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Abstract: In large organizations the database architecture is typically built through a series of projects and 
realizations that result in a number of heterogeneous and overlapping data sources. This trend is worsened by merger 
and acquisition activities that add new data sources from external organizations to the existing data architecture. 
Data fragmentation significantly reduces the possibility for an organization to exploit its information assets. A 
technology that partially alleviates these problems is data integration middleware that allows users to read-only 
access data stored in heterogeneous data sources through the presentation of a unified view of these data. In this 
paper we introduce a new concept to measure the improvement in information capacity enabled by data integration 
solutions, and propose an original framework which can support the evolution of the organization data architecture 
by identifying the optimal solution that maximizes such improvement within a given cost threshold. 
 
Key Words: Information capacity, Cooperative information systems, Data integration middleware, Data 
architecture. 
 

INTRODUCTION  
Organizations tend to create databases of interest through a series of projects and realizations that result in 
a database architecture characterized by a set of anomalous behaviors. With the term data architecture we 
define the allocation of the data of interest to an organization among the (usually many) database 
management systems available in the organization’s information system. The above mentioned behaviors 
concern the redundancy of representations, the misalignment of data among different databases, the 
scarce coherence in business rules related to the same objects in different databases, and errors in data that 
result in the heterogeneous representations of records pertaining to the same real world object. This trend 
is made more and more critical by the continuous evolution of organizations due to merger and 
acquisition activities. Consequently the problem of managing the whole data architecture migrating from 
traditional DBMS technologies to integration technologies is a primary issue in modern organizations.  
Among existing solutions on the market [7], data integration is the most promising middleware for all 
cases where there is the need to allow users to read-only access data stored in heterogeneous data sources 
through the presentation of a unified view of these data. In the last few years, both industry and academia 
have investigated data integration solutions both from theoretical and practical view points (see [6] for a 
survey). Two main approaches to data integration can be identified, based on the actual location of data 
stored in sources to be integrated. In virtual data integration the unified view is virtual, and data reside 
only at sources. A reference architecture for virtual data integration middleware is the mediator-wrapper 
architecture [15]. The second approach, namely materialized data integration, provides a (unified view of) 
data that is materialized in a data warehouse [12]. In the case where up-to-date data are needed and the 



 

periodical update of the materialized view is costly, virtual data integration is preferred to data 
warehouse. 
In this paper we focus on data integration technologies, discarding the analysis of data warehouse 
solutions. Even if a lot of results have been obtained in the field of data integration, to the best of our 
knowledge the investigation of benefits related to extended access to integrated data made possible by 
data integration, has not be investigated so far in comparison to costs of such a solution. In this paper we 
propose a suite of methods for the evolution of the data architecture of an organization, with the goal of 
optimizing the quality of the overall data architecture when data integration solutions are used. The 
quality of the data architecture is measured in terms of a new concept, which we introduce in the paper, 
its potential information capacity. The potential information capacity can be roughly defined as the set of 
all types of data that can be extracted from a (virtually) integrated database schema that cannot be 
extracted considering non integrated data sources alone. We face the problem considering first the case of 
the adoption of one single data integration solution that leads to a unique virtual schema, and then 
considering the adoption of n > 1 data integration solutions on clusters of schemas. Furthermore, we 
establish a constraint on the cost of the solution. An algorithm based on a branch and bound technique is 
proposed, working for a number of schemas that does not exceed 30-50 and a number of concepts that 
does not exceed 100-150. 
 
The paper is organized as follows. In Section Running Case we describe the example that will be used in 
the paper. In Section Preliminary Definitions we introduce the graph model used to describe the schemas. 
Section Information Capacity presents the formal definition of the potential information capacity. Section 
Integration Costs introduces the cost model we adopt, and in Section Choice Of The Optimal 
Architecture(S) two different algorithms for the selection of optimal data architecture solutions, in case, 
respectively, n = 1 and n > 1 integration solutions are described. Section Related Works discusses the state 
of the art, and Section Conclusion discusses future research work.  
 
RUNNING CASE 
The running case deals with a company that produces and sells various types of goods on the market. The 
company has organized its data of interest in six different databases, namely: Production-items, Sales, 
Organizational structure- Human Resources, Production process, Organizational structure - Contracts - 
Salaries, Clients. 
In the paper and in the case study we assume that the schema resulting from the integration of the whole 
set of schemas is known. This assumption is reasonable in the case study and in organizations where the 
total number of schemas does not exceed the threshold defined in the introduction, say, 30-50 schemas. 
The schema resulting from the integration of the six conceptual schemas is shown in Figure 1 where the 
six source schemas are surrounded by surfaces with different shapes. The model used for describing 
conceptual schemas is the Entity Relationship model enriched with generalization hierarchies [2]. 
The diagrammatic representation uses simple names in bold characters instead of boxes for entities, lines 
with names in the middle for relationships, arrows for IS-A relationships and generalizations, minimum 
and maximum cardinalities among parenthesis, and for reasons of simplicity, does not include attributes. 
We also assume absence of synonyms and homonyms for names of entities. In Figure 2 a table that for 
each pair of schemas (Si, Sj) lists common concepts among Si and Sj is shown. 
 
PRELIMINARY DEFINITIONS 
In the following, to be able to formally manage the framework we use a graph-based model instead of the 
ER model. 
 
 
Definition 1 - Let G = (N,A,R, I, T, E,C, f) be a graph representing an ER schema Φ, where: 

– N is the set of nodes of an oriented graph representing the entities of Φ, 



 

– A is the set of nodes of an oriented graph representing the attributes of Φ, 
– R is the set of oriented edges, representing the relationship between entities of Φ, 
– I is the set of oriented edges, representing the is-a hierarchies among entities of Φ, 
– T is the set of oriented edges, representing the specialization hierarchies among entities of Φ, 
– E is the set of edges between a node n ∈ N and a node a ∈ A, 
– C is the set of labels {”0..1”, ”1..1”, ”1..N”, ”0..N”}, 
– f is a function associating a value of C to edges r ∈ R, representing minimum and maximum 

cardinalities. 
 

 
Figure 1 The integrated schemas with input schema 

 
It is possible to associate a Naritec graph (”Naritec” is the word composed of the first seven sets of the 
above mentioned definition) to any ER schema. For example, given the schema of Figure 3a including 
five entities, five relationships and one is-a hierarchy, the associated Naritec graph is shown in Figure 3b, 
where continuous circles represent nodes n in N (that is, entities of the schema), dotted circles represent 
attributes, continued lines represent relationship edges, pointed lines represent IS-A hierarchies, dashed 
dotted lines represent specialization hierarchies, and dashed lines represent connections between entities 
and relationships. According to the semantics of the Naritec graph, given an ER schema Φ, there exists 
exactly one Naritec graph associated to it. 
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Figure 2 Common concepts among schemas 

Definition 2 - An SQL query Qi over a schema Φ is any subgraph of the corresponding Naritec graph 
corresponding to the set of nodes n (that is the entities listed in the FROM clause), a set of attributes a 
(that is the attributes in the SELECT clause), a set of edges a and a set of edges r (that is the join path 
between two entities), t and i. 
A relationship path 𝐿��

�� is a path over a Naritec graph composed by edges r ∈ R, i ∈ I, and t ∈ T , starting 
form the node 𝑛� and ending in the node  𝑛� 
 
Definition 3 - A relationship path is defined as 𝐿��

��= {l1, l2, .., lz}, li ∈ R ∨ I ∨ T . With |𝐿��

��| we represent 
the cardinality of 𝐿��

��, that is the number of edges belonging to the path. 
 
Notice that there are many relationship paths with the same starting and ending entities.  
The Join Adjacency Matrix is the adjacency matrix of the naritec graph representing the join path between 
entities. 
Definition 4 - A Join Adjacency Matrix (JAM) is a |N|x|N| matrix, where: 

– |N| is the number of nodes n of a Naritec graph associated to schema Φ, 
– the diagonal entry 𝐽𝐴𝑀��is twice the number of loop edges over entity i 



 

the non-diagonal entry 𝐽𝐴𝑀�� is the number of edges r connecting node i to node j and edges r connecting 
a node k to node j iff node k has an incoming edge i exiting from node i. 
The above definitions will be used in the following, referring to the concept of information capacity and 
the related algorithms for the choice of the optimal architecture.. 
 

 
Figure 3  Example of Entity Relationship schema and associated naritec graph 

 
INFORMATION CAPACITY 
In this section we formally define three types of information capacity that capture from three different 
points of view the intuitive concept of information content of a database schema or a set of database 
schemas using a data integration solution; they are:  schema based information capacity, instance based 
information capacity, and potential information capacity. 
 
Schema based information capacity 
In order to formally express the intuitive concept of ”information content that can be extracted from a 
database”, the first definition of information capacity considers only the conceptual schema of the 
database, discarding the database extension, namely the data. We introduce the schema based information 
capacity 𝐼𝐶�� in an iterative way, starting from the general formula: 
    𝐼𝐶(φ) = ∑(𝑄�)                  (1) 
where the generic 𝑄� is a query involving i nodes n connected by means of i − 1 edges r,i, or t of a 
Naritec graph1. In our approach two queries are considered different if and only if they involve either at 
least one different entity or a different relationship Notice that we do not consider predicates (which affect 
at instance level only) nor attributes. It is straightforward to show that the number of queries involving 
exactly one entity (𝑄�) is equal to |N|, where |N| is the number of nodes N of a Naritec graph representing 
the entities of the schema Φ. The number of queries involving exactly two entities (𝑄�) is equal to the 
number of all paths of length equal to 1 of a Naritec graph. Generalizing, the number of queries involving 
exactly k entities (𝑄�) is equal to the number of paths of length k-1. The number of queries involving k (k 
> 1) entities is defined as: 

                                                           
1 We do not consider the case of relationships connecting more than two entities that are very infrequent in real 
cases 



 

    𝑄� = ∑ 𝑗𝑎𝑚�,�
�

��                                                                              (2) 
where 𝑗𝑎𝑚 �,�

�  is the i,j cell of jam matrix elevated to k 
The result of raising the Join Adjacency Matrix to the k-th power produces a new matrix whose generic 
cell 𝑗𝑎𝑚 �,�

�  represents the number of paths of length k from i to j. 
Definition 5 - The schema based information capacity (𝐼𝐶��) associated to 
a schema s is expressed by the formula 
                                                𝐼𝐶��(𝛷) = ∑ 𝑄�  =  |𝑁| + ∑ ∑ 𝑗𝑎𝑚�,� 

�
�,� ∈|�|���..|�|                 (3) 

Since it is quite unusual that a query may involve, say, more than three or four entities, not all queries 
with an arbitrary number of involved entities should be considered in the evaluation of the 𝐼𝐶��. 
Consequently, equation (3) can be rewritten as follows: 
                                                𝐼𝐶��(𝛷) = ∑ 𝑄�  =  |𝑁| + ∑ ∑ 𝑗𝑎𝑚�,� 

�
�,� ∈|�|���..�                 (4) 

Where 𝜆 is the maximum number of involved entities in a query. Consider now the ER schema and the 
associated Naritec graph of Figure 3b), the associated JAM is shown in Table 1, and let 𝜆 = 4; it results 
that the 𝐼𝐶�� of the Naritec graph of Figure 3b) is equal to 143. In fact, there are five entities plus 12 
paths of length one (including two entities), 34 paths of length two (including three entities), 92 paths of 
length three (including four entities). 
 

 
Table 1 JAM for the Naritec graph of Figure 3  

 Instance Based Information Capacity 
While the schema based information capacity is a useful and easy way to evaluate index to measure the 
information that can be extracted from a schema, another possible point of view is to also consider the 
instances of the database. For these purposes, we enrich the above mentioned graph definition by 
introducing two new sets 𝑊 ∈  𝑅� and P  [0..1] and a function wp : x, y ∈  𝑅� → e  E. Let e  E be an 
edge derived from relationship r connecting two entities 𝑛� and 𝑛� , 𝑤  W represent the average number 
of instances of 𝑛� participating in the relationship, and 𝑝�   P describes the probability that an instance of 
entity 𝑛� participates in the relationship r. Notice that the average number of instances participating in a 
relationship and the probability values can be calculated by using one of the techniques described in [11] 
or by using the statistical functions available in DBMSs [1]. Figure 4 shows the extended version of the 
Naritec graph (Naritec+ in the following) of Figure 3. 𝐼𝐶�� is the amount of instances that is possible to 
retrieve by means of all possible relevant queries. Formally it is defined as follows: 
Definition 6 - Assume that 𝑄�

� represents the number of instances extracted by queries identified in the 
previous section. The instance based information capacity 𝐼𝐶�� is 
                                                                     𝐼𝐶��(Φ) =∑ 𝑄�

�                                                 (5) 
The number of instances retrieved by 𝑄�

� queries, that is considering queries involving exactly one entity, 
is equal to ||𝑛�||, that is the sum of the instances of all entities of the schema Φ. The number of instances 
retrieved by the generic 𝑄�

� query is defined as follows: 
     𝑄�

�=||𝑛�|| *  ∑ (𝑤� ∗ 𝑝�)
� ∈ ���

��             (6) 

 



 

where ||𝑛�|| is the number of instances of entity 𝑛�, 𝑤�, 𝑝� are the weight and the probability associated to 
an edge of a relationship path 𝐿��

��  . Thus we can define 𝐼𝐶�� as: 
                                           𝐼𝐶��(Φ) =∑ 𝑄�

�=∑ ||𝑛�||+ ∑�|𝑛�|� ∗  ∑ (𝑤� ∗ 𝑝�)
� ∈ ���

��             (7) 

 

 
Figure 4 Naritec+ graph of Figure 3 

For example, consider the schema of Figure 3, the entities 𝑁� ,𝑁�  and the edges 𝑒� , 𝑒� ; furthermore, 
assume that 
– ||𝑁�||= 100, ||𝑁�||= 50, 
– 𝑤��= 4, 𝑝�� = 1 
– 𝑤�� = 8.4, 𝑝�� = 1  
In this case, there are four possible relationship paths of maximum length 2, over the above described 
subschema, namely, the schema formed by nodes [𝑒�], [𝑒�] and edges [𝑒�, 𝑒�], [𝑒�, 𝑒�]. The instance 
based information capacity is equal to 𝐼𝐶��  = 100 + 50 + 100 * 4 * 1 + 50 * 8.4 * 1 = 970. 
In order to calculate 𝐼𝐶��  over a generic Naritec+ graph we have to identify all possible paths in the 
graph. To solve this problem, we consider the JAM matrix again. In particular, in order to identify all 
paths of length N, JAM is elevated to N, but, instead of just counting the paths (as described previously), 
the algorithm we propose lists them, by modifying the adjacency matrix so that the (i,j) entry of the 
matrix is a list of relationship paths from i to j. The matrix multiplication algorithm is modified so that 
instead of multiplying and adding cell values in the matrix multiplication algorithm, it concatenates cell 
values. Let us consider the example of Figure 3, the modified JAM matrix G is described in Table 2. 
 

 
Table 2 JAM for the naritec+ graph of Figure 3 

 



 

For example, by invoking the procedure Pow(G, 2), all possible paths from node N1 to N1 are [𝑒��, 𝑒�], 
[𝑒�, 𝑒�], [𝑒�, 𝑒�], [𝑒�, 𝑒�], [𝑒�, 𝑒�], 
 
Potential Information Capacity 
The potential information capacity (IC) is defined for schemas resulting from integration of other 
schemas. Intuitively, the (schema based/instance based) potential IS of an integrated schema resulting 
from the integration of a set of schemas 𝑆�, 𝑆�, 𝑆�, is the additional (schema based/instance based) IC of 
the integrated schema that can be exploited with respect to the sum of the (schema based/instance based) 
ICs of single schemas. More formal definitions have to be specialized according to the knowledge 
available on schemas. 
 
Schema based Potential Information Capacity 
The schema based potential information capacity of the integrated schema composed of two schema A 
and B is defined as: 𝑃𝐼𝐶 �,�

�� = 𝐼𝐶�,�
�� − 𝐼𝐶�

�� −  𝐼𝐶�
�� 

The schema based potential information capacity of an integrated schema is the set of join paths 
associated to the integrated schema that are new w.r.t. the set of join paths of the local schemas, namely, 
the IC of the integrated schemas minus the overall IC of local schemas individually considered 
For example, consider the 𝑆� (Production-Item) and 𝑆� (Sales) schemas of Section Running Case. The 
two schemas share the same entity Item. The schema based potential IC (with a maximum join path length 
equal to four) of schema 𝑆� is 𝐼𝐶�� 

��  = 438, while the IC of schema 𝑆� is 𝐼𝐶��
�� = 160. 

The schema based IC of the integrated schema is 𝐼𝐶��,�
��  = 844, thus the schema based potential 

information capacity is P𝐼𝐶��,�
�� = 844−438−160 = 246, representing 30% of additional queries that cannot 

be extracted in a data architecture that does not make use of data integration solutions. 
 
Instance based potential information capacity 
The instance based potential information capacity is defined in the same way as the schema based one, 
that is 𝑃𝐼𝐶��

�� = 𝐼𝐶�,�
�� − 𝐼𝐶�

�� − 𝐼𝐶�
�� . An important aspect that differentiates 𝑃𝐼𝐶�� with respect to 𝑃𝐼𝐶�� is 

the consideration of instances of common entities stored in different schemas. In an information system 
where data are affected by errors or heterogeneities of various types, integration activities have to be 
performed to solve instance level heterogeneities, reconciling the different data values related to the same 
entity instance in the real world [4]. The activity called record linkage aims to cluster all the tuples 
referring to the same entity instance of the real world, notwithstanding the possible presence of errors or 
heterogeneities in tuples. Consequently, given an entity m belonging to two schemas 𝑆�  and 𝑆� , the 
number of instances in common among the two databases is a value 0 ≤||𝑚����|| ≤ min(|| 𝑚�� ||,|| 𝑚�� ||).  
It is worth noting that the record linkage activity is a complex and time/cost consuming task [4] and in 
some cases, it is impossible to perform, as in the case of an inter-organizational data integration 
architecture. 
 
INTEGRATION COSTS 
Integration costs are related to both the number of sources/subschemas and the number of entities to be 
integrated. We propose a cost model where three different types of costs are considered: 

– Design costs (𝐶�), related to the production of the integrated schema and mappings to local 
sources. Design costs depend on the number of involved concepts in the set of schemas to be 
integrated. 

– Execution time cost, including maintenance that can be further specialized into:  
o Fixed costs (𝐶�), that is costs related to the use of a wrapper mediator architecture; fixed 

costs represent the cost of the mediator; 
o Source costs (𝐶� ) related to costs of software  installed on sources included in the 



 

integration, they represent the costs for the run time execution of the wrappers; 
We do not consider the cost related to the evolution of schema due to the lack of consolidated results in 
both research and academy. With the above assumptions, the costs of integration are expressed by the 
following formula: 
                                     C = 𝐶� + 𝐶�||𝑆�|| +(∑ (�|𝑚��|� − 1)�∈��∈�� ∗ 𝐶𝑑)                                           (9) 
where 

– 𝑆� is the set of sources to be integrated; 
– ||𝑆�|| is the number of sources to be integrated; 
– �|𝑚��|� is the number of schemas si in Sc including the entity m; 
– 𝐶� is the cost related to the design of the mediated schema. 

 
Formula 9 assumes that the costs for schema maintenance related to new sources to be integrated increase 
linearly with the number of sources, and more than linearly with the number of concepts to be integrated. 
This is explained by considering that activities related to the design of the mediated schema and the 
mapping with local sources become more complex (and thus more costly) by definition of the integrated 
schema and mappings, when the same entity m is included in two or more schemas. 
For what concerns the example of Figure 1, costs related to the integration of schemas 𝑆�,𝑆� and 𝑆� are 
equal to: 
    𝐶�,�,�= 𝐶� + 3 · 𝐶�  + 3𝐶�                          (10) 
since there are three sources and three entities (Department, City and Item) to be integrated. While 
integration costs related to schemas 𝑆�, 𝑆� and 𝑆� are equal to 
 
                         𝐶�,�,� = 𝐶� + 3 · 𝐶�  + 4𝐶�                                                                (11) 
Comparing equations 10 and 11, it results that 𝐶�,�,� <𝐶�,�,� due to the fact that in the last integration set 
the two entities Item and Type of Item are in common among all the involved schemas. 
 

CHOICE OF THE OPTIMAL ARCHITECTURE(S) 
In this section we show two approaches to select the best data integration architecture. The first approach 
assumes that a unique data integration solution is used, thus resulting in the choice of the optimal set of 
schemas to be included in the architecture. The second approach allows for a set of data integration 
solutions that can partially overlap. In both cases we assume the following inputs: 

– N is the number of the data sources that can be integrated; 
– 𝑆�, is the set of data sources; 
– 𝑆� is the schema of the i-th data source, there is one schema for each data source; 
– 𝐶��� is the maximum cost for the whole integration effort; 
– 𝐼𝐶�������..��

, is the potential information capacity (schema/instance based) evaluated by integrating 

𝑆������..��
 schemas; 

– 𝐶�������..��
 is the integration cost related to the integration of 𝑆������..��

 different data sources. 

 
It is worth noting that the algorithms we present are parametric w.r.t the two types of potential 
information capacity we defined, namely schema and instance based potential IC. 
 
The optimal data integration architecture 
The first algorithm identifies a unique best data integration solution. Our approach is based on the 
definition of a tree of acceptable solutions. The algorithm starts with a first target architecture, obtained 
by considering all the possible pairs of schemas 𝑆�,� so that i < j. For each solution, we evaluate 
the𝑃𝐼𝐶 ��,� . If 𝑃𝐼𝐶��,�  = 0, that is, if the integration of two schemas does not increase the overall 



 

information capacity, the solution is discarded and is no longer considered. The second step of the 
algorithm builds a new set of solutions starting from the previous ones. The generic solution is in the form 

of 𝑆�,�,� where i < j < z. For each solution we evaluate the ration of 𝑃𝐼𝐶��,�,� and 𝐶��,�,�. If
�����,�

���,�
≥

�����,�,�

���,�,�
    

or 𝐶��,�,�  > 𝐶���, the solution is discarded and no longer considered. The algorithm stops after i = N 
iterations or when no new solution is generated. In both cases, starting from the leaves of this solution tree 
we select the data integration solution 𝑆� so that ∀𝑆�� = 𝑆� : �����

���
≥

�������

�����
   and 𝐶��≤ 𝐶���. In the worst case 

the total number of acceptable solutions is equal to∑ ( �!
�!(���!)

)�
��� . In fact, at each step of the algorithm 

we produce a number of k combinations without repetitions and permutations of a set N. This value is 
equal to �!

�!(���)!
 . Consequently, the total number of possible solutions is the sum of all acceptable 

solutions generated in each step. Within the acceptable solutions, we focus mainly on the leaves of the 
solution tree we designed. In fact, the PIC is a monotonous non decreasing function, thus PIC(𝑆�) <= 
PIC(𝑆�, 𝑆�)∀𝑆� . Among leaves solutions we identify as the optimal data integration architecture the one 
with the highest PIC. 

 
Figure 5 Example of optimal data integration architecture 

In Figure 5 we apply the algorithm to the running case of Section Running Case where 𝐶��� = 150.000, 
𝐶�= 30, 𝐶� = 2.000, Cd = 5, t = 4. It is worth noting that there are two different reasons to discard a 
solution. The first reason (e.g. solution 𝑆�,�) is related to the absence of common entities among schemas 
(see Figure 2), the second one is related to the integration costs when they are higher than the maximum 
cost (e.g. solution 𝑆�,�,�,�,� whose cost is 171.081). According to the algorithm, we propose 𝑆�,� with a 

ratio  �����

�
= 0.377 as optimal solution. 

 
Considering a set of data integration architectures 
It is possible that the optimal solution 𝑆� produces a cost 𝐶��  < 𝐶��� . In this case we can change the 
perspective, no longer looking for the best unique solution, but a cluster of acceptable solutions so 
that∑ ������

����
>�����

���
 and ∑ 𝐶���  ≤𝐶���. To solve this problem we have to solve the following optimization 

problem: 
 
 
 



 

𝑀𝑖𝑛 � 𝑋� 
           s.t. 
          ∑ 𝑋�𝐶� < 𝐶���                                                        (12) 
             ∑ 𝑋�(����

��
) > �����

���
 

                                                                           𝑋� ∈ {0,1} 
 
The problem defined in formula (12) finds the minimum set of acceptable solutions whose sum of 
potential PICs is greater than the PIC of the unique solution. Equation 12 belongs to the family of 
coverage problems and its complexity is NP-complete. We apply this formula to the example of Section 
Running Case, by using a lp-solve2, a mixed integer linear programming solver that solves pure linear, 
(mixed) integer/binary, semi-continuous and special ordered sets (SOS) models. Results define as optimal 
solution 𝑆�= (𝑆�,�,�,�, 𝑆�,�,�,�,�). Unfortunately, this solution is not acceptable, since it is straightforward to 
show that the latter solution also includes the former one, that is 𝑆�,�,�,� ⊂ 𝑆�,�,�,�,�. Consequently, we 
introduce the concept of inclusion of a solution. 
 
Definition 1. An acceptable solution Sis included by another acceptable solution S (S’≺ S) iff 𝑆� ∈ S→ 𝑆� 

 S ∀ 𝑆�  S ∃𝑆�  S’ 𝑆�  S 
 
By extending the formulation of the problem expressed by Formula 12, we include the following clause 

∀𝑋�, 𝑋� : 𝑋� ≺ 𝑋�𝑋�  𝑋� ≤ 1                                                                                (13) 
 

In this way, 𝑋� and 𝑋� cannot be selected together. By applying the optimization problem to the set of 
acceptable solutions of Figure 5, the optimal set is 𝑆� = 𝑆�,�,�,�, 𝑆�,�,�,�,� with �����

���
 = 0.407 that is greater 

than 0.377 of the above mentioned solution. 
 

RELATED WORKS 
Data integration is a widely investigated research area, and significant literature is available (see e.g. [14, 
13, 9]). However, to the best of our knowledge there are very few approaches that investigate the 
optimality of data integration architectures. [10] claims that the investment in schema management per 
new integrated sources and in heavy-weight middleware are reasons why user costs increase directly 
(linearly) with the user benefits, with the primary investment going to the middleware IT product and 
service providers. What is beneficial to end users, however, are integration technologies that truly 
demonstrate economies of scale, with costs of adding newer sources decreasing significantly as the total 
number of sources to be integrated increases, but no experiences or models are provided in order to 
support this intuition. In the last few years a few economic models have been proposed for the analysis of 
costs/benefits of other types of data architectures. For example, in [8] the economic contribution of 
tabular data sets to the design of data warehousing and database solutions is investigated. The framework 
proposed assumes that the business value contribution (conceptualized as utility) of data resources and the 
costs associated to managing them are influenced by the design characteristics of the data repositories and 
to processes used to create and manage them. Viewing the set of design characteristics as representing a 
design space, the authors assume that the economic performance can be maximized by determining the 
optimal point within this space, while considering applicable dependencies and constraints. 
 
 
 

                                                           
2 http://sourceforge.net/projects/lpsolve/ 



 

CONCLUSION AND FUTURE WORKS 
The data architecture of organizations is often broken up in a number of heterogeneous data sources; we 
can foresee that this trend will worsen in the future by the dynamic nature of current business activities 
and the evolution of networks and of the Web. In this context, it is quite difficult for organizations to 
exploit the whole information asset, due to the difficulty in obtaining a common view over data. To face 
this problem, the usage of data integration solutions is a mandatory step toward a more effective data 
architecture. While a lot of literature has been available for managing technical issues (e.g. schema 
matching [14]), to the best of our knowledge no analysis has been proposed on the economic 
sustainability in terms of cost/benefit evaluation of integration architectures based on data integration 
solutions. In this paper we propose three original results: i) a set of quality dimensions to evaluate a data 
architecture based on the concept of information capacity, ii) a cost function for evaluating the integration 
costs, and iii) two algorithms for identifying the optimal (set of) data architecture solution(s) maximizing 
the information capacity of the overall architecture within a given cost threshold. A simple but realistic 
example shows how our framework can be applied. Possible future work can be clustered in three 
research directions.  The first one is related to the evaluation of more complex situations where the 
number of data sources to be integrated is high (e.g. all data sources of large organizations or national-
level public administration). In this case, the number of acceptable solutions produced by our algorithms 
becomes intractable from a computational view-point. The second research direction is to consider in the 
cost analysis the use of design tools that simplify the creation of mediated schema [5] and consider the 
temporal dimension in the cost analysis (e.g. by considering maintenance costs and schema evolution 
events). The third area is related to the definition of a methodological framework for read-write access to 
the whole information asset. 
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