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Abstract: Poor quality information produced/used by organizations impacts directly on these 
companies’ revenues. Several losses caused by quality problems could be minimized if data quality 
solutions were adopted. However, due to specific needs of each organization, the process of 
deploying these solutions is extremely costly. Some efforts to minimize deployment costs are being 
made by using Supervised Machine Learning techniques. However, these approaches demand 
template datasets which can be a drawback to their adoption. In this paper, we present and evaluate 
a synthetic address data generator aiming at minimizing this problem, focusing on a new cycle of 
improvement for information quality services. Our proposal covers an Address Validator service, 
Optimizer (based on the Particle Swarm Optimization) and the data generator. The complete 
approach can also be generalized to other domains. In a previous work we presented the evaluation 
of our training process (Address Validator and Optimizer). Here we assess our synthetic address 
data generator, closing the proposed cycle. 
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INTRODUCTION 
Organizations all over the world suffer the impacts of poor quality information. Fraud, financial losses, 
inefficiency and poor customer relationships arise from the lack of a suitable solution to correct and 
prevent inconsistent, incomplete, outdated or duplicate information input. A research carried out by Data 
Warehouse Institute and Dun & Bradstreet shows that poor quality information in areas such as 
marketing, logistics and customer services cost United States economy more than 611 billion dollars in 
2002 [5]. Despite the negative indices, there is still some resistance to the adoption of Data Quality 
processes, being one of its main obstacles the high cost of project implementation. Generally, the 
deployment of solutions in a company environment is highly demanding, mainly due to the inherent 
complexity of the Object Identification problem [1]. In addition, it requires high-cost infrastructure, 



 

acquisition and integration of additional software. 
 
In this context, our company does research and development of Data Quality and Precision Marketing 
services, such as customer base quality management systems. Among the products developed by our 
company, there are a set of Data Quality management services for correcting and preventing incomplete, 
incorrect, and duplicate data, converting them into consistent and high added value information. In the 
course of Data Quality services’ development, we have been pursuing the reduction of its implementation 
costs, and in order to achieve this goal, we are now adopting Machine Learning solutions to identify and 
learn different contexts and recognize specific abnormalities of each client. 
 
Address Validator (AV) is one of the Data Quality modules that takes advantage of the adopted strategy. 
The address domain is of high complexity, primarily due to the strong interdependency between its 
elements, and to the variety of possible noise classes. Because of such characteristics, the combinations of 
problems increase, and databases from different customers may present very specific patterns. 
 
Address Validator (AV) deals with Data Quality problems in the address domain in client databases. AV 
standardizes, enriches and validates Brazilian addresses, covering different syntactic structures. To 
support learning, the qualification process carried out by the module was parameterized by a set of 
numerical values. Even though AV can be adaptable to different address patterns, there is still the need to 
find the best set of parameters to process this data. Although it seems simple, the parameters are highly 
interdependent, making it impossible to be manually configured. 
 
In order to minimize the cost of identifying parameters for address qualification, Optimizer was 
developed, based on the Particle Swarm Optimization (PSO) technique. A specific assessment of the 
learning process and its efficiency compared to a specialist is presented in [3]. Together, Optimizer and 
AV enable: 1) fast customizations based on customer specifications, 2) more accurate address 
qualification, 3) faster deployment, and 4) less human intervention during the process. This happens since 
the process of defining the parameters is performed automatically while the most common errors present 
in each client’s databases are learned. The difficulty here is that Optimizer needs addresses with patterns 
of errors to be learned, and a template with the correct format for these data. This implies two major 
problems: 1) in most cases, the use of real-world databases is constrained by confidentiality issues 
regarding customer data, and 2) the generation of templates from a real-world dataset is usually a manual, 
expensive and highly error prone process. 
 
In situations where real-world data are not readily obtained or where specific characteristics need to be 
represented, automatically generated data can be considered a possible solution. However, to simulate 
noise, some issues should be taken into consideration, such as: distribution of noise in the database, 
distribution of noise by fields, constraints between noises (noises that can’t occur together in the same 
field), address classes by assigned noises, etc. Simulating noise and controlling its constraints make the 
task of building a synthetic dataset very complex. To deal with this issue, a synthetic address data 
generator was developed. Synthetic Address Data Generator (SADG) automatically generates damaged 
datasets, as well as their corresponding template, through a flexible representation of rules in XML. 
 
Given the complexity of the address domain, this article aims to assess the ability of the SADG tool to 
simulate real addresses databases. The assessment is carried out by running the learning process on real 
and synthetic datasets, and later comparing the results. 
 
 
 
 



 

BACKGROUND 
Organizations all over the world suffer the impacts of poor quality information. The lack of a proper 
solution to handle inconsistent, incomplete, outdated or duplicate information causes great financial 
losses. Poor quality information results in costs including rework and income losses, reaching between 
10% and 25% [5]. 
 
One difficulty in the development of information quality solutions is the lack of available real-world data 
that characterize the problem in question. Thus, Data Quality tools can benefit from the use of synthetic 
data generators, for example, data standardization and validation solutions, and applications for detection 
and elimination of duplicate data.  Synthetic data generators are also useful for Information Technology 
Industry (IT Industry) applications, including regression testing, secure application development, and 
testing of data mining applications [6]. 
 
Systems that generate different types of synthetic data according to their purpose are found in the 
literature. However, the targeted domain and the characteristics one need to represent so that the synthetic 
data is considered similar to real-world data may demand more specialized generators. [7] describes a 
system that generates synthetic rainfall and runoff data, which can be used in the evaluation of rainfall-
runoff response sensitivity. [16] presents a system that generates synthetic data which are based on 
empirical models of experimental data, and uses this data for sensor network evaluation. Due to the lack 
of real-world data for training sign language recognition systems, [8] developed a synthetic sign language 
data generator. 
 
Interesting to point out are the systems that generate synthetic data of occupancy similar to real-world 
data [5, 15]. The Parallel Synthetic Data Generator (PSDG) system described in [6] is designed to 
generate synthetic data across multiple processors. According to the authors, there is a need for systems 
that generate “industrial sized” (e.g., terabyte) data sets. Using cluster/grid computing, PSDG quickly 
generates large amounts of synthetic data. It is worth noting that PSDG focuses mainly on the 
geographical distribution of occupancy data, such as the distribution of offices in the U.S. according to 
data from 2000 U.S. Census1, including state, city, and ZIP code information, among others. 
 
[15] presents the Synthetic Occupancy Generator (SOG) system for synthetic residential occupancy 
histories (name and address) generation that can be used in research and processes involving Entity 
Resolution (ER)2. However, SOG does not aim to completely simulate the individuals’ behavior, but only 
those aspects necessary for the generation of realistic occupancy histories. 
 
According to the authors, “residential occupancy”, or “occupancy”, encompasses someone’s personal 
information (first name, middle name, last name, etc.) and address (street number, street name, city, etc.) 
over a given period of time (start date of occupancy, end date of occupancy). In addition, occupancy 
records may contain additional attributes about someone, such as date-of-birth, or about her or his 
address, such as telephone number. “Occupancy history” or “change-of-address” (COA) history is a set of 
chronologically-consecutive occupancy records for the same individual over a period of time. SOG can 
improve areas such as business and government by providing input for tools that, for example, identify 
the same client from different kinds of contact (address, phone, email, etc.). 
 
Generally, synthetic data generators can boost the development in research fields where experiments and 
assessments need to be carried out with real data. Synthetic data generators are a way to solve problems 
that arise when privacy issues concerning customer data information constraint the use of real data. The 
present work uses the Synthetic Address Data Generator, which generates synthetic data similar to 
                                                        
1 www.census.gov 
2Entity Resolution (ER) is the process of linking records that reference the same or related real-world entities.  



 

Brazilian addresses real data for Data Quality solutions. 
 
 
 
DATA QUALITY SOLUTIONS 
This article presents solutions to quality problems in customer data, which require datasets that represent 
Brazilian real addresses. In the given context, our company does research and development of Data 
Quality and Precision Marketing services. Among the Data Quality services stands the Address Validator 
(AV), which solves address data quality problems in customer datasets. 
 
This section presents an overview of the AV service, followed by a description of a solution for the 
optimization of the AV parameters. Finally, the synthetic address data generator used in experiments with 
AV is presented. 
 
 
Address Validator 
Address Validator (AV) standardizes, corrects and enriches addresses data. It deals with Data Quality 
problems in the domain of Brazilian addresses, benefiting customers in several ways, including: 
improvements in customer relationships, decrease in operational costs, resources optimization and 
decrease in cash flow problems. 
 
AV can be used in any environment that supports Java without DBMS licensing costs. It supports 
corporate services in several architectures and allows value adding to legacy systems at a low integration 
cost. Besides, it can be executed in parallel over multi-core machines as well as over distributed 
environments [12]. 
 
AV can receive as input unstructured, semi-structured and structured data, and returns structured data as 
output. In the present paper, we work with semi-structured input data, which is understood as input that 
can have street name, street number, secondary identifier, and district in a single field, as illustrated in 
Figure 1. In this example, the corresponding output presents the following structured information: suffix, 
street name, street number, secondary identifier, district, ZIP code, city and state. Table 1 describes the 
qualified information and the corresponding address classification returned by AV (see Classification). 
 

 
Figure 1: Data Structure 
 
There are four classes returned by AV, related to the classification of addresses: i) Valid: input address is 
correct, being only validated by the service; ii) Qualified: input address has some incorrect field, which 
was inferred or corrected by the service; iii) Not Qualified: input address can’t be qualified because of 



 

missing fields or inconsistencies; iv) CEP5: input address has a generic ZIP code3. Back to Table 1, AV 
returns the class Qualified for the given address example, because the ZIP code field was corrected (from 
90430000 to 90430131). 
 
Address Data Example 
Suffix Rua 
Street name Castro Alves 
Street number 381 
Secondary identification Apartamento 406 Edifício Jóia 
District Rio Branco 
ZIP code 90430131 
City Porto Alegre 
State RS 
Classification Qualified 
Table 1: Example of AV Output 
 
 
Brazil is a federal republic comprising 26 federal states4 and a Federal District5 (DF), where the Brazilian 
capital, Brasilia, is located. It should be noted that Brazilian addresses do not follow a single addressing 
structure. Most localities follow the same pattern. However, some places have their own specific pattern, 
called here complex structures. DF addressing structure can be considered one of the most important 
special cases, basically because of two points: 1) its great political and commercial importance and 2) its 
structure also occurs in other cities. For better understanding of these more complex addresses, we will 
use Brasilia addressing structure in our examples.  
 
Brasilia is a planned city architected by Oscar Niemeyer. When seen from above, the layout of the city 
resembles the shape of an airplane or a dragonfly. Brasilia is divided in areas for residence, business, 
schools, churches, etc., and the streets and roads are identified not by names, but by acronyms and 
numbers arranged according to a geographical system of Blocks (Quadra) and Sectors (e.g.: SBS – South 
Bank Sector, SIG - Graphic Industry Sector, etc.). This structure differs from most Brazilian federal states 
addresses, and its complexity makes the qualification of the DF addresses difficult. In order to illustrate 
such differences, Table 2 shows two examples of Brasilia addresses. 
 
Id Street name District ZIP code City State 
1 SBS QUADRA 4 (SBS BLOCK 4) ASA SUL 70070140 BRASILIA DF 
2 SIG QUADRA 6 LOTE 800  

(SIG BLOCK 6 LOT 800) 
ZONA INDUSTRIAL 70610440 BRASILIA DF 

Table 2: Examples of Brasilia addresses 
 
Another characteristic of DF addresses is related to changes in abbreviations to refer to specific addresses. 
These changes, however, are not the most obvious, and they are usually shared/known only by the city 
citizens, thus making the identification of the targeted address more difficult. As an example, the 
following address, taken from a real database, presents the characteristic “SHC/CL SUL QUADRA 306” 
(SHC/SOUTH CL BLOCK 306) meaning “CLS BLOCO 306” (CLS BLOCK 306), where “SHC/SOUTH 
CL” corresponds to “CLS”. 
 
For address qualification, AV uses a knowledge base that contains Brazilian addressing elements, called 
                                                        
3 For each small city, Brazil has a single ZIP code shared by all addresses in that city. 
4 http://en.wikipedia.org/wiki/States_of_Brazil 
5 http://en.wikipedia.org/wiki/Brazilian_Federal_District 



 

Dynamic Address Database (DAD), which covers Brazilian addresses, including the ones from DF. This 
base is used as reference for the AV addresses qualification. Back to the example, by querying DAD, we 
find that the correct/expected address is “CLS BLOCO 306” (CLS BLOCK 306). 
 
Indeed, the AV service can deal with more complex addressing structures, such as DF addresses, as well 
as simpler structures adopted by other Brazilian cities. AV makes the inclusion of any address structure 
easier, because it does not require syntactic rules to the formation of addresses. Due to this feature, AV is 
fully adaptable to different address data patterns, although there is the need to find the best set of 
parameters to process this data. The main parameters among the ones used by AV are the following: 
 

 Match: Parameter that indicates match relevance by field for the qualification. The fields used are 
suffix, title name, street name, district, ZIP code, city and state. 

 Order: Parameter that indicates the order of occurrence of the fields that is preferred for a given 
dataset. E.g. the street name field followed by the district field. 

 Tokens Usage: Parameter that indicates the number of tokens from an input record matching the 
addresses reference database (DAD). Back to the example of Table 1, the input “Rua Castro 
Alves 381 Apartamento 406 Edifício Jóia” results in Tokens Usage = 0,5 (of 8 input tokens, only 
4 match DAD, because the content of secondary identification does not match). 

 
It should be pointed out that there is a high dependence between the 33 numeric parameters that should be 
set prior to AV execution, which makes it impossible for them to be set manually [3]. To solve this 
problem, an application that optimizes the AV parameters was developed in order to find the best 
parameter set used in the system’s qualifying process.  
 
 
Optimizer 
 
For the AV service to handle different address structures, we need to set its parameters. As previously 
stated, there is a high dependency among the AV parameters, making it harder to set them manually. This 
set of parameters may be represented as a vector, making the application of some sort of optimization 
method easier. 
 
Optimization problems are frequent in many branches of knowledge facing difficulties to find out better 
or more suitable processes or methods. Generally, optimization problems consist of maximizing or 
minimizing a function defined over a given domain. Optimization theory involves the task of determining 
which of the existing solutions for a certain problem is the best one. In other words, which of them is the 
optimal solution. Algorithms based on Evolutionary Computing techniques are proving to be very 
efficient in the search for optimal solutions in a wide variety of problems [13]. 
 
The application of the Particle Swarm Optimization (PSO) algorithm in the Address Validator (AV) 
service in order to find the best set of parameters necessary to correctly qualify addresses is presented 
next. 
 
Particle Swarm Optimization 
 
Particle Swarm Optimization (PSO) is an evolutionary computational technique for global optimization, 
which is motivated by the simulation of social behavior that underlies the movements of the swarm of 
insects or birds’ flock [9]. It was developed by Kennedy and Eberhart, and consists of the optimization of 
a fitness function by information exchange between the individuals (insects or birds) of a given 
population (swarm or flock). It is worth mentioning that during the search for food or nest the individuals, 



 

called particles, use their experiences, as well as the experiences of the whole population, to find the 
optimal solution. This way, particles learn from each other’s success. 
 
The PSO algorithm is basically composed by a velocity vector and a position vector. The position of each 
particle is updated according to the current velocity, the experience acquired by the particle, and the 
experience acquired by the population. Each particle stores its current position and velocity, its current 
fitness value, its best position, and its best fitness value so far. In addition, each particle is aware of its 
neighbors, and knows as well the best location and best fitness function value among them. Thus, the 
PSO algorithm should know the best global position, which denotes the position of the best particle in the 
population, i.e. the particle which is closer to the optimal solution. 
 
PSO is initialized with a group of random particles, describing potential solutions. It then searches the 
optimal result by updating the population of particles. Every particle has a fitness value resulting from its 
evaluation by a fitness function, which should be optimized (maximized or minimized), and a velocity 
that directs its path. Particles fly in a given problem space following those particles that achieve the best 
results. At each iteration, each particle is updated according to two values: the value of the best solution 
(fitness) found by the particle so far and the value of the best solution found by any particle of the 
population so far, which is called global best. 
 
In some scenarios, like the one presented here, the particles do not know where the best solution is, but 
they do know how far it is at each iteration. The strategy is then to follow the particle that is closer to the 
solution. After finding those two values, the particle updates its velocity and position according to 
Equations 1 and 2, respectively [9]. The best position is the one in which the particle achieves the best 
result for the fitness function. 
 
[]ݒ = []ݒ + ܿଵ ∗ ()݀݊ܽݎ ∗ []ݐݏ݁ܤ݈݈ܽܿ) − ([]  +  ܿଶ ∗ ()݀݊ܽݎ ∗ []ݐݏ݁ܤ݈ܾ݈ܽ݃) −  (1)  ([] 
 
[] = []  +  (2)          []ݒ 
 
In Equation 1 and 2, v[] represents the particle velocity, c1 and c2 are the learning factors, rand() denotes 
a random number between 0 and 1, localBest[] represents the best particle position so far, globalBest[] 
represents the best position in the whole population of particles so far, and p[] is the particle current 
position. 
 
Improvements in the PSO algorithm components are usually found in the literature [2, 4, 14], and they 
aim to improve the PSO convergence velocity by changing the velocity update equation without changing 
the structure of the algorithm itself. One of them is the addition of an Inertia Weight W in Equation 1 
[14], which controls the algorithm exploration ability and therefore improves the speed with which the 
particles find the optimal solution (see Equation 3). 
 
[]ݒ = ܹ ∗ []ݒ  + ܿଵ ∗ ()݀݊ܽݎ ∗ []ݐݏ݁ܤ݈݈ܽܿ) − ([]  +  ܿଶ ∗ ()݀݊ܽݎ ∗ []ݐݏ݁ܤ݈ܾ݈ܽ݃) −  (3) ([] 
 
[]ݒ = ݇ ∗ []ݒ) + ܿଵ ∗ ()݀݊ܽݎ ∗ []ݐݏ݁ܤ݈݈ܽܿ) − ([]  + ܿଶ ∗ ()݀݊ܽݎ ∗ []ݐݏ݁ܤ݈ܾ݈ܽ݃) −  (4) (([] 
 
݇ =  2

|2−  ߮ −  ඥ(߮ଶ −  4߮)|൘   where ߮ =  ܿଵ +  ܿଶ, ߮  > 4      (5) 

 
Another improvement that helps the convergence of the PSO algorithm is the use of a Constriction Factor, 
which proposes a new method for choosing the Inertia Weight W and the learning factors c1 and c2, so 
that the convergence is guaranteed [2]. Equation 4 shows the assimilation of this factor, where k is a 



 

function of c1 and c2, as reflected in Equation 5 [4]. 
 
 
Optimizer Overview 
 
Optimizer is a module developed for training the AV service and other Data Quality services. In this 
paper, we focus in address services. Optimizer’s goal is to find the best parameter set used in the system’s 
qualification process. Figure 2 illustrates the Optimizer process. 
 

 
Figure 2: Optimizer process 
 
For the AV training process using the Optimizer module, two input files are necessary: a file with noisy 
address data (Noise) and a file with correct address data (Template). Tables 3 and 4 illustrate examples of 
noisy addresses included in the Noise file, and the corresponding correct addresses in the Template file, 
respectively. 
 
Id Address District ZIP code City State 
1 RUA NOBERTO WON GAL 48 REDENCAO 69049100 MANAUS AMM 
2 AV RORARY 000667 FAROL 57050480 MACEIO ALL 
3 SHCN COM LOCAL QUADRA 403 

BLOCO D 
ASA NORTE 70310500 BRASILIA DF 

Table 3: Example of Noise file 
 
Id Suffix Street name Street 

number 
District ZIP code City State 

1 RUA NOBERTO VON 
GAL 

48 REDENCAO 69049100 MANAUS AM 

2 AVENIDA ROTARY 667 FAROL 57052480 MACEIO AL 
3  CLN QUADRA 

403 BLOCO D 
 ASA NORTE 70835540 BRASILIA DF 

Table 4: Example of Template file 
 
The examples of the Noise file shown in Table 3 were taken from real-world datasets and contain 
different types of noises. The corresponding Template file, however, required correction (Table 4), which 
is usually manually performed, being a laborious, time consuming and error prone process. 
 
Building these files is a bottle neck in the process, and this is the reason behind the development of a 
synthetic data generator that produces both files by applying rules over a knowledge base including 
Brazilian addresses (DAD). 
 
Thus, the former file works as input for the execution of AV, and the later file works as a template for the 



 

evaluation of this input data qualification (see Figure 2, where the mentioned files are used by the Input 
Datasets component). Both files are used in the AV training process. 
 
As previously described, every particle of the population must be evaluated at each iteration of the PSO 
processing. Considering the AV service, the evaluation of each particle consists of executing AV using 
the particle current position values as its parameters. AV processes the input noisy addresses, qualifying 
and classifying them into certain classes (Data Quality Services - Figure 2).  
 
The output generated by AV is compared by the Diff component of Figure 2 against the template 
addresses using their classification and qualification. For such, the Diff component generates a confusion 
matrix which matches correct against predicted classifications, i.e. the expected output class for a given 
address described in the template compared to the class outputted by AV. It is also possible to determine 
which addresses were correctly qualified, where the correct qualification is the inference of an exact 
candidate for a given noisy address. In order to do that, the address returned by AV is compared field by 
field against the corresponding address in the template. 
 
Based on this comparison, the execution of AV is evaluated by a fitness function (Selection of the best 
particle component - Figure 2). The four possible fitness functions provided by Optimizer are: simple 
fitness function; fitness function using thresholds and weights for each record field; fitness function taking 
correct records into account; fitness function taking into account correct records classified into wrong 
classes, which are described in [3]. 
 
The complete Optimizer process ends when a stop criterion, set beforehand, is achieved. Besides the 
standard configurations of the PSO approach, Optimizer also allows customization for fine-tuning the 
algorithm. The specific configurations of Optimizer include: number of threads; stop criteria; and 
particles update type [3]. Here we use the Optimizer configurations presented in [3] in the AV training 
process. 
 
 
Synthetic Address Data Generator 
Synthetic Address Data Generator (SADG) is a tool for generating synthetic Brazilian addresses’ data 
with the characteristics of real-world databases from this domain. Generally, these characteristics 
represent the most common errors found in real addresses’ datasets. 
 
SADG is implemented in Java. In order to describe SADG flow, we developed a XML6– based language 
that enables to flexibly describe the synthetic addresses generation process. This language required the 
definition of different constraints in the rules for noise application, because the address domain is quite 
complex, which is primarily due to two reasons: 1) high interdependence between the address elements, 
2) wide variety of possible noise classes. An example of the complexity in building up synthetic addresses 
is the following: an address where street name is incomplete and ZIP code is incorrect. In this case, the 
address has two different types of noises that directly impact on qualification. The correct qualification 
for this address depends on deciding which element will be considered more reliable: street name or ZIP 
code. This decision should be guided by the error pattern of the real-world dataset to be represented. 
 
Considering this context, we used Interpreter pattern and Specification pattern to generate a Boolean 
expression that defines the application of the rule, thus making the solution extensible, easy to change and 
add new constraints. Note that SADG language is not limited to the addresses domain, and can be easily 
configured to another application domain. 
 
                                                        
6eXtensible Markup Language 



 

SADG encodes the classes of address’ noises based on configurable rules. Moreover, it generates 
different address structures, and supports the inclusion of structural noises. As output from SADG we 
have a file with the noisy addresses (Noise) and a file containing the corresponding correct addresses 
(Template). These files consist of address structures similar to those previously presented in Tables 3 and 
4, respectively. Figure 3 illustrates the process of the SADG tool. 
 
Starting the SADG process requires a reference dataset that provides information to the SADG stages 
(Data Source – Figure 3). As previously mentioned, DAD is the reference database of Brazilian address. 
 

 
Figure 3: SADG process 
 
With the SADG language, the following information is coded in the Configuration file (see Figure 3):  
 

 Percentages of addresses selected from DAD to generate the output files as well as the 
distribution of these addresses in the 26 Brazilian federal states and in DF; 

 How and which information from DAD will be used in the synthetic data generation process; 
 Different noise classes (Noises) applied to the addresses selected from DAD; 
 The rules for the application of noise classes (Rules) together with constraints to the application 

of these rules; 
 The order of the rules’ execution and the dependencies between the application of different rules 

on the same address; 
 Reference to external dictionaries to support the rules for the application of noise classes; 
 How the output files will be structured, considering that, in this work, the Noise file will contain 

semi-structured addresses and the Template file will contain structured addresses. 
 
A study on the possible errors found in real-world datasets of Brazilian addresses was carried out, which 
enabled defining the noise classes currently available in SADG.  Among these classes, we can point out: 
 

 Typographical errors: including address misspelling, such as characters insertion, removal and 
transposition; and application of similar phonetics in addresses. 

 Missing terms: eliminating the constituent elements of an address, e.g., the suffix of a given 
address. 

 Term permutation: applying permutations of the constituent elements of an address, e.g., the 
suffix preceded by street name. 



 

 Consistent but incorrect data: changing the value of an address element by another value that is 
valid but incorrect for this address. For example, for a given address with the suffix Street, change 
the value of this element to Avenue. 

 Abbreviation: inclusion of abbreviations for address elements, e.g., B to Block. 
 Out of context words: inserting words out of the address context, such as bad words in a given 

address. 
 Term duplication: applying term duplication, such as repetition of suffix in a given address. 

 
For generating the presented noise classes, a set of rules was developed, which took into consideration the 
percentages of each noise application as well as the constraints needed for their correct application. The 
SADG language enables adding new noise classes by extending Java classes, and gives the flexibility to 
create and to configure the corresponding application rules that implement such noises. 
 
Table 5 shows an example of the typographical errors rule being applied to an address taken from DAD. 
Note that typographical errors was applied to the given address suffix and street name (address column), 
district and city information, respecting the ZIP code constraint, defined in the typographical errors rule7 
(correct input ZIP code – 95096170). 
 
Id Address District ZIP code City State 
1 URA ALFREDU MILLANI 28 EZPLANADA 95096170 CAIXAS DO SUL RS 
Table 5: Example of typographical error – Noise file 
 
Id Suffix Street 

name 
Street 
number 

District ZIP code City State 

1 RUA ALFREDO 
MILANI 

28 ESPLANADA 95096170 CAXIAS DO SUL RS 

Table 6: Example of Template file 
 
At the end of the SADG process, the noisy address (Table 5) will be stored in the Noise file, and the 
corresponding correct address (Table 6) will be stored in the Template file. SADG resulting files will be 
used in the AV service experiments. 
 
 
 
RESULTS 
This section presents the results of the Optimizer execution over the AV. The experiments were carried 
out according to the following steps: 1) AV training by Optimizer, 2) AV testing with new data, using the 
resulting configuration from step 1. 
 
 
Datasets 
The datasets used for the experiments were chosen based on the two main syntactic structures that 
Brazilian addresses represent, both affecting precision in qualification. Those datasets were classified as 
complex structure addresses and simple structure addresses. 
 
The address databases with complex structures we use contain records only from DF, since they share a 
specific syntactic structure and consequently need special treatment for their qualification. Address 
                                                        
7 In this case, the constraint says that the typographical error rule will be applied only to input addresses without 
noise in ZIP code, that is, records where the input ZIP code is correct. 



 

datasets with simple structures contain records covering the 26 Brazilian federal states, here called 
Standard addresses. 
 
In summary, we used datasets with both real and syntactic addresses for the experiments. Records 
distribution for the two datasets with real addresses is the following: 306 records from DF and 400 from 
Standard. Datasets with syntactic addresses also have the same distribution (306 records from DF and 
400 from Standard), but differ from the records in the real-world datasets for being generated by the 
SADG. These four datasets used in our experiments with the AV service are described next. 
 
 
Experiments and Discussion 
In this work, training experiments of the AV service were conducted using the Optimizer in order to find 
the best parameters for the qualification of Brazilian addresses. Knowing the best AV parameters’ values, 
found out by the application of the Optimizer, tests with this parameters set were carried out to assess the 
qualification of the new addresses. 
 
The training experiments were designed to verify whether two sets of parameters for AV, generated from 
the training with a real database and from a synthetic dataset, are able to achieve similar results when 
tested in the process of qualification of a synthetic dataset and of a real database, respectively. In such a 
context, we chose to run the experiments considering the following two cases: 
 

 Case 1: training with real address databases (DF and Standard) and testing with synthetic address 
sets (DF and Standard); 

 Case 2: training with synthetic address databases (DF and Standard) and testing with real address 
sets (DF and Standard). 

 
From the training experiments, we aim at verifying whether SADG is able to generate synthetic data 
similar to the real address data. Therefore, the results from Case 1 should be close to those achieved in 
Case 2. Results from the training experiments with AV are presented in Table 7 and graphically 
illustrated in Figure 4. The results were measured by Precision, Recall, and the harmonic mean 
(represented by F-measure [10]). 
 
Datasets Measure Case 1 Case 2 
Standard Precision 75.47% 81.08% 

Recall 93.68% 93.33% 
F-measure 83.59% 86.77% 

DF Precision 62.18% 69.75% 
Recall 94.87% 96.69% 
F-measure 75.12% 81.03% 

Table 7: AV results 
 
The results from AV for Standard addresses reached an F-measure of 83.59% for Case 1 and 86.77% for 
Case 2, which are very close values. We point out a difference of less than 6% in the Precision (75.47% 
and 81.08% for Case 1 and Case 2, respectively). Similarly, the results from AV for the DF addresses 
reached close values for the performance measures shown in Table 7: F-measure of 75.12% for Case 1 
and 81.03% for Case 2 (a difference of around 5%) and Precision of 62.18% for Case 1 and 69.75% for 
Case 2 (a difference of around 7%). 
 
For the performance assessment of Case 1 against Case 2 we used the significance test [11], calculating 
the relevance between the results by means of statistics rather than a subjective criterion. In the present 



 

work, the objective of applying this test is verifying whether Case 1 and Case 2 are behaving similarly in 
both addresses scenarios: simple structures (Standard) and complex structures (DF). In general, the test 
results displayed non-significant levels (less than 95%), indicating that the synthetic datasets were able to 
simulate the characteristics of real addresses. Thus, we confirm the similarity of synthetic and real 
databases in both cases. 
 

 
Figure 4: Graphic chart for the results of AV tests 
 
The present assessment shows that synthetic address datasets generated by SADG can be successfully 
used by applications that need addresses that represent specific characteristics of real data. 
 
 
 
CONCLUSIONS 
This paper presented the AV service, an application for Data Quality problems encompassing different 
structures and noise types contained in the Brazilian addresses domain. The Optimizer module, which is 
based on the PSO approach, was used in the optimization of the AV parameters in order to find its best 
configuration. To that end, datasets of addresses representing different quality problems were necessary.  
Given that need, adding to the absence of available real-world databases and the difficulty in creating the 
corresponding templates, synthetic datasets simulating real addresses with simple and complex structures 
were generated by the SADG. Test results with AV proving that synthetic datasets were able to simulate 
real addresses were shown. 
 
Integrating these modules, our solution goes full circle (SADG  Optimizer  AV), enabling fast 
deployment of its services regardless of the characteristics to be dealt with for each client. 
 
Due to the difficult production of a compact dataset that covers all kinds of address noises for the training 
of AV, an incremental learning is intended to be carried out as a future work, where it will be possible to 
add new address patterns to the training data in the optimization process. 
 
Although we have the benefits described in this paper, our approach does not deal with dynamic contexts, 
as business rules changes. To solve this problem we will research and develop a module that can detect 
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specific abnormalities in client datasets. The initial idea is to use some of the qualification information 
provided by AV to represent the distribution and noise classes and then, by using SADG, generate 
synthetic datasets with such characteristics, later to be used for training the Optimizer. 
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