
most current collection of files along with the cumulative summaries that we maintain of all the data 
observed so far. The case study described below was carried out on the entire data, not in any 
experimental or simulation-based setup. 
 
Data Quality Assessment 
After initial data preprocessing, the first step in our data quality assessment methodology involves 
procedures to enforce compliance with domain specific constraints. We deal first with duplicates and 
missing records, whose constraints are relatively easy to define, then identify and address inconsistent or 
damaged values. After these fundamental issues are addressed, univariate and multivariate techniques are 
employed to detect outliers. Finally, we study correlations among different types of outliers and outlier 
sequences (next section). 
 
Golab et al [5] describe the use of functional dependencies to formulate constraints for identifying 



 

inconsistencies and to isolate subsets that match or violate the constraints. In our case, there are many 
logical constraints particularly with respect to the network topology. For simplicity and to avoid having to 
describe the network in great detail, we list several of the simplest ones: 
 

1. If two or more records have the same unique identifier, the remaining attributes should also be 
identical (duplicate records). 

2. No attribute should be missing (missing values). 
3. All possible occurrences of the unique identifier should be present (missing records). 
4. Logical inconsistencies 
 a. When not missing, attribute USAGE 

! 

" 0. 
b. When not missing, attribute PERFORMANCE should lie in the interval [C1, C2], 

specified by experts. 
 c. If attribute SAMPLES is missing, then attribute USAGE should be missing. 
 

Table 1 summarizes the distribution of duplicates, missing data and inconsistencies across RNCs and the 
frequency at which they occur. We classify an RNC as affected at a given time if at least one sector of a 
Node B associated with the RNC has a data glitch. We next describe more detailed results from running 
the data stream through this set of constraints. 
 

TABLE 1 
   % of RNCs 

Affected 
% of TIME 
Affected 

% RECORDS 
Affected 

Duplicates  3.6% 26% 0.05% 
Missing 
Attributes 

All 5% 12% 0.01% 
USAGE 22% 24% 0.08% 
SAMPLE 74% 43% 2% 
PERFORMANCE 99% 99% 8% 

Inconsistencies Negative Usage 1.5% 52.8% 0.006% 
Negative Performance 87% 99% 0.04% 
Usage Without Sample 15% 13% 1.7% 

 
Duplicates 
Under ideal conditions, there should be a single record for every combination of TIME, RNC, NODE B 
and SECTOR, the unique identifier for a record. We found that a little over 0.03% of the total records 
were duplicates with respect to the unique identifier (unique combination of TIME|RNC|NODE 
B|SECTOR). Further investigation showed that the duplicates were created under two circumstances.  
 
In the first scenario, duplicates are generated when one of the fields in the unique identifier is overwritten 
by a common error code. For example, the two records 

TIME1|RNC|NODE B|SECTOR|value1|value2|value3 
TIME2| RNC|NODE B|SECTOR|value4|value5|value6 

become mapped to  
ERROR CODE| RNC|NODE B|SECTOR|value1|value2|value3 
ERROR CODE| RNC|NODE B|SECTOR|value4|value5|value6 

resulting in duplicates. 
 
Data repair consists of using functional dependencies, interpolation or other domain knowledge to assign 
correct values, or to drop records that are duplicates AND contain an error code in any of the fields of the 



 

unique identifier. 
 
In the second scenario, we found that records were re-transmitted when the system identifies them as 
damaged or incomplete. Thus, for example, the damaged record 

TIME|RNC|NODEB|SECTOR|missing|inconsistent value|missing 
may be re-transmitted (accurately) as  

TIME|RNC|NODE B|SECTOR|correct value|correct value|correct value 
resulting in two records with the same join key. Data repair involves the simple deletion of duplicate 
records that have missing or inconsistent attribute values. 
 
Note that the co-occurrence of missing and inconsistent values along with duplicates is an example of 
multivariate, co-occurring glitches. 
 
In Figure 3 we show the occurrence of duplicates across time and RNCs. The X-axis represents time while 
the Y-axis corresponds to RNCs organized approximately by hierarchy. Each row of dots correspond to 
duplicates occurring at a specific RNC. A majority of the duplicates occur at a handful of RNCs over a 
distinct period of time. The RNCs enclosed in the red boxes are “neighbors” on the network indicating 
localization of duplicates by network as well as in time. By isolating the duplicates in this manner, we can 
provide a succinct description of the occurrence of duplicates (e.g. “RNCs in city X during time period 
[time1,time2]”) that might help in two ways: (a) identify root causes for physical repair and (2) propose 
efficient rules for data repair.  
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Figure 3: Duplicates grouped in time (X-axis) and network topology (Y-axis). The 
red boxes show RNCs that are close as defined by the network topology that often, 
but not always, translates to spatial proximity. The plot indicates that a majority 
of the duplicates were generated by a small set of RNCs over a contiguous period 
of time. 



 

 
 
 
 
Missing Values 
Missing data can occur in two ways: an entire record or any combination of individual attributes can be 
missing.  
 
We can determine missing records because we expect data from every SECTOR of every NODE B of 
every RNC at each TIME interval. When entire records are missing, these records can be analyzed to 
identify any patterns, e.g. all the missing records may be associated with a particular RNC or time period. 
We found that such records constitute 0.01% of the total number of records. They occurred at the same 
contiguous time period, affecting only 5% of all the RNCs. Identifying such patterns facilitates data repair 
as well as their effects on subsequent analyses.  
 
Records with missing USAGE attribute constituted around 0.08% of the data. Almost all these records 
had a low value (< predetermined constant K) of SAMPLES, indicating that the polling process was 
incomplete when these records were collected.  
 
Note that an RNC has many Node Bs associated with it, and each Node B has several sectors associated 
with it. It is not unreasonable that over a duration of several months at least some sector associated with 
any given RNC would have missing values. Often the polling is stopped for maintenance or to upgrade 
software and hardware components. 
 
Inconsistencies 
For the purposes of this case study, we focused on three logical inconsistencies. (1) USAGE cannot be 
negative; (2) PERFORMANCE must lie within a fixed interval;  (3) If SAMPLES is zero, then the 
attribute USAGE is meaningless since is not possible to report usage without reporting the number of 
samples. The distribution of inconsistencies is summarized in Table 1. Some inconsistencies (negative 
usage) are localized to a few RNCs at specific time periods while others (negative performance) are 
distributed more widely across time and RNCs.  
 
Outliers and Anomalies 
  
In this section, we study outliers detected in the data stream. We use a 14-point sliding window for 
statistical techniques based on exponentially weighted moving averages to identify univariate and 
multivariate outliers. While we use specific techniques described or referenced in the “Statistical 
Methods” section, note that any outlier detection technique can be used. 
 
Univariate and Multivariate Outliers 
It is instructive to look at the differences between outliers detected using univariate and multivariate 
methods. Figure 4 shows a plot of PERFORMANCE (red line at the bottom of the plot) and USAGE 
(blue line at the top of the plot) for a particular RNC. The Y-axis represents the values of these two 
attributes, transformed to fit in a single plot, while the X-axis represents time. The red and blue dots are 
respectively PERFORMANCE and USAGE outliers, detected at 0.05 level of significance based upon 
marginal distributions. Bivariate outliers represented by black dots are detected using Hotelling’s T2 
method based on the joint distribution of the two variables.  
 
We find that there are multivariate outliers without corresponding univariate outliers, and vice-versa, as 
discussed earlier. The exclusively detected multivariate outliers (shown within red boxes) appear to occur 



 

when there is a trend in one or more of the variables (in this example, in PERFORMANCE) even though 
marginally the values do not appear to be extreme. This suggests that the procedure is detecting a change 
in the correlation between the variables. On the other hand, the exclusively univariate outliers identify 
moderately extreme values (e.g. the blue dot near day 275). This example demonstrates the importance of 
using multiple outlier detection techniques. 

 
 

 
 
 
 
Correlations between Outlier Sequences 
Here, we investigate the correlation between outliers across time, space and network topology. While we 
focus on outliers, this technique is applicable to sequences of any type of data glitches. In this particular 
case, we expect outliers to cluster together in the network and in time. This is because outliers are often 
caused by abnormalities that are propagated through the network over time. 
 
Correlation by network topology 
We find that outliers of network components in a hierarchical structure are indeed correlated. In Figure 5, 
we show a plot of the outliers of a given RNC, of 4 of its Node Bs, and of all the sectors in the selected 
Node Bs. The figure is divided into 4 horizontal bands, separated by gray dotted lines, corresponding to 
each of the 4 Node Bs. Within each band, the Node B outliers are plotted (blue dots) along with those of 
its sectors (red dots) and of its parent RNC (black dots). To facilitate comparison, a vertical line is drawn 
through each RNC and each Node B outlier across the band. 
 
Since all 4 Node Bs are from the same RNC, the black dots and lines are the same across bands. 
However, there is variability in the outliers between Node Bs – not all the blue dots across bands match. 
The sector outliers do not necessarily match either. However, outliers in sectors from the same Node B 
(red dots within each band) appear to match more closely than outliers of sectors from different Node Bs 
(red dots across bands). See, for example, the lower band near time 380 in Node B 4. 
 

Figure 4: Outliers for two attributes for an RNC. Blue and red dots are 
univariate outliers, while black dots are multivariate outliers with 
respect to the joint distribution of the two attributes. 
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We note that there are sector outliers (red box in Node B 1) that do not have corresponding RNC outliers 
– there are no corresponding black dots in the figure. In such cases, the outliers at the sector level have 
been washed out by other sectors associated with the same RNC. This is an example where a signal at a 
granular level gets swamped upon aggregation to a coarser level. The same phenomenon occurs also for 
Node B outliers (see purple box in Figure 5). In addition, we find RNC outliers (blue box in Node B 4) 
that do not have corresponding outliers in the Node Bs or sectors shown in the plot. This is because these 
outliers are associated with Node Bs and sectors that belong to the RNC but are not shown in the plot. 
 
Next, we investigated the time correlation between outlier sequences detected at the sector level. We used 
the cross g function to measure the degree of matching between outlier sequences of sectors within the 
same Node B, and of sectors in different Node Bs. Specifically, we computed the cross g function for all 
pairs of sector outlier sequences from the same Node B, and found its mean. We call this the “within 
Node B” mean cross g function.  
 
We repeated the procedure for all pairs of sector outlier sequences where each sequence belonged to 
different Node B. We call this the “across Node B” mean cross g function. These are shown in Figure 6 as 
solid black and gray lines for the within and across Node B mean cross g functions respectively. Note that 
the mean cross g functions are much higher for smaller lags, indicating that outliers do bunch together in 
time. Furthermore, the mean cross g function is higher for sector outlier sequences within the same Node 

Figure 5: Outliers in sectors (red dots), associated Node B outliers (blue dots with 
bar) and outliers in the parent RNC (black dots with bar.) Red outliers without 
blue outliers (red box, Node B 1), and blue outliers without black (purple box, 
Node B 2), imply that outliers get washed out upon aggregation from sector to 
Node B, and Node B level to RNC level. 



 

Bs (solid black line) compared to across Node Bs (solid gray line), suggesting a greater degree of 
matching of outlier sequences for sectors within the same Node B. 
Note that individual cross g functions for any pair of sector outlier sequences can be quite variable but are 
relatively stable when averaged over all possible pairs of sector outlier sequences.  
 
We repeat the above procedure by replacing Node Bs with RNCs. Figure 6 also shows mean cross g 
functions for pairs of Node B outlier sequences within the same RNC (solid blue line) and from different 
RNCs (solid cyan line). We find that the same results hold for RNCs. The mean cross g function for Node 
B outlier sequences within the same RNC is higher than that for Node B outlier sequences across RNCs. 
Note also that the correlations are higher for sector sequences than Node B sequences (the black and gray 
lines are higher than the blue and cyan lines). This is not surprising because the sectors of a Node B are 
generally at the same physical cell tower. On the other hand, Node Bs in an RNC tend to be more widely 
scattered spatially and geographically and hence may experience different physical and environmental 
factors. 
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Correlation by geography 
Next, we studied how the time correlation between outlier sequences varied with spatial separation. We 
selected 4 physically disparate locations, indicated in Figure 7 by black triangles. We identified the 10 
nearest Node Bs for each of these locations and extracted the multivariate outliers, so that we have 4 sets 
of 10 outlier sequences corresponding to the 4 geographical regions.  
 
We computed the cross g function for each pair of Node B multivariate outlier sequences (a) within sets 
and (b) across sets, for time lags from 0 to 25, and computed the mean of the within set and of the across 
set cross g functions (see Figure 8).  As expected, the Node B outlier sequences show greater correlation 
within regions (solid blue line) than across regions (solid cyan line).  
 
When we used sector outlier sequences corresponding to the 4 geographical regions, instead of Node B 

Figure 6: Mean cross g function for outliers averaged over all pairs of sectors within Node B 
(black line represents cross g, dashed lines represent two standard deviation bands), and 
across Node Bs (gray line). Blue lines correspond to mean cross g function for outliers for all 
pairs of Node Bs within RNC (blue line) and across RNC (cyan line).   



 

outlier sequences, we reach a similar conclusion – sector outlier sequences from the same geographical 
region (solid black line) show higher degree of matching than sector outlier sequences from disparate 
geographical regions (solid gray line). Note in addition that the sector correlation is greater than the Node 
B correlation, suggesting that there is greater degree of matching between sector outlier sequences than 
Node B outlier sequences.  
 

Locations of NodeBs and 4 geographical centers

 

Finally, when we compare Figure 6 and Figure 8, we find that the mean cross g function is higher, 
especially at the smaller lag values, for pairs of outlier sequences that are within the network hierarchy 
than for sequence pairs within the same geographical region. This suggests that outliers are more 
dependent through the network topology than by geographic proximity. This is reasonable since the 
underlying causes for outliers are more often network phenomena propagated along the network graph 
rather than physical phenomena. 
 
The bumps in the within-region mean cross g function at time points 12 and 24 in Figure 8 indicate 
possible periodicities in time, perhaps due to a maintenance schedule.  
 
CONCLUSION & FUTURE WORK 
 
In this paper, we highlighted the challenges of managing the data quality of mobility network data 
streams. The data, consisting of rapidly accumulating time series of hundreds of thousands of network 
components, is both massive and complex. Data cleanup requires expert domain knowledge. Only 
summaries of data can be stored. Statistical techniques need to be lightweight yet effective. An effective 
methodology for maintaining data quality needs to address each of these issues within a consistent 
framework that allows smooth progression from cleanup to analysis. 
 
We presented our methodology in context of a specific case study. Our investigations show that mobility 
network data streams can be riddled with data quality issues. We developed a set of domain-specific 
constraints that allows automatic identification and repair of simple data glitches, such as duplicates and 
missing values. More importantly, we developed a general methodology for studying the temporal, 
geographical and topological correlations of detected outliers. This methodology is generally applicable 
to any data stream and any type of glitch sequence.  
 
Our future work leads us in several directions. First, while we currently employ both univariate and 
multivariate outlier detection techniques, the results of the univariate procedure only serves as a quality 

Figure 7: Four geographical reference points (triangles) and Node B’s (blue dots) near them.   



 

check for the multivariate procedure. We believe that a more integrated use of univariate and multivariate 
outlier detection methods will be more effective in identifying different types of outliers. There needs to 
be proper calibration of thresholds when the methods are used together. A system needs to be in place to 
(a) adjust one procedure based on the output of the other procedure and (b) to combine the results of both 
procedures together with accurate measures of confidence. 
 
Secondly, while the cross g function allows the examination of correlations at different lags, it is highly 
variable especially when the outlier sequences are sparse. Further investigation is needed to study other 
available measures of correlations or to develop new ones. For example, a cumulative version of the cross 
g function (i.e. integrated up to lags l) will be more stable. Distance metrics that yield a distance between 
two point sequences can serve as an overall measure of correlation instead of a correlation at different 
lags. 
 
The problem of co-occurring and correlated data glitches offers many research opportunities that could 
potentially have a major impact on automated auditing of complex data streams. 
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Figure 8: Within-region (solid black line) sector outlier sequences for geographically close 
Node Bs have a higher cross g (better match) than across-region (solid gray line). The cross g 
for sector level outlier sequences is higher than Node B level within-region (solid blue line) 
which in turn is higher than across-region (solid cyan line) Node B level outlier sequences. 
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