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Abstract: As most data stream sources exhibit bursty data rates, data stream management systems must
recurrently cope with load spikes that exceed the average workload to a considerable degree. To guarantee
low-latency processing results, load has to be shed from the stream, when data rates overstress system
resources. There exist numerous load shedding strategies to delete excess data. However, the consequent
data loss leads to incomplete and/or inaccurate results during the ongoing stream processing.
In this paper, we present a novel quality-driven load shedding approach that screens the data stream to find
and discard data items of minor quality. The data quality of stream processing results is maximized under
the adverse condition of data overload. After an introduction to data quality management in data streams,
we define three data quality-driven load shedding algorithms, which minimize the approximation error of
aggregations and maximize the completeness of join processing results, respectively. Finally, we demonstrate
their superiority over existing load shedding techniques at real-life weather data.

Introduction

Typical data stream sources provide potentially high arrival rates (transactions in financial mar-
kets, and production monitoring events, etc.), but sufficient resources may not be available for the
required workload of numerous queries [8]. For example, the critical resources during stream ag-
gregations are computational power and stream bandwidth, while joins suffer from limited memory
capacity.
Furthermore, data streams tend to have dramatic spikes in data volume (evening web traffic, high
event rates during critical states in production processes, etc.), so that peak load can be orders of
magnitude higher than typical loads. Frequently, it is impractical or impossible to provide resources
to fully handle the spike load. However, accurate data stream processing is most critical in such



situations of high and bursty data load. There are two basic approaches to resolve this situation:
Provide approximate processing results instead of accurate ones to ensure high performance by
discarding a controllable fraction of input stream data [2], [11] or provide accurate results by
buffering overload with the risk of failing to keep up with the input rate [21].
In this paper, we present data quality-driven load shedding, which follows the first approach,
but outperforms existing load shedding strategies with respect to the achieved quality of stream
processing results. Prior load shedding techniques range from simple random sampling to biased
sampling optimized for specific stream query types. They discard information from the stream
(data loss) and introduce an error to the processing result. Since the true outcome of data stream
aggregations can only be approximated upon incorporation of load shedding, the correctness of
processing results is decreased. During load shedding in combination with data stream joins,
potential join partners may be deleted from the stream, so that only an incomplete subset of the
original join result set is computed.
Moreover, most data stream sources suffer from limited data quality from the beginning, whereas
data quality expresses the ”‘suitability”’ of a given data for the respective application task and is
defined as a set of data quality dimensions. In [9] we present an elaborated data quality definition
for data streams together with methods for data quality recording. The dimension accuracy for
example is decreased by restricted sensor precisions, by typos in text elements, or by RFID readers
failing to scan an item properly. The completeness of a data stream is reduced whenever a true
world event is missed due to sensor or system malfunction. In many scenarios, such missing items
are estimated (e.g., interpolated) to prevent from cascading null-values in data processing.
The novel data quality-driven load shedding improves the overall data quality of processing re-
sults significantly by discarding data stream items of low data quality with higher probability than
”good” ones. In this way, the approximation error during aggregations is reduced and in some
scenarios even compensated completely. Further, the completeness of join result sets is increased
with regard to missing values due to malfunctions. For the field of data quality management and
data quality-driven load shedding our contributions are as follows.

• We present the novel concept of data quality-driven load shedding that improves the quality
of query processing results.

• We propose three algorithms for data quality-driven load shedding. MaxDQ samples stream
items of minor data quality with high probability and improves the overall quality for ar-
bitrary queries. MaxDQcompensate first balances the approximation error before improving
further quality dimensions to optimize aggregations. MaxCompleteness aims at the most
complete result set for data stream joins.

• We investigate methods to calculate the introduced approximation error and to measure the
level of data quality improvement due to DQ-driven load shedding.

• We evaluate the data quality-driven load shedding with the help of real-life weather data and
show its superiority in comparison with existing load shedding techniques.

This paper is organized as follows: After a discussion of related work in Section 2, we present the
concept of data quality-driven load shedding in Section 3. Section 4 defines the specific algorithms
MaxDQ, MaxDQcompensate and MaxCompleteness. We conclude this paper with an evaluation
in Section 5 and a summary of our contributions in Section 6.



Related Work

Multiple publications [3], [7] underline benefits of the data quality management in data warehouses
and databases. To define the term data quality, different sets of data quality dimensions are
discussed i.a. in [12] and [22]. Further, there are different approaches to structure data quality
metadata in databases [18], [19].
We presented the first approach for data quality management in data streaming environments in
[9]. The proposed quality propagation model (QPM) allows for the efficient measurement and
transfer of data quality information using so called jumping data quality windows. The stream
is partitioned into consecutive, non-overlapping windows w(k) (1 ≤ k ≤ κ), each of which is
identified by its starting point tb, its end point te and the window size ω. Beyond the data stream
items x(j)(tb ≤ j ≤ te), the window contains |Q| data quality information qw, each obtained by
averaging the tuple-wise DQ information over the window.or each specified data quality dimension,
the window-wise data quality qw describing window w = [tb, te] is taken as the average of incoming
tuple-wise data quality information qw = (1/w)

∑te
j=tb

q(j). Further, the QPM provides methods
for the data quality processing to track influences of applied data processing operators (joins,
aggregations, etc.) on the transferred DQ information to compute the data quality of processing
results.
Load shedding aims at the reduction of the data stream volume. In situations of high workload,
more data items than the system can cope with may arrive at the data stream processing nodes.
Significant delays and memory overflows would result, if all data items shall be processed. The
quality of service (QoS) would decrease. Therefore, the load has to be decreased by skipping a
certain amount of stream tuples until a manageable data volume or an appropriate processing
delay is reached, respectively.
There exists a wide range of load shedding algorithms. They all aim to answer the following
questions. How much data tuples have to be discarded from the stream? Where in the processing
path, must the load shedding take place? Which tuples have to be deleted from the stream? The
first two questions concerning the load distribution between multiple queries and load shedder
placement have been studied in detail in prior art. The load shedding rate is computed based on
stream and operator statistics (varying stream rates, selectivities, etc.) and the available memory
or transfer capacities. To answer the second question, load shedding techniques locate tuple ”drop
boxes” at root nodes (split points) of processing paths shared in multiple data stream queries [1],
[2], [20].
We significantly extend this work by incorporating data quality information in the load shedding
process. In the following, we compare different strategies that try to answer the third question to
illustrate the benefits of our data quality-driven load shedding approach. The generic load shedding
[20] creates a simple random sample of incoming data stream tuples. The information loss due to
deleted tuples leads to faulty results in later on data processing. The correctness of aggregation
results is decreased. Furthermore, the completeness of join result sets is reduced, because relevant
join partners were deleted from the data stream. Sophisticated strategies have been developed to
reduce either the correctness or completeness error by performing semantic load shedding with the
help of biased sampling.
Kang et al. present sophisticated memory allocation strategies to maximize the output set of moving
window joins over unbounded data streams based on a frequency model of stream arrival [8]. A
contrary approach is illustrated in [17], where stream tuples are sampled using an age-based stream
model statistic. Longbo et al. follow a correlated load shedding strategy for different incoming



data streams [11]. The result set is maximized by partitioning the domain of the join attribute into
sub-domains, and filter out certain input tuples based on their join values.
Although these algorithms aim to maximize the join result set, certain join partners are unre-
coverably lost. Further, missing values, which have been interpolated prior to load shedding, are
ignored as they can not be distinguished from original measured data. The data quality-driven
load shedding MaxCompleteness considers both sources of incompleteness: missing values and lost
join partners during load shedding. This way, MaxCompleteness improves the overall stream com-
pleteness compared to existing strategies declared above.
[20] focuses on aggregation queries with sliding windows. Complete data stream windows are
dropped to compute correct but incomplete aggregations with limited CPU power. In the contrary,
Babcock et al. present a load shedding algorithm to approximate aggregation results to produce
a complete result set [2]. The introduced correctness error due to shed data tuples is minimized
based on stream statistics and operator selectivity. In [6] a semantic load shedding strategy is
described, that samples stream overload depending on the standing queries and thus combines the
above described algorithms.
While all these algorithms use stream statistics to determine tuples to delete, [14] focuses on
important join partners to improve the correctness of subsequent aggregations. Moreover, the
tuple utility is used together with frequency statistics to bias the deletion of data tuples in [1].
We summarize, that different load shedding algorithms have been developed, which are optimized
for join and/or aggregation execution. All existing load shedding techniques introduce an error
by reducing the amount of processed data. Either tuples are missing in the result set (decreased
completeness) and/or aggregation values are approximated (reduced correctness). The quality-
driven load shedding cracks this hard problem. By concentrating the load shedding on tuples of
minor quality, the overall stream data quality is improved, the introduced error is minimized and
may even be compensated.

Quality-Driven Load Shedding

In the following section, we first present the quality-driven ordering of data stream tuples. Then,
we propose the novel concept of data quality-driven load shedding (DQLS) and introduce three
metrics to measure the quality of processing results to compare our approaches to existing load
shedding strategies.

Quality-Driven Tuple Ordering

To enable data quality-driven load shedding, data stream tuples must be ordered according to their
total data quality. The starting point for such an ordering are data quality values assigned to each
data stream tuple. We assume there are |Q| data quality dimensions, where q ∈ Q denotes any
of these dimensions. We restrict ourselves to scalar-valued DQ information [15], i.e. each q can be
expressed as a numerical value.
As an example, [9] describes the data quality dimensions accuracy, confidence and completeness.
The accuracy a defines the systematic error of a data stream value x (e.g., sensor measurements,
counter of website hits) due to imprecision of the measuring method itself. The confidence ε states
statistical errors due to random disturbances. The overall numerical correctness α of final processing
results consists in the sum of accuracy and confidence: α = a + e. Small values of α imply high
data quality. The completeness c monitors sensor failures leading to missing data items, which are



interpolated to prevent the processing of null-values. Note that high completeness signifies high
data quality. Below, it is convenient to have a uniform notion of data quality in the sense that
small values of q imply a high data quality; for all data quality dimensions that initially to not
comply with this notion, we redefine q according to q → −q.
The total data quality is obtained by aggregation of the quality dimensions into a scalar value
θ = θ(q1, q2, . . . , q|Q|), where θ is a weighted average of normalized data quality dimensions; a
suitable choice of normalization and weights is described in Definition 3. We use θ to unify the
human interpretation of ”very good” to ”very bad” with respect to the monotonic ordering of
numerical data quality values.

Definition 1 The stream tuple x1 exceeds stream tuple x2 (expressed by the binary relation �),
iff the total quality of x1 exceeds the total quality of x2, i.e. iff the total data quality θ1 is smaller
than θ2.

x1 � x2 ≡ θ1 < θ2

Now, data stream tuples can be ordered1 to allow for a quality-driven load shedding.

Overall Approach

The data quality-driven load shedding builds upon the load shedding scheme of Babcock et al. that
aims at the lowest processing time per tuple focussing on the question where to shed load [2]. The
load shedding structure resulting form this approach remains stable as long as the query workload
remains unchanged. Moreover, the effective load shedding rate is determined by existing stream
statistics. Thus, the problem of effective load shedding reduces to the question of which tuples to
delete.
To address this problem, it is tempting to directly apply Definition 1 and use a quality-guided
ordering to determine ”good” and ”bad” data stream tuples. However, the naive sorting of stream
tuples according to quality would block the data processing stream and is, therefore, out of scope.
Thus, we resort to the quality distribution of the stream yet processed. For a given load shedding
rate rLS , defined as the ratio of tuples remaining in the stream and the total number of tuples, we
determine the data quality bound b (Figure 1). It separates high-quality tuples remaining in the
stream from low-quality tuples that will be deleted.

Figure 1: DQ bound and DQ improvement
1Formally, θ only defines a quasi order as θ provides no ordering for distinct tuples of the same total data quality. This does

not impose a restriction for our approach, as tuples of the same data quality may be ordered arbitrarily, i.e. according to their

timestamp.



We perform the load shedding statistically based on the distance between window-quality and DQ
bound b. Form this distance we determine the probability for tuples within the window to remain
in the data stream, such that -on average- more tuples are removed from bad data quality windows
than from windows with good data quality.

Definition 2 Data quality-driven load shedding performs a Bernoulli sampling with a probability
pBernoulli for tuples to remain in the data stream. Here, pBernoulli = d�(θ, b) is computed from the
distance function d� between window-quality θ and quality bound b.

Specific choices of d� for the developed load shedding algorithms are given in Section 4. Assuming
independence of data quality and stream values, quality-driven load shedding performs a non-biased,
random sampling of overloaded stream partitions. Bernoulli sampling is applied individually for
each data tuple in a DQ window.
We note that data quality-driven load shedding is performed based on the distribution of past
quality values. In cases where the quality decreases over time, tuples that were deleted as bad
quality tuples at the beginning of the stream processing might be considered of good quality at
a later time. This is a consequence of the quasi-static analysis of data stream snapshots which
is crucial for the continuous clearing of data overload. A globally optimal load shedding would
require a complete analysis of the data stream which would fundamentally contradict the spirit of
the streaming approach.

Data Quality Metrics

Although load shedding constitutes a mighty tool to ensure the quality of service in data stream
systems, it significantly affects the data quality of processed results. For example, consider the data
series 1,1,1,1,1,1,1,1,1,100 of 10 values and true average 10.9 which is sampled with a sampling rate
of 50%. If the sample contains the value 100, the sample average is 20.8. Otherwise, the sample
average is computed to 1. The deviation between sample and full average is the aggregation
approximation error. In [4], Haas provides an estimation of this approximation error based on
tuple variance σ2, sample size n and load shedding rate rLS .

ε+ =
ρ · σ√
n
·
√

1− rLS (1)

Here, the parameter ρ denotes the (1 − p/2) quantile of the probability p that the interval [x −
ε+, x + ε+] around the sample average x contains the true average over the full data stream. For
the example data series given above, the introduced approximation error is computed to ε+ = 19.4
for the probability p = 95%. As the approximation error represents a statistical sampling error,
it is captured in the DQ dimension confidence ε′w =

√
ε2w + ε+2 to calculate the overall quality of

processing results.
The correctness α of approximate aggregation results is described by the DQ dimensions accuracy
a and confidence ε, respectively. As a data stream aggregation summarizes a certain group g of
incoming stream tuples, the accuracy and confidence values of this group have to be summarized.
The correctness is defined as sum of the average of all incoming window accuracies aw and the root
mean square of the incoming statistical confidence errors εw (including approximation errors).

α =
1
|g|
∑
|g|
aw +

√√√√ 1
|g|
∑
|g|
ε2w (2)



In order to measure the performance of MaxCompleteness, we compute the recall rec as result set
size during join execution with load shedding compared to the result set size in a perfect-world-
scenario, where no load shedding has to be performed. The result set integrity I incorporates
missing items due to prior sensor failures defined in the DQ dimension completeness
cw = (1−#failures)/ω as well as missing join partners due to load shedding given as recall rec.

I = rec · (1− c̄w) (3)

=
|resultWithLS|
|resultWithoutLS|

· (1− 1
n

∑
ω · cw) (4)

Finally, the overall improvement of the data quality θ+ due to the load shedding activity is reflected
in the decrease of mean values θ+ ≡ µ(θ)− µ′(θ) before and after load shedding (see Figure 1).

Algorithms

Based on the load shedding concept described above, we developed the load shedding algorithm
MaxDQ for arbitrary queries, MaxDQcompensate to improve the correctness of approximate data
stream aggregations and MaxCompleteness to maximize the completeness of data stream joins
under the constraint of limited memory capacity.

MaxDQ - Total DQ Improvement

The MaxDQ algorithms implements the concepts introduced in Sections 2 and 3: The total data
quality θ is determined at the end of each data quality window. Then the quality bound b is
computed upon analyzing the data quality distribution in the data stream history. Finally, a
Bernoulli sampling is performed in the quality window based on the distance between total quality
and quality bound.
As described before, we combine all data quality dimensions by performing the transformation to
the standard normal distribution and aggregating the quality dimensions into the total data quality
θ. This process involves the risk of degradation of important DQ dimensions, upon deleting tuples
with high quality in specific dimensions of interest due to low quality in other dimensions. To avoid
this and enable to focus on quality dimensions of interest, we introduce dimension weights weighti
with

∑
weighti = 1 in the definition of the total quality.

Definition 3 The total data quality θ of a stream tuple is defined as the weighted average of
the transformed data quality information in each DQ dimension qi with mean µ(qi) and standard
deviation σ(qi).

θ =
1
|Q|

|Q|∑
i=1

weighti ·
qi − µ(qi)
σ(qi)

(5)

The parameters of the normal distribution µ(qi) and σ(qi) are calculated with the help of streaming
DQ history of each dimension qi. In the evaluation of the MaxDQ algorithm we take all weights
to be equal weighti = 1/|Q|, hence θ reduces to the arithmetic average over quality dimensions.
The quality bound b is determined based on the load shedding rate rLS . It is taken as the level
of total data quality which exceeds the fraction of rLS data stream tuples: rLS = 1/n · |xθ<b|. We



derive this bound from the history of previously processed tuples’ total data quality, expressed with
the help of incrementally updated µ(θ) and σ(θ). To overcome the ambiguity of the probability
density function pdf of the normal distribution shown in Figure 1, we apply the cumulative density
function cdf .

Definition 4 The data quality bound b is defined as the inverse cumulative normal distribution
at the load shedding rate rLS , where the underlying normal distribution has the mean value µ(θ)
and standard deviation σ(θ).

b = Φ−1(rLS) (6)

To approximate the inverse cdf , we propose to use the algorithm by Peter Acklam [16], which is
the most accurate (relative error less than 1.15 ·10−9) and highly efficient implementation currently
freely available. Finally, we use a specific quality distance d� to compute the Bernoulli sampling
probability

Definition 5 The Bernoulli probability pBernoulli = d�(θ, b) is computed from the sigmoid quality
distance.

d�(θ, b) = −0.5 · tanh(b− θ) + 0.5 (7)

This choice of distance provides a sampling probability p → 1 when θ � b and a small sampling
probability p → 0 if b � θ. The case b = θ is modelled with pBernoulli = 0.5. By applying the
Bernoulli sampling, a fraction of the current data quality window is deleted from the stream.

MaxDQcompensate - Error Minimization

MaxDQcompensate balances the approximation error by focussing the load shedding on tuples of
low accuracy and/or confidence. While tuples of high numeric correctness remain in the stream,
the overall stream correctness is increased and compensates the introduced load shedding error.
Therefore, MaxDQ is extended by a prior analysis of the attainable correctness improvement. The
optimal load shedding decision for error compensation is evaluated against the requested load
shedding rate rLS .
The first step in the algorithm nominates deletion or preservation of the current stream tuple,
as there are two aspects of correctness improvement. The deletion of specific data may decrease
the approximation error, if the data standard deviation σ(x) of measurement values x is decreased.
Otherwise, the preservation in the stream may increase the overall correctness due to good accuracy
aw and/or confidence εw. The dominant aspect determines the temporary decision and suggests a
new load shedding rate. The second step evaluates this decision with respect to the requested load
shedding rate rLS by applying a process control strategy.
For the first algorithmic step getLSrate() shown in Algorithm 1, w(k) depicts the current data
quality window, while rj and sizej describe the currently achieved load shedding rate and resulting
data stream size, respectively.
First, the deletion of the respective tuple is assumed and the suggested load shedding rate rj+1

is updated to calculate the impact on the approximation error ∆ε (row 2-3). The alteration of
the overall correctness in case of preservation ∆α is calculated in row 4-5. A negative impact ∆ε
indicates an increase of the approximation error, while a negative correctness alteration ∆α shows
a degradation of the result correctness and vice versa. If both impacts (deletion and preservation)
are negative, the minor degradation is suggested as temporary load shedding result. If both effects
are positive, the activity with stronger improvement should be performed. The temporary decision
is presented in the parameter shed temp and suggested load shedding rate rj+1.



Algorithm 1: getLSrate()
Input: x current tuple, aw, εw current window accuracy & confidence,
sizej current sample size, rj current load shedding rate
Output: rj+1 new load shedding rate, shed temp temporary load shedding suggestion
rj+1 = rj ·(sizej+1)

sizej+rj
;1

εj+1 = updateIntroducedError(x, εj);2

∆ε = εk − εj+1;3

αj+1 = updateCorrectness(aw, εw, αj);4

∆α = αj − αj+1;5

if ∆ε > ∆α then6

shed temp = TRUE;7

else8

shed temp = FALSE;9

rj+1 = rj ·sizej

sizej+rj
;10

Algorithm 2: checkLSrate()
Input: rj+1 suggested load shedding rate, shed temp temporary load shedding activity,
Q data quality information
Output: shed load shedding decision
EWSAj+1 = β · rj+1 + (1− β) · EWSAj ;1

updateControlIntervalBounds(EWSAj+1);2

if rj+1 > upperBound then3

shed = FALSE;4

else if rj+1 < lowerBound then5

shed = shed temp ∨ MaxDQ(Q, rLS);6

else7

shed = shed temp;8

if shed then9

sizej+1 = sizej + 1;10

The second step of MaxDQcompensate checkLSrate() (Algorithm 2) checks the temporary decision
against the requested load shedding rate rLS . To guarantee the required load discharge, we now
apply standard statistical process control techniques [13]. This allows both to monitor whether the
load shedding rate remains within acceptable bounds and to apply corrective measures otherwise.
We use the exponentially weighted smoothed average (EWSA) of the monitored load shedding
rate to compute a statistically valid trend. When the load shedding rate rj+1 is suggested, the
average is updated as shown in row 1 of Algorithm 2, where the parameter β defines the sensitivity
of the trend to changing rates. Typical values used in process control are β ≤ 0.05. It can be
shown [13] that EWSA has a normal distribution with mean value 0.5 and standard deviation
σ(EWSA) = 2 ·

√
1/12 · β/(2− β).

Afterwards, the control interval [lowerBound, upperBound] around the requested rate rLS is up-
dated (row 2), where ρ describes the (1− p/2)-quantile of the chosen probability p .

upperBound = rLS , (8)
lowerBound = rLS − ρ · σ(EWSA) (9)



Algorithm 3: MaxCompleteness
Input: w current data quality window,
T set of stored tuples
forall x ∈ w do1

if ∃y ∈ T |c(x) < c(y) then2

exchange(x, y);3

end4

If the temporary load shedding rate rj+1 lies within these bounds, the optimal load shedding activity
suggested in getLSrate() is performed (row 9-11). The overall correctness of the approximate
aggregation result is improved by either decreasing the introduced approximation error or improving
the underlying stream correctness. If the upperBound is exceeded, the requested load reduction
could not be achieved by the suggested activity (row 3-5). Although the function getLSrate()
might have recommended a preservation of the analyzed window, it has to be deleted from the
stream. The desired correctness improvement could not be executed.
In contrast, capacity remains unused if the currently suggested load shedding rate is below the
lowerBound (row 6-8). Although the deletion might be suggested with respect to the data cor-
rectness (shed temp = FALSE), the data stream may benefit from the tuple as it constitutes good
quality in further DQ dimensions. The algorithm MaxDQ, which improves the overall data quality,
is applied. By allowing MaxDQ to change the decision of getLSrate(), we reduce the priority of
correctness in order to not waste capacity in the streaming system. This allows better inclusion of
further data quality aspects, such as completeness or data basis.

MaxCompleteness - Maximizing Join Sets

The load shedding of potential join partners is not the only reason for incomplete data stream
processing result sets. Instead, in real-world applications, there are multiple sources of incomplete-
ness ranging from sensor failures to lost data packages during data transfer. MaxCompleteness
is the first load shedding approach which incorporates information about such prior reductions to
maximize the integrity of join result sets. As restricted memory capacity is the critical resource
during data stream join processing, potential join partners may be deleted before contributing to
the result set. We apply the tuple ordering given in Definition 1 to keep those tuples in memory,
which provide best results in the data quality dimension completeness.
MaxCompleteness is summarized in Algorithm 3. Whenever a data quality window w arrives at the
join processing node, its completeness is compared to the temporarily stored tuple set T . Tuples
of minor completeness are replaced by the incoming window tuples until either all tuples of w have
been incorporated in T or the reservoir of minor completeness has been consumed. The quality
bound b defined in the overall approach in Section 3.2 is given as the lowest completeness value in
the storage space T . The load shedding probability pBernoulli equals 0, if the bound is exceeded,
and 1 otherwise.

pBernoulli(x) =
{

0
1

c(x) < c(b),
else.

(10)

MaxCompleteness benefits from data quality information to reduce completeness deficiencies of
query results caused by sensor failures or other sources of tuple deficits. However, it will most
probably entail a high tuple loss during join execution, when stream tuples are eliminated from
the temporary storage space before relevant join partners could be processed. We developed two



hybrid load shedding algorithms to combine the benefits of MaxCompleteness and prior load shed-
ding strategies: age-based MaxCompleteness and frequency-based MaxCompleteness according to
Srivastava [17] and Kang [8], respectively. The load shedding probability phybrid incorporates the
sampling decision according to stream statistics (age or frequency, respectively) and completeness
information.

phybrid(x) = pStatistics(x) · pBernoulli(x) (11)

By integrating data stream statistics in the tuple load shedding, the recall of produced join result
sets is improved. Hence, the hybrid algorithms overcome the disadvantage of strict MaxComplete-
ness.

Evaluation

In this evaluation, we examine the load shedding algorithms at real-world data streams to empiri-
cally answer the following questions.

1. Do our load shedding algorithms provide considerable benefit over existing strategies?

2. Can the DQ-driven load shedding algorithms compete with prior state-of-the-art in terms of
processing time per tuple?

We have implemented the load shedding algorithms described in this paper using PIPES [10]. This
flexible and extensible infrastructure provides fundamental building blocks to implement a data
stream management system for continuous data-driven query processing over autonomous data
sources.

Experimental Settings

We ran our experiments on a 1.6GHz Intel Pentium IV processor with 2GB of main memory,
running Microsoft Windows XP Professional 2002. All Java-based systems were executed using
JRE Version 6. We use the real-world weather dataset available at [5] which consists of cloud and
weather measurements over several years recorded at land stations and ships all over the globe.
Each tuple is identified by time (year, month, day, hour) and place (latitude, longitude) of recording
and contains information about present weather, cloud cover, solar attitude, etc. To evaluate our
approaches for approximate aggregations we chose the weather measurements taken at land stations
in the month of June 1990. We applied a set of five aggregation queries with varying filter and
grouping criteria, which were executed in parallel with shared sub-expressions. For example, the
query

SELECT AVG(total_cloud_cover)

FROM june90

WHERE latitude > 37470 AND latitude < 37480 AND longitude > 12220 AND longitude < 12230

GROUP BY day

determines the average daily cloud cover in June 1990 for San Francisco. As we don’t intend to
compare the efficiency of different load shedding schemes, we were not interested in the specific
query overlapping and load shedder placement. Rather, we compare the achieved data quality of
query results. For the evaluation of load shedding for window-wise data stream joins, we appended



the readings of June 1991. With the help of the join attributes longitude and latitude we combined
weather measurements taken at all land stations for June of two consecutive years. For example,
this join strategy could be used to identify weather or temperature shifting over several years.
We assumed a systematic error of 1%, while the statistical measurement error was derived from
the measurements’ variance. To initialize the data completeness, we identified missing weather
measurements by comparing the record history of the weather stations to the planned sensor rate
of one measurement every three hours r = 1/3h. As the weather dataset provides equidistant
timestamps, we simulated varying data stream rates by integrating time delays between tuple
readings from the dataset. By this means, we model load factors from 1 to 10 leading to effective
load shedding rates of 1 ≥ rLS ≥ 0.12.
We explore the overall data quality in general and correctness in particular, achieved by simple
load shedding using random sampling (Simple), the approach proposed by Babcock et al. which
minimizes inaccuracy (Babcock), and our algorithms MaxDQ and MaxDQcompensate. Further, we
compare the overall completeness of join result sets obtained by the basic age-based (Srivastava)
and frequency-based (Kang) load shedding to our algorithm MaxCompleteness and the hybrid
approaches HybridSrivastava and HybridKang. Finally, we measure the processing time of the
given approaches to evaluate their processing overhead.

Results

In our first experiment, we analyze the metric of aggregation correctness α averaged over the
query result as given in Equation 2. Figure 2 shows the percental decline of the correctness in
proportion to aggregation without load shedding for increasing load shedding factors (the lower sub
graph shows the zoom into the upper subgraph for the better illustration of the relation between
MaxDQ and the Babcock approach). The higher the load factor, the higher is the introduced
approximation error that impairs the overall correctness. The simple random sampling ranks
lowest, as no means for any DQ improvement are incorporated. The Babcock approach minimizes
the introduced approximation error, which improves the correctness significantly. It outperforms
MaxDQ for low load factors, where the load shedding rate is too small to delete a sufficient partition
of ”bad” data stream tuples. However, during high load given in bursty data streams, the DQ-
driven load shedding leads to superior results. MaxDQcompensate even has a positive impact on
the stream correctness. Due to the sophisticated selection of data stream tuples, the introduced
approximation error is compensated.
In Figure 3 we extend the analysis to the total data quality improvement θ+ for aggregation results.
The diagram presents similarities with Figure 2. While the simple random sampling introduces the
highest error (highest negative improvement), MaxDQcompensate provides the best results as the
correctness error is compensated. The dominance of MaxDQ shifts to lower load shedding factors.
As Babcock focuses correctness only, it is sooner exceeded by MaxDQ that aims at maximizing the
total data quality improvement.
Next, we evaluate the DQ-driven load shedding for data stream joins, which suffer from restricted
memory capacity. The result set integrity I combining missing values due to sensor failures as well
as missing join partners due to load shedding is illustrated in Figure 4. To prove the practicability
of MaxCompleteness to form reasonable join result sets, we further took a closer look on the recall
rec of the load shedding algorithms in Figure 5. The allocated memory size is shown as percentage
of the amount required to retain the entire data stream window currently under consideration. In

2For example, the load factor 2 signifies that the arriving data stream exhibits twice the workload processable by
the given resources requesting a load shedding rate of rLS = 0.5.



Figure 2: Correctness vs. load factor Figure 3: DQ improvement vs. load factor

general, the wider the provided memory, the less stream tuples have to be deleted. The recall
approaches 1, and the result set integrity converges to the initial data stream completeness.
MaxCompleteness performs a simple random sampling concerning the probability of future join
partners as DQ dimension completeness and data stream measurement values are not correlated.
Thus, it attains the smallest recall, which leads to medium performance concerning the result
set integrity. The basic algorithms by Kang and Srivastava provide the best recall, but sample
tuples of low completeness with the same probability as complete ones, which reduces the result
set integrity. The hybrid approaches combine the reduced completeness error of MaxCompleteness
and the superior recall of Kang and Srivastava, respectively. Thus, they present the best result set
integrity for all memory configurations. On the one hand, their recalls are only slightly inferior to
the basic age- and frequency-based algorithms. On the other hand, they increase the data stream
completeness by eliminating tuples of minor initial completeness due to sensor or reading failures.
In Figure 6 we compare the processing time per incoming data stream tuple for each load shed-
ding approach. The minor processing time of join load shedding is caused by the considerably
higher complexity of this stream operator. While MaxDQ lies in the order of the simple random
sampling, MaxDQcompensate is only slightly slower than the Babcock approach, both minimizing
the introduced approximation error. Similarly, the hybrid load shedding approaches present only
small slowdowns compared to the basic algorithms. Not including tuple-value information, Max-
Completeness analyzes incoming stream tuples at the level of data quality windows, which results
in the smallest processing time for join load shedding.

Figure 4: Completeness vs. memory capacity Figure 5: Recall vs. memory capacity



Figure 6: Processing time per tuple

In conclusion, the novel approaches of data quality-driven load shedding significantly outperform
the compared existing strategies in the context of data quality. In particular, the correctness of ap-
proximated aggregations as well as the completeness of join result sets in case of limited memory is
improved. The deficiencies in processing time result from the incorporated analysis of data quality
information. In our opinion, they are well justified by the considerable data quality improvement
for aggregation as well join query result sets.

Conclusion

In this paper we addressed data stream load shedding to meet limited resource such as computation
capability and memory size. The wide range of existing load shedding strategies shares one big
problem: the data loss due to discarded overload stream tuples. Data stream aggregation results
incorporate an approximation error, while stream joins produce incomplete result sets as important
join partners were deleted.
To solve these problems, we presented the concept of data quality-driven load shedding. By inte-
grating data quality information into the MaxDQ load shedding process, we were able to delete
”bad” data tuples from the stream to improve the overall data quality of stream query results.
MaxDQcompensate is especially focused on the data quality dimensions accuracy and confidence to
minimize the approximation error of data stream aggregations. As not alone load shedding leads
to completeness deficiencies of data stream joins, MaxCompleteness and its hybrid extensions also
incorporate DQ information concerning missing items to maximize the completeness of join result
sets. The evaluation in this paper showed, that the data quality-driven load shedding enables the
considerable improvement of stream aggregation correctness and join result set completeness.

References
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