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Abstract: Solving the Merge&Purge problem is a crucial step for Data Quality 

applications since they depend on integrated views of entities. In the present work, we 

discuss a domain-independent solution to the problem of detecting duplicate records and 

its implementation in a real-world application. Our approach is based on the Standard 

Blocking strategy with some enhancements proposed to overcome the major challenge of 

deduplication in the industry scenario: maintaining good accuracy while processing large-

scale datasets in a timely manner. Experimental results are given on both synthetic and 

real-world datasets. The performed experiments show that, with the proper configuration, 

it is possible to achieve high accuracy results, reaching an F-measure of 99.78%. 

Moreover, the performance evaluation shows that the proposed solution can be applied to 

large-scale real-world datasets, since it processed a dataset with 45 million records in 

about 3 hours in a simple PC, and a dataset containing 156 million records in about 5 

hours and 40 minutes in a more robust machine. 
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INTRODUCTION  
The Merge&Purge problem, also referred to as data deduplication, duplicate detection or entity 

resolution, is the process of identifying records that refer to the same real-world entity in one or more 

data sources [9, 8]. Solving this problem is a crucial step for Data Quality applications since they depend 

on integrated views of entities. The quality of the data can have significant cost implications to a system 

that relies on information to function and conduct business [8]. 

Automatically detecting duplicate records is a process that improves data quality and integrity. It saves 

both time and money by: maximizing the value of the data; reducing operating costs and manual effort; 

enhancing customer service; avoiding the waste caused by duplicate mailings; ensuring a single customer 

view; delivering accurate information for better informed decision making; among others. 

Data sources may contain duplicate data mostly due to variations caused by input errors, such as: 

misspellings, abbreviations, transpositions, missing or incomplete values, etc. Those errors constitute one 

of the main problems faced by the process of deduplicating data. A good solution must be able to detect 

duplicate records that refer to the same entity, in spite of any errors they may have. The other difficulty 

faced by the process is scalability, given that the number of record comparisons grows quadratically with 

the number of records in the input dataset (when all records have to be compared with each other). If the 

solution is to be used in a real-world application, this issue is of great concern since large scale datasets 

need to be processed. 



 

In this paper, we discuss a domain-independent solution to the Merge&Purge problem and its 

implementation in a real-world application, as part of an enterprise data quality product in our company 

(the Merge&Purge Strategy platform). Our approach deals with the major challenge of deduplication in 

the industry scenario: achieving good accuracy while maintaining good performance, given that the size 

of the datasets that need to be processed is usually large. As the scope of the Merge&Purge solution in 

our company goes beyond the duplicate detection problem, our proposal will be referred to as Merge 

solution in the present work.  

The main contribution of the present research is the provision of a Merge solution that meets the needs of 

the industry scenario. Our approach is based on the Standard Blocking strategy which was chosen due to 

its simplicity, relatively small number of parameters, and good accuracy/performance trade-off [3]. The 

solution’s implementation, performed in Java, has no database or domain knowledge dependency. 

Furthermore, it provides the following advances, in relation to the basic Standard Blocking approach, 

which make it possible for the proposed system to overcome the difficulties described above: 

1. Splitting the Inverted Index structure into n files; 

2. Parallelization of the matching process; 

3. Matching criteria definition with relevance weights; 

4. Output generation as sets of duplicate records, instead of record pairs. 

The performed experiments show that, with the proper configuration, high accuracy (both high Precision 

and high Recall) can be achieved with our approach. In some executions, it was able to reach an F-

measure of 99.78%. Experimental results on accuracy are provided on both synthetic and real-world data. 

Moreover, as demonstrated in the performance experiments, the proposed solution has been successfully 

applied to real-world, large-scale datasets. A dataset with more than 45 million records was deduplicated 

in 3 hours and 15 minutes on an off-the-shelf machine, meeting the needs of our organization. 

 

 

 

BACKGROUND: STANDARD BLOCKING STRATEGY 
When deduplicating a dataset, each record potentially has to be compared to all others in that set. The 

total number of potential record comparisons in this approach is |D| x (|D| - 1) / 2, which is 

computationally unfeasible for large datasets due to its high performance cost. In order to reduce the 

number of comparisons, a blocking technique can be applied so that the input data are divided into blocks 

before executing the comparison process. This way, only the records in the same block are compared 

with each other. Standard Blocking [12] is the blocking strategy applied by the solution proposed in the 

present work.  

In the Standard Blocking approach, the user must choose a blocking-key which can be formed by one or 

more fields from the dataset. The dataset will be split into several blocks according to the key values. All 

records having the same value in the blocking-key will be inserted into one block. Each record is inserted 

into one block only. The comparison process is then performed only within each block. 

There are two major issues to be considered when choosing a blocking-key. The first one is the size of 

the generated blocks, which is directly related to the frequency distribution of the key values. If the 

resulting blocks have a large number of records, there is the possibility of performing more comparisons 

than necessary. On the other hand, if the blocks are too small, then true matches may be missed, reducing 

the strategy’s accuracy. The second issue is the occurrence of errors in the values used as blocking-keys. 

This may also result in the separation of duplicate records into different blocks. 

The Standard Blocking process is divided into two phases. In the first one, all records from the input 

source are read, the blocking-key values are created, and the records are inserted into a suitable index 

data structure. The second step is responsible for performing the comparison between each record in a 

block to all other records in the same block. Record pair classification as match or non-match is also 

performed in this phase. 



 

 

 

 

SOLUTION 
The Merge solution proposed in the present work was developed into a tool to be applied as a data 

quality service from our company. Summarizing, the Merge solution takes as input a set of records to 

deduplicate, which can be provided from one or more data sources that do not need to share the same 

structure, along with some configuration. Its deduplication strategy is then processed, generating a list of 

records with group identifiers as output. Besides the initial configuration, the application needs no human 

interaction. Moreover, it has no database or domain knowledge dependency. The main objective of our 

Merge solution is to maximize both accuracy and performance. 

The application was designed to be flexible, so that other features can be easily included in the future. 

Furthermore, other blocking techniques to perform the deduplication process can also be easily added 

(following the idea proposed by the Febrl system [5]), making it possible for the users to choose the 

desired approach to solve their problem. The currently provided strategy, illustrated in Figure 1, is based 

on the Standard Blocking approach. It is also executed in two steps: one for mapping the input records to 

an internal index structure, building the data blocks; and a second one to perform the comparison 

between the records within each block. No similarity calculations are performed during the first step.  
 

 
Figure 1: Merge solution complete process 
 

In the first phase, an Inverted Index structure is used for storing the data blocks, as described in [6]. The 

(encoded) blocking-key values constitute the keys of the Inverted Index, and all records that have the 

same blocking-key value are stored into the same Inverted Index list. Differently from [6], instead of only 

providing phonetic encoding, we propose the possibility of performing other transformations to encode 

the blocking-key value, such as: alpha, numeric, alpha-numeric, sorting, reversion, and substring. 

An enhancement proposed in our approach is in the storage of the Inverted Index structure. Instead of 

keeping all structure in main memory, which would be unfeasible for large datasets, the data blocks are 

stored in one or more files. The number of files in which the Inverted Index will be split into is 

configurable. Then, a memory control policy is employed to manage the loading of each block for the 

comparison process (in the second step).  

Another improvement can be found in the second step. In order to achieve better performance, the 

comparison step, which often dominates the execution time, can be executed in parallel. This way, the 

proposed solution saves time by performing the comparisons in more than one block at the same time.  



 

Each pair of records is compared based on match codes which are grouped into one or more matching 

criteria. Besides the standard configuration, or approach provides means for the user to specify different 

relevance weights to each criteria element, which increases the chances of detecting correct duplicates. 

This constitutes another advance provided by our solution. 

The comparison result between two records is represented by a vector having the similarity degrees for 

each compared field weighted by specified relevance values. Each field comparison returns a number, 

between 0 (total dissimilarity) and 1 (exact math), representing a similarity degree. Each similarity vector 

is then processed by a classification strategy which determines if the records are similar or not. Fellegi 

Sunter is the strategy currently available in the application. In this classifier, the similarity degrees of 

each vector, weighted by relevance values, are summed into one matching result. Record pairs are 

classified as matches if the similarity result is above a specified threshold, and as non-matches otherwise. 

If two records are classified as a match, then both will be assigned to the same output group.  

A fourth improvement is provided in the system’s output generation. Instead of generating pairs of 

records, the basic Standard Blocking strategy was modified so that groups of records are created as part 

of the matching process. This way, without creating pairs of duplicate records, our approach avoids the 

need for a demanding post-processing step to generate the groups from those pairs. 

The output created by our application has all records provided as input with an additional field for the 

group identifier. Each group must contain only records that refer to the same real-world entity. This way, 

the generated output is ready to be processed by a data quality solution without the need of any post-

processing step over the data. In the specific case of our company, the generated output is processed by 

an application, named Purge, which has the objective of indicating which record better represents each 

group according to criteria previously defined by the user. Furthermore, if desired, the system cleans the 

dataset by only keeping one instance of each set of duplicates. 

The Merge solution’s input and output are read/generated through input and output connectors. They are 

responsible for specifying which type of source will be used as input and its corresponding output. Both 

connectors are provided as standard interfaces which can be implemented to attend to specific needs. For 

example, the input can be read from a text file or a database. Comma separated values (CSV) file format 

is currently being used for both input and output in our experiments. 

 

 

Configuration 
We aimed at providing a tool flexible in meeting each client’s specific definitions of what is and what is 

not a duplicate. For this reason, the definition of some key parameters, such as blocking-key and 

matching criteria elements, must be provided as part of the application’s configuration. The main 

difficulty in this task is identifying information that is relevant to duplicate detection in each dataset, 

without the use of any domain knowledge. Ideally, this choice should be made based on well defined 

statistic information about the dataset, such as the ones provided by a data profiling tool. Data profiling is 

the process of examining the data available in an existing source and collecting statistics about that data. 

Our company provides such a tool which is always applied to analyze the input data for deduplication.  

Having that information available, the decision of which fields must be chosen to configure the 

application is facilitated. For example, fields that have a high percentage of records with missing values 

are not suitable for being used as blocking-keys. It should be pointed out that the configuration has a 

strong influence on the results obtained by the solution. That happens because the size of the generated 

blocks depends upon the frequency distribution of the record values used as blocking-keys. If a very large 

block is generated, a very large number of comparisons will need to be performed, negatively affecting 

the application’s performance. On the other hand, if similar records are inserted into different blocks, 

true matches will be missed, negatively affecting the application’s accuracy. 

If the proper settings are found for each dataset, better results can be achieved both in terms of accuracy 

and performance. The proper configuration would be the one that generates a small number of candidate 



 

matches while covering as many true matches as possible. 

 

Blocking-Key 

The blocking-key determines which records will be compared (as it determines which records will be put 

in the same block). One or more attributes (record fields) can be used to compose a key. If more than one 

field is selected, their values are concatenated to form the key value. The separation of the input dataset 

into blocks of records is performed based on those values. Records that have the same value for the 

blocking-key are inserted into the same data block. However, the big majority of the datasets present 

errors in the values of their record fields.  

In order to deal with this issue, our Merge solution provides a set of preprocessing criteria (previously 

listed) which can be applied on the values before they are used as blocking-keys. This way, not only 

equal blocking-key values, but also similar ones are grouped into the same block. Besides that, this 

feature also provides means for creating more efficient blocking-keys. That is, flexible keys able to 

perform data blocking according to the specific characteristics from the dataset. 

The ideal fields to form a key should have no records with missing values (or at least a low percentage), 

besides having the same values for the records that must be matched. Moreover, the frequency 

distribution of the field values should also be taken into account. Key values with many repetitions 

through the records in the dataset will contribute to large data blocks, increasing the number of record 

comparisons. 

 

Matching Criteria 

Matching criteria, in their turn, define which fields will be compared between each pair of records. The 

choice of which attributes must be used depends on what constitutes a duplicate. The main problem that 

must be overcome when comparing pairs of records is the presence of noise and small differences 

between the ones that must be matched together. In order to obtain better matching results, each record 

comparison in our approach is performed based on one or more matching criteria, which allow for the 

definition of relevance weights according to each field’s reliability. A matching criterion is a set of match 

codes. Each criteria element can be one match code or another matching criterion.  

A match code is formed by: (1) the definition of the record field(s) that must be used to compare pairs of 

records; (2) the transformation criteria that must be applied to the field values (optional); (3) a similarity 

measure to perform the comparison; (4) a similarity threshold; (5) a relevance weight; and (6) the 

similarity degree that must be applied when there is a missing value (in one or both the records being 

compared). The transformation criteria available are the same as the ones provided for the blocking-key 

building (as mentioned before). The similarity measures that can be applied in our Merge solution are 

based on string comparison techniques. The ones currently provided are: Equal Matcher, Hamming 

Distance, Jaro, Levenshtein, and Smith Waterman. A survey about the quality of similarity functions is 

given in [7]. 

The similarity threshold defines if the values being compared are similar or not. When a similarity degree 

is computed between two values, the result must be higher than the predefined threshold for them to be 

classified as matched. Otherwise, the score will be set to zero. The relevance value, in its turn, denotes 

the importance of the match code in the similarity computation. It plays a key role in the matching 

computation, making it possible for the most reliable information to contribute more to the similarity 

criteria composition. Threshold and relevance values must also be defined for each matching criterion.  

The similarity degree for a matching criterion is represented by a vector containing a similarity degree for 

each criteria element, weighted by the corresponding relevance value. The resulting similarity is 

computed by the classifier according to Equation 1, in which the similarity degrees (w), weighted by their 

relevance values (rel), are summed into one matching result. The relevance value of each element must 

be normalized to a range between 0 and 1. The matching result must also be higher than the threshold 

value determined for that criterion. Otherwise, the result will be set to zero. 
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Enhancements 
There are four main enhancements in our proposal in relation to the basic Standard Blocking strategy. 

These improvements make it possible for our Merge solution to achieve high accuracy, while maintaining 

good performance, being able to process large-scale datasets. 

The first improvement is in the way the Inverted Index is built. The main difficulty a Standard Blocking 

approach faces when building the Inverted Index structure is dealing with very large datasets since this 

structure can easily become too big to fit in the main memory of an off-the-shelf computer. Depending on 

the size of the source, the amount of memory required might overwhelm even very robust computers. 

In order to deal with that problem, it is necessary to use the secondary storage. One approach to that use 

would be creating a different file for each blocking-key in order to save the necessary information to 

process that block of records. The problem with that approach is that, depending on the configuration, 

millions of files can be created. Experiments have shown that, in certain operating systems, the need to 

deal with that number of files can slow down the process considerably, or even lead it to freeze. 

Another approach would be to save all the processed records with their blocking-key to one big file, and 

then sort the records in that file by the blocking-key values. After that, simply reading the file 

sequentially would allow the program to obtain all the information related to a given block, since all 

those records would be clustered together. The problem with that approach is that sorting one huge file 

can be very time consuming, due to the need to constantly load records to the main memory and then 

offload them to the disk again. This is true even for algorithms especially suited to deal with records in 

secondary storage. 

The approach taken in the solution presented in this paper was to break the Inverted Index into n files, 

where n is configured by the user. Each record that is part of the Inverted Index structure is, after going 

through all preprocessing steps, saved to a file. The specific file is chosen through a hash of the record’s 

blocking-key, which means that all records for a given blocking-key end up in the same file. After all 

records are processed, each file is sorted by the blocking-key values, and then all files are used as sources 

for the data comparison process. 

The advantage of this approach is that, if an adequate number of files is chosen, most of them can be 

sorted in main memory, speeding up the process considerably. Moreover, when the files do not fit into 

the main memory, their size in disc is much smaller than keeping only one file with all records. This 

leads to fewer swaps between main and secondary memory, which also accelerates the process. With this 

in mind, the number of files should be set according to the size of the dataset and an estimate of the 

frequency distribution of the values in the fields chosen to build the blocking-key.  

The parallelization of the comparison process is the second enhancement proposed in our approach. This 

allows the solution to make use not only of the parallelism already present in the multi-core machines 

(which is the standard in the PC market), but also of the processing power of several distributed 

machines, with the help of an internally developed middleware for the distribution of Java applications. 

The parallelization makes use of the fact that since comparisons are only made between records in the 

same data block, each one can be processed independently. This way, several data blocks can be 

processed at the same time in different threads without any effect upon the final results. 

The third improvement is provided through the matching criteria building. Our approach provides means 

for defining relevance values that weight the similarity degrees resulting from each record pair 

comparison. This way, it becomes easier for the user to determine which information is the most reliable 

one (most important), and that information has greater impact on the similarity calculation for each pair 

of records. This advance contributes to a better accuracy result provided that higher weights are given to 

the proper information. 

Although numerous deduplication solutions have been proposed based on the similarity between two 



 

objects, most of them are oriented to discover pairs of duplicates (pairs-oriented solution) rather than sets 

of similar instances (group-oriented solution). For the pairs-oriented solutions, an additional step is 

necessary (the grouping phase) in which the pairs extracted during the previous stage must be combined 

to form groups of entities’ copies. This process is analogous to finding the connected components of a 

given graph, if one considers all the records in a block as vertices with connections between those that 

are found to be duplicates of each other. This is a problem that is well understood and for which a 

number of well performing solutions exist. However, these solutions generally assume the whole graph 

can be kept in memory. When processing large datasets this is often not the case, which makes the 

problem more complicated and the solutions more costly. 

To deal with that complication, a fourth enhancement was made to the basic Standard Blocking strategy. 

First, the comparison process was more closely linked to the grouping process. Instead of first generating 

all record pairs and only then creating the groups, two records are already placed in the same group 

whenever they are found to be duplicates. This leads to a data structure that occupies less memory, since 

there is no need to maintain information about every pair of records that are considered duplicated. Only 

the group to which each record belongs to needs to be stored. As a side benefit, this also allows the 

number of necessary comparisons to be diminished, since if a given record is a duplicate of another one, 

it is not necessary to compare the first one to any other record that is already in the second record’s 

group. 

Even with that enhancement, sometimes data blocks are still too big to be kept whole in main memory. In 

this case, we use a strategy of breaking them into several smaller blocks which individually fit into the 

main memory. Each of these smaller blocks will be separately processed and the results of that 

processing saved to a file. After all blocks are processed the generated results are then joined iteratively 

until a final result is generated. 

The algorithm used to break the large blocks and then join them is inspired by the external memory graph 

algorithms described in [1], but highly tuned to the specific case of a deduplication process. Its main 

goals were to diminish, as much as possible, the access to the secondary storage, and to make that access 

as much sequential as possible. This algorithm was the key to make it possible for the proposed solution 

to process very large datasets in a timely manner even on off-the-shelf machines. 

Enhancements 1, 2 and 4 contribute to a better performance in the solution execution, while the third 

improvement enables achieving better accuracy results. 

 

 

 

EXPERIMENTAL EVALUATION 
The proposed solution was used in several experiments with both synthetic and real-world datasets. The 

experiments’ evaluation was made in terms of accuracy and performance. The measures for evaluating 

accuracy were: Precision, Recall and F-measure; defined according to B-CUBED algorithm [2].  

There are two different possibilities of weighting schemes. The one adopted here assigns the same weight 

to each group. The weight for each element in a group is computed by dividing the weight of the group 

by the number of elements in that group. Precision is calculated by assigning equal weights to each group 

generated in the output while Recall is computed with equal weights to each group existing in the 

template. 

In order to evaluate performance, the proposed solution was executed with large real-world datasets as 

input. The total processing time was computed for each execution, and the system performance was 

analyzed given the computer configuration. 

As stated in the Configuration section, the choice of which fields must be used for each dataset should be 

made based on well defined statistic information about the dataset. Before running our experiments, we 

analyzed each dataset using a data profiling tool. Based on that analysis, we selected the fields that 

should be used as blocking-keys and the ones that should be used in the matching criteria composition. 



 

The main information computed for each field was: number of missing values, minimum and maximum 

number of tokens, minimum and maximum length, the values’ frequency distribution along with a list 

with the fifty most frequent values. 

 

 

Datasets 
In order to evaluate the proposed solution, four datasets were used: datasets 1 and 2 for evaluating 

accuracy, and datasets 3 and 4 for evaluating performance. It should be pointed out that the accuracy 

evaluation demands a template for each input set. Since the available real data sources do not have any 

templates, an effort had to be made in order to manually generate the desired output for a chosen dataset. 

For that to be possible, a small sample had to be used, given that the cost of manually generating the 

template is very high. For this reason, a synthetic dataset was also employed in order to enrich the 

evaluation. In the performance evaluation, only real-world data sources were used. 

A more detailed description on each dataset is given below. The real-world ones contain variations of 

client register information, such as: name, address, telephone, etc, from Brazilian companies. Due to 

confidentially concerns, more details on those datasets’ attributes cannot be provided. 

Dataset 1: Two real-world data sources, with different structures, were employed to provide samples in 

order to build the first dataset. The resulting sample, having 203 records (with 85% duplicate), was used 

for evaluating accuracy. The main errors presented in this dataset are: missing values (8% records in the 

field Suburb), abbreviations (20% records in Name, 89% in Address, 16% in Suburb, and 18% in City), 

misspellings (6.5% in Name, and 7% in Postcode), and some values containing more information than 

others (10% in Name, and 23% in Address). 

Dataset 2: The second input was a synthetic dataset created from a freely available dataset generator [4] 

capable of creating data sets in English. It contains names, addresses and other personal information, 

based on real world error distributions. The generated dataset has the following characteristics: 5,000 

records (3,750 original and 1,250 duplicate); up to nine duplicates for one original record; maximum 

three modifications per attribute; and maximum five modifications per record. All types of modifications 

provided by the generator were used, applied according to a uniform distribution.  

Dataset 3: The third input source is a real-world dataset containing 45,762,365 records, each one with 10 

fields. Besides using the complete dataset for evaluating performance, it was also split into smaller 

samples, with 10, 20, 30 and 40 million records, in order to track the complete duplicate detection 

process time in relation to the size of the given dataset. 

Dataset 4: The fourth and last dataset is another source with real-world information which was used in 

the performance evaluation. It contains 156,471,190 records, each one with 6 attributes. 

 

 

Evaluating Accuracy 
In order to evaluate the accuracy of our solution and how its configuration may influence in the quality of 

the detected duplicates, the application was executed with more than one configuration for each sample. 

Several configurations were tested, modifying blocking-key and match code settings. Due to space 

restriction, only the experiments that achieved the best results are described here. 

 

Experiment 1 

Dataset 1 was employed in the first experiment in which three configurations were evaluated 

(Configurations 1, 2 and 3). The field State was used as the blocking-key value for all of them. The 

difference among them lies in the matching criteria setting. The result obtained with each configuration is 

given in Tabe1. 

Configuration 1: The first configuration applies one matching criterion with six match codes (see Figure 

2), employing the same relevance value (Relevance = 1).  



 

 

Client (Threshold = 0.8)  

   – NAME [Jaro; Threshold = 0.75; Relevance = 1] 

   – ID [HammingDistance;Threshold =  0.85; Relevance = 1]  

   – POSTCODE [SubString (0-4); HammingDistance; Threshold = 0.85; Relevance = 1] 

   – CITY [Jaro;Threshold = 0.8; Relevance = 1] 

   – SUBURB [Jaro; Threshold = 0.75; Relevance = 1] 

   – ADDRESS [Levenshtein; Threshold = 0.7; Relevance = 1] 

Figure 2: Matching criterion in Configuration 1 

 

Configuration 2: Modifying the relevance values in order to give different importance to the match 

codes, as illustrated in Figure 3, we get an improvement of 4.60% in the result in terms of Recall (Table 

1). 

 

Client (Threshold = 0.8)  

   – NAME [Jaro; Threshold = 0.75; Relevance = 2] 

   – ID [HammingDistance;Threshold =  0.85; Relevance = 2]  

   – POSTCODE [SubString (0-4); HammingDistance; Threshold = 0.85; Relevance = 3] 

   – CITY [Jaro;Threshold = 0.8; Relevance = 3] 

   – SUBURB [Jaro; Threshold = 0.75; Relevance = 1] 

   – ADDRESS [Levenshtein; Threshold = 0.7; Relevance = 1] 

Figure 3: Matching criterion in Configuration 2 

 

Configuration 3: Employing the same relevance value to the fields Name, ID, Postcode, and City greater 

than the value applied for the attributes Suburb and Address, as shown in Figure 4, we get the best result 

for dataset 1. From Table 1 it can be seen that the Precision value remained 100%, while Recall increased 

from 97.65% to 99.04%, reaching an F-measure of 99.52%. 

 

Client (Threshold = 0.8)  

   – NAME [Jaro; Threshold = 0.75; Relevance = 2] 

   – ID [HammingDistance;Threshold =  0.85; Relevance = 2]  

   – POSTCODE [SubString (0-4); HammingDistance; Threshold = 0.85; Relevance = 2] 

   – CITY [Jaro;Threshold = 0.8; Relevance = 2] 

   – SUBURB [Jaro; Threshold = 0.75; Relevance = 1] 

   – ADDRESS [Levenshtein; Threshold = 0.7; Relevance = 1] 

Figure 4: Matching criterion in Configuration 3 

 

Configuration Precision Recall F-Measure 

1 100% 93.05% 96.40% 

2 100% 97.65% 98.81% 

3 100% 99.04% 99.52% 

Table 1: Accuracy results for Experiment 1 

 

Experiment 2 

The second experiment was conducted using dataset 2. A substring with four characters from the field 

Date_Of_Birth was used as the blocking-key value in the three configurations evaluated in this 

experiment. The results for the experiments applying Configurations 4, 5 and 6 are given in Table 2. 

Configuration 4: Six match codes were organized in one matching criterion and the same relevance value 

was applied to each one of them (as presented in Figure 5).  

Configuration 5: Keeping the same matching criterion structure but employing a higher importance 

weight (Relevance = 4) to the field Suburb, and an intermediate value (Relevance = 2) to the fields 



 

Soc_Sec_Id and Postcode (see Figure 6); we get an improvement in the F-measure score. As presented in 

Table 2, there was a slight decrease in the Precision result. However, the result for Recall increased from 

99.18% to 99.55%. 

 

Client (Threshold = 0.7)  

   – SURNAME [Jaro; Threshold = 0.8; Relevance = 1] 

   – GIVEN_NAME [Jaro; Threshold = 0.8; Relevance = 1] 

   – SOC_SEC_ID [Numeric; HammingDistance; Threshold = 0.8; Relevance = 1] 

   – SUBURB [Jaro; Threshold = 0.7; Relevance = 1] 

   – POSTCODE [Numeric; HammingDistance; Threshold = 0.8; Relevance = 1] 

   – ADDRESS_1 [Alpha; Levenshtein; Threshold = 0.8; Relevance = 1] 

Figure 5: Matching criterion in Configuration 4 

 

Client (Threshold = 0.7)  

   – SURNAME [Jaro; Threshold = 0.8; Relevance = 1] 

   – GIVEN_NAME [Jaro; Threshold = 0.8; Relevance = 1] 

   – SOC_SEC_ID [Numeric; HammingDistance; Threshold = 0.8; Relevance = 2] 

   – SUBURB [Jaro; Threshold = 0.7; Relevance = 4] 

   – POSTCODE [Numeric; HammingDistance; Threshold = 0.8; Relevance = 2] 

   – ADDRESS_1 [Alpha; Levenshtein; Threshold = 0.8; Relevance = 1] 

Figure 6: Matching criterion in Configuration 5 

 

Configuration 6: The solution proposed in the present work provides means for defining more than one 

matching criterion, arranged in multiple levels. For some cases, it may contribute to a better accuracy 

result. Figure 7 displays the matching criteria for the sixth configuration in which the same six match 

codes used before are separated into three matching criteria organized in two levels. With this 

configuration, a slight improvement is achieved in the overall result, reaching an F-measure of 99.78% 

(Table 2).  

 

Client (Threshold = 0.7)  

   – SURNAME [Jaro; Threshold = 0.8; Relevance = 1] 

   – GIVEN_NAME [Jaro; Threshold = 0.8; Relevance = 1] 

   – SOC_SEC_ID [Numeric; HammingDistance; Threshold = 0.8; Relevance = 1] 

         Address1 (Threshold = 0.7; Relevance = 1) 

            – POSTCODE [Numeric; HammingDistance; Threshold = 0.8; Relevance = 1] 

            – ADDRESS_1 [Alpha; Levenshtein; Threshold = 0.8; Relevance = 1] 

         Address2 (Threshold = 0.7; Relevance =3)   

            – SUBURB [Jaro; Threshold = 0.7; Relevance = 1] 

Figure 7: Matching criteria in Configuration 6 

 

Configuration Precision Recall F-Measure 

4 100% 99.18% 99.59% 

5 99.98% 99.55% 99.77% 

6 100% 99.56% 99.78% 

Table 2: Accuracy results for Experiment 2 

 

 

Evaluating Performance 
The experiments described here were performed in order to evaluate the application’s scalability for 

large-scale real-world datasets. 

 



 

Experiment 3 

Dataset 3 was used to evaluate the performance of the proposed solution when executing in a “simple” 

machine: a PC with 2GB main memory and an Intel Core 2 CPU with 1.67GHz. The complete dataset, 

containing 45,762,365 records, was deduplicated by our approach in 3 hours, 14 minutes and 37 seconds. 

The results obtained with the samples generated from the same dataset, with 10, 20, 30, and 40 million 

records each, are displayed in Table 3. The same blocking-key was used in all executions: the seven first 

characters from the field ID concatenated with fifteen alpha-numeric characters from the field Address.  

 

Records Files Heap Size Threads Tasks Blocks Generated Total Time 

10 million 100 1 GB 2 100 6,429,733 00:41:29 

20 million 100 1 GB 2 100 12,845,229 01:25:54 

30 million 100 1 GB 2 100 20,313,839 02:08:59 

40 million 100 1 GB 2 100 27,669,962 03:03:05 

Table 3: Performance evaluation on dataset 3 

 

Experiment 4 

The second performance experiment was executed using dataset 4 in a more robust machine. The 

blocking-key used was: a substring with five characters from the field Postcode concatenated with ten 

characters from the field Name. More than one configuration regarding the use of cores was applied. The 

main objective of this evaluation was to compare the complete execution time with and without the use 

of multiple cores. The tests were executed in a PC with 16GB main memory and two processors Intel 

Quad Core with 2.0GHz. Table 4 demonstrates the obtained results. 

 

Configuration Files Heap Size Threads Tasks Total Time 

1 200 10 GB 1 5000 09:49:24 

2 200 10 GB 8 5000 05:43:25 

Table 4: Performance evaluation on dataset 4 

 

 

Real Case Application 
In addition to the experiments previously described, an informal evaluation was performed in which a 

dataset containing 8 million records with information about patients from a hospital was processed as 

part of a project for the Brazilian government. Due to the lack of a template, the result provided by our 

application was manually evaluated by the members of our company’s Service team and was accepted as 

meeting the government’s needs. The complete process time for this dataset was 01:43:21, in the same 

simple machine previously described. 

 

 

Discussion 
The effectiveness and performance of our approach is highly dependent on its configuration which, in its 

turn, is highly data-dependent. The results reported in the previous sections show that the Merge solution 

presented in this paper is able to deal with large-scale datasets, while achieving high values for F-

measure, provided that the proper configuration is defined for each input source.  

In the performance assessment, the complete duplicate detection process time in relation to the size of 

dataset 3 (in Experiment 3) increased close to linearly, as illustrated by Figure 8, which is expected since 

the number of blocks generated grew almost linearly (see Table 3) and no huge block was created (due to 

the configuration employed and the fact that the dataset does not have a large number of duplicates).  

Figure 9, in its turn, demonstrates the gain obtained with the use of multiple cores in Experiment 4. From 

Figure 9 (a) we can see the improvement achieved in the total execution time. Figure 9 (b) considers only 



 

the second step (the records comparison phase), which is the one benefited from the parallelization. It 

shows that it lasted 5 hours and 38 minutes when executed on a single core, and only 1 hour and 52 

minutes when executed on 8 cores, an improvement of about 301%. 
 

 
Figure 8: Performance evaluation on Dataset 3 

 
Figure 9: Performance evaluation on Dataset 4 

 

With regard to accuracy, two experiments were carried out. In Experiment 1, due to the lack of templates 

for real-world datasets, only a small sample from that type of data (dataset 1) could be formally evaluated 

in terms of accuracy. The field State was chosen as the blocking-key value for having no records with 

missing values, besides having the same values for the records that must be matched. All configurations 

for this experiment reached 100% Precision, as shown in Figure 10 (a). The score for Recall, in its turn, 

got lower values since some records incorrectly fell outside their output groups because of the high level 

of noise in the fields’ values (especially Address and Suburb). This result was improved over the three 

configurations by applying relevance weights to the appropriate fields in the matching criterion, 

enhancing the F-measure score.  

When all fields in a dataset are noisy, it is possible to apply transformation operations over their values 

before using them as blocking-keys. Such a choice was made in Experiment 2 in which a substring with 

four characters from the field Date_Of_Birth was used as key. As illustrated by Figure 10 (b), only 

Configuration 2 got a Precision value lower than 100% (99.98%). That happened since a higher 

relevance weight was given to the field Suburb in that configuration, leading to wrong pairs being 

classified as matched because of the high similarity score computed for that field.  

The result for Recall in Experiment 2 does not reach 100% for two reasons: (1) some records being 

incorrectly separated into different data blocks due to the chosen blocking-key; and (2) the high 

occurrence of noise and missing values in all fields. In order to deal with the records that fell into the 

latter situation, the matching criterion was refined through the use of relevance weights and multiple 

levels (Configurations 5 and 6), improving the results for Recall and F-Measure.  



 

As for the similarity measures, it was verified (from our experiments) that Jaro, for example, was more 

suitable for comparing names, Levenshtein worked better for addresses, while Hamming Distance and 

Smith Waterman were more appropriate for numerical fields like Postcode. However, there is the need 

for a more in-depth evaluation on those measures in order to provide a more precise guideline for 

choosing the best option. 

 

 
Figure 10: Accuracy evaluation in Experiments 1 and 2 

 

Comparison with Other Techniques 

As previously mentioned, the main objective of the present work is to meet the needs of a real-world 

application, being able to process large-scale datasets without significant loss in the accuracy of the 

provided results. There are several pieces of research available regarding duplicate detection. However, 

there are few publications on real-world applications of the proposed solutions. Moreover, most 

publications in the field of data deduplication present experimental results based on only small to 

medium sized datasets [3, 6, 13, 14]. Besides, as mentioned in [8], there is a lack of standardized, large-

scale benchmarking datasets for comparing new merge techniques with existing ones. With this in mind, 

two approaches are described here: an academic system and an industry application. 

Febrl
1
 (Freely Extensible Biomedical Record Linkage) is an open-source linkage system with a graphical 

user interface [5]. It contains many advanced techniques for data cleaning and standardization, blocking, 

field comparison, and record pair classification. Its main advantage is the possibility of combining 

several techniques in order to conduct experiments for evaluating the suitability of each approach for a 

specific dataset. However, Febrl is an academic tool and only provides means for conducting small to 

medium sized experimental deduplications, with up to several hundred thousand records. 

Some experiments performed with our solution were reproduced using the basic Standard Blocking 

strategy provided by Febrl. The result for the accuracy evaluation on dataset 1 was: 91.92%, 99.19% and 

95.42% for Precision, Recall and F-measure, respectively. For dataset 2, the result was: 84.28%, 100% 

and 91.74%. Although achieving lower values for Recall, our proposal gets higher values for Precision, 

reaching greater F-measure with both datasets. As for performance, we tried to use dataset 3. However, 

only a sample with 300,000 records could be processed due to memory requirements. It took 23 minutes 

and 45 seconds to deduplicate this dataset. Besides that, it should be pointed out that Febrl’s output is 

generated in the form of record pairs. It does not provide means for obtaining groups of records. 

A proposal for a real-world application is given in [16]. This work presents a solution specifically 

developed for a batch duplicate detection process at Schufa Holding AG. The approach adapts 

DogmatiX, initially developed to detect duplicates in XML, to deal with relational databases and extends 

it to include domain knowledge in the form of rules. It applies the multi-pass Sorted Neighborhood 

Method (SNM), with the improvement of a key definition, to detect duplicates. Experimental results are 

                                                           
1
 http://sourceforge.net/projects/febrl/ 



 

given for both accuracy and efficiency.  

The proposal reached 90% Precision for 53% Recall, when time is critical, and 85% Recall using more 

time. For performance evaluation, a 10 million persons dataset was processed after 15 hours on an off-

the-shelf PC. The solution was only applied for detecting duplicate persons, due to the extensive use of 

domain-knowledge. This restricts the use of the application, demanding an adaptation of the solution 

whenever it needs to be applied in another context. Besides being domain-independent, our application is 

able to achieve high values for Recall (higher than 90%) without significant loss regarding performance. 

Several commercial tools [10, 11, 15] can be found regarding duplicate detection on customer data. 

However, as in [16], it is not possible to perform a comparison with them as there are no publicly 

available experimental results in terms of accuracy and/or performance on their approaches. 

 

 

 

CONCLUSION 
The efficiency of an information processing infrastructure may be greatly affected by the quality of the 

data present in its data sources. As already mentioned, the (lack of) quality of the data may be strongly 

determined by the duplication level in that dataset. In order to solve this problem, a domain-independent 

approach to detect duplicate records was proposed as the Merge solution in a real-world scenario. The 

solution, based on Standard Blocking strategy, provides enhancements over that strategy in order to 

provide better performance while achieving high accuracy.  

The performance improvement is given by the use of the file system to store the data blocks indexing 

structure (an Inverted Index), the parallelization of the records comparison process, and the generation of 

record groups, instead of record pairs, as part of the matching process, avoiding the need for a demanding 

post-processing step in the solution. The enhancement proposed for achieving higher accuracy is the 

provision of relevance weights in the matching criteria definition. This way, fields that are more reliable 

in the dataset can contribute more to the similarity degree calculation between each record pair. 

The proposed solution was evaluated in terms of accuracy and performance. The accuracy evaluation was 

performed with experiments on both real-world and synthetic samples. The results obtained show that 

our approach is able to reach high values for both Precision and Recall evaluations, reaching an F-

measure of 99.78% in one experiment. The performance evaluation, in its turn, was performed with two 

large-scale real-world datasets. The proposed strategy successfully processed a dataset with 45 million 

records in about 3 hours in a simple PC, and a dataset containing 156 million records in about 5 hours 

and 40 minutes in a more robust machine. It is important to observe that this dataset could also be 

processed in an off-the-shelf machine but, evidently, taking a little longer. Besides the proposed 

experiments, when compared to the basic Standard Blocking strategy through Febrl, and to a real-world 

application, our approach achieved better results. Both evaluations provide means for supporting the use 

of the proposed solution as a real-world application in the context of large-scale companies. 

 

 

 

LIMITATIONS AND FUTURE WORK 
The present research includes the following items as future work directions: 

• Giving support to the use of multiple blocking-keys. This feature can increase the accuracy of the 

application at the cost of a performance loss. However, if the need to effectively detect correct 

duplicates is more relevant than the performance issue, providing this feature can lead to even 

better results. 

• Adopting a different strategy for processing large data blocks, as they generate a huge number of 

record comparisons and end up dominating the execution time of the comparison step. An idea of 



 

a solution to minimize this problem would be the parallelization of the execution inside each 

large block. 

• Providing the automatic generation of datasets with the corresponding templates in order to 

evaluate accuracy on larger datasets. 

• Providing means for evaluating the configuration impact on the solution performance. The result 

from such an evaluation can help the setting of specific parameters, such as the number of files in 

which the Inverted Index structure must be stored into. 

The main limitation of the presented approach is its dependence on the provided configuration regarding 

blocking-keys and matching criteria. In an effort to overcome this limitation, we intend to apply an 

approach, such as an optimization strategy, in order to automatically learn how to configure the 

application, making the task of configuring the application less complex. 
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