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Abstract: Data quality remains a persistent problem in practice and a challenge for research. In this study 
we focus on four of the most important dimensions of data quality - accuracy, completeness, consistency, 
and timeliness. Definitions and conceptual models for these dimensions have not been collectively 
considered with respect to data mining in general and a key determinant of data mining outcomes, problem 
complexity, in particular. Conversely, these four dimensions of data quality have only been indirectly 
addressed by data mining research. Using definitions and constructs of data quality dimensions, our 
research shows for the first time that data quality and problem complexity have significant interaction 
effects on data mining outcomes. It also shows that the dimension of consistency can be concluded to have 
the largest effects of all four. Our results help address an important research challenge noted by March and 
Smith [15]. They also enable practitioners to assess data quality, prioritize efforts to improve it, and 
increase the performance of data mining for better decisions.  
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Introduction 
There are no universally agreed upon definitions of data quality [24], or even of quality itself [9]. 
However, there is no dispute about the importance of data quality and the consequences it can 
have when poor. Examples of the impact of poor data quality are easy to find and range from 
minor incidents to major financial consequences [24] to incalculable losses [26]. 
 
Our study is of four dimensions of data quality: accuracy, completeness, consistency, and 
timeliness. This set of dimensions was chosen because they are among the most objective in 
Wang and Strong’s framework [30] and because of their significance - the “dimensions of 
accuracy, completeness, consistency, and timeliness have been widely cited in the literature as the 
most important data quality dimensions to the information consumers” [20]. We develop a set of 
assessment metrics for each of the four dimensions and evaluate how using those metrics to vary 
levels of data quality can affect data mining outcomes. 
 
Despite the significance of both data quality and data mining research, each remains a largely 
distinct stream. In data mining research, the concept of an accuracy dimension is most closely 
matched to studies of the effects of noise [e.g. 33] and the concept of a completeness dimension 
to studies of missing values [e.g. 13]. However, data mining researchers do not typically refer to 
data quality dimensions nor give explicit consideration to data quality constructs. On the other 



hand, problem complexity is a fundamental to data mining research.  Extensive research has been 
conducted to improve data mining performance for scenarios of higher problem complexity, for 
example Quinlan’s work to develop ID3 [23], but problem complexity is not generally studied in 
data quality research.  
 
Conversely, problem complexity is not a direct consideration in data quality research, possibly 
because it cannot be tied to any single data quality dimension. Increases in problem complexity 
might be associated with changes in data quality along one or possibly more dimensions, yet both 
are factors that can influence data mining outcomes.  
 
Ge and Helfert [7] highlighted the importance of defining and assessing data (or information) 
quality dimensions as well as applications of those assessments. In industry the application of 
data mining has become increasingly important as analytical techniques have become widely 
recognized as a key to gain competitive advantage [27] and enable tighter integration between 
business process systems and decision-making [11]. Our study is one of the first to draw data 
quality metrics from data quality literature to measure data quality and evaluate its effects and 
interactions with problem complexity. 
 
Our research demonstrates that significant interaction effects exist between data quality and 
problem complexity on the outcomes of data mining, and it shows the conditions under which 
those effects occur. These are important findings to researchers seeking to define metrics and 
assess data quality and to those seeking to improve data mining algorithms under varying 
conditions of data quality along multiple dimensions. The findings in our study can help 
practitioners recognize how data quality will affect their use of data mining tools and how they 
prioritize data quality improvement efforts. 
 
 
 
Background 
The following subsections present our definitions and metrics for each dimension of data quality, 
problem complexity, and data mining outcomes. A discussion of the methods to equate those 
metrics to measurement levels as factors in the experimental design is held until after presenting 
the hypotheses. 
 
Please note that our metrics are developed and applied using a categorical class variable and a 
single continuous attribute variable. Problems with this structure occur frequently; typical 
examples include the prediction of which customers will respond to a direct marketing promotion 
and which credit applicants are credit-worthy. In order to isolate the effects of data quality from 
problem complexity, problem complexity was represented only in the class variable and data 
quality was represented only in the attribute variable. The following sections present our 
definitions and metrics for each dimension of data quality, problem complexity, and then for data 
mining outcomes. 
 
Metrics for data quality assessment 
A value expressed in a range from 0 to 1 has long been considered a desirable trait for a data 
quality metric [4]. Metrics in this form have often been used especially for the intrinsic 
dimensions of data quality such as we are considering. Examples include metrics for 
completeness and consistency in the theoretical model developed by Ballou and Pazer [3] and the 
metrics for completeness by Shankaranarayanan and Cai [25]. We adopt the same convention and 
use a range of 0 to 1 to represent lowest to highest data quality. 



 
To assess quality we use metrics in two functional forms described by Pipino et al. [22]. These 
authors suggested simple ratios for the more objective dimensions of data quality. Simple ratios 
are typically based on percentages of data items meeting specific criteria, such as the percentages 
of data items which are complete. We follow suit by assessing data quality with simple ratios for 
the dimensions in which they are applicable: accuracy, completeness, and consistency. The fourth 
dimension of timeliness uses a min/max metric as described later. 
 
Of the four dimensions we study accuracy has a particularly wide range of definitions. Many 
consider accuracy as meaning a correct and unambiguous correspondence with the real world. 
One example of this view defines accuracy as meaning “the recorded value is in conformity with 
the actual value” [2]. Other definitions based on this correspondence include accuracy as 
“agreement with either an attribute of a real world entity, a value stored in another database, or 
the results of an arithmetic computation” [10]. Accuracy has also been defined as a group of 
intrinsic dimensions such as completeness, consistency, or timeliness. A firm definition is 
elusive; as Wand and Wang summarized, “there is no commonly accepted definition of what it 
means exactly” [28]. Notwithstanding, researchers have used metrics for accuracy based on the 
rate of correct data items over an entire relation, using a 1 for an accurate data item, and a 0 
otherwise. A metric in this form is not designed to take into account the magnitude of differences 
between correct and incorrect values, only whether a data item is correct or not. Wang et al. [31] 
measured accuracy this way for zip codes in a customer table as did Motro and Rakov [17] for a 
data warehousing environment. We do the same and define an accuracy metric A based on a 
simple ratio as: 

( )1 ( ) /NA f d Ni= − ∑  

 
where N is the number of data elements, and f(d) is 0 if data element d is correct, and 1 otherwise. 
 
Complete data has been defined as data having all values recorded [8], and data having the 
“presence of all defined content at both data element and data set levels” [3]. Relevant to our 
study is that data mining algorithms generally do not differentiate between categories of missing 
values, and so for our metric we adopt Shankaranarayanan and Cai’s [25] definition of 
completeness as the ratio of the values that have been recorded to those that could possibly have 
been recorded without regard to cause. Our metric Cp is similar to Ge and Helfert’s [6] ratio and 
is defined as: 

( )1 /( (1 ))C n N Ap = − +  

 
where N is the number of instances in a relation, A the number of attributes, and n the number of 
data items with null values. 
 
Definitions of consistency often refer to uniformity. Ballou and Pazer [3] defined consistency as 
when “the representation of the data value is the same in all cases” and as “format and 
definitional uniformity within and across all comparable data sets” [3]. Gomes [8] defined data as 
consistent “if it doesn’t convey heterogeneity, neither in contents nor in form”, and uniformity 
was again expressed in a definition of consistency as being related to ambiguity and the “same 
value repeatedly expressed for the same situation in the real world” [28]. 
 
The degree of uniformity can be found in consistency metrics based such as Wang et al.’s that are 
based on the percentages of tuples with violations of referential integrity [31]. We developed our 
consistency metric Cn with respect to referential integrity and their work, defining our metric as: 



 

1 ( / )C V Nn = −  
where N is the number of tuples in the relation and V the number of tuples with violations of 
referential integrity.  
 
To represent inconsistency in our datasets an attribute value was switched to the value of another 
attribute selected at random from the instances in a different class. This switch creates an overlap 
between class boundaries and an ambiguity whereby instances with the same attribute values can 
belong to two (or more) classes. A higher rate of switched attribute values represents higher 
ambiguity and therefore a lower level of the metric for consistency. 
 
Our consistency metric and the method used to create differing levels of consistency closely 
correspond to Ordonez and García-García’s [19] consistency metric. These authors developed and 
explored their metric through an example of two relations, R and S. Following their example, 
relation S had a primary key k and attribute f. R was a de-normalized relation with foreign key k 
and foreign attribute f, and S was a relation referenced by R, such as can be found in many data 
warehouses. These author’s metric was based on the number of tuples in R with non-null values 
of Rk in which Rk=Sk and Rf=Sf taken as a percentage of the number of tuples in R with non-null 
values of Rk in which Rk=Sk. In general terms this metric is based on the number of tuples with 
matches between R and S for both k and f, divided by the number of tuples with matches between 
R and S for only k. In more formal terms this metric can be expressed as ℑCount(R.k) (σR.k≠null (R  
R.k=S.k,R.f=S.f S)) / ℑCount(R.k) (σR.k≠null (R  R.k=S.k S)). The datasets used in our study are the equivalent 
of R with class variable k and attribute variable f. In the case of perfect consistency there is a 
relation S for which there are no mismatches, ℑCount(R.k) (σR.k≠null (R  R.k=S.k S)) =ℑCount(R.k). 
Changing a value Rf to correspond to another class in Rk by definition means that there will be a 
tuple in R which will not match on both Rk and Rf. For example, if the original value of a tuple’s 
attribute was Rf=p and it was changed to Rf=q, then the denominator of the metric ℑCount(R.k) (σR.k≠null 
(R  R.k =S.k S)) would be unaffected.  
 
However, this change would create an unmatched pair of k and f values in R and S and the 
numerator of the metric would decrease by 1. This mismatch would mean that ℑCount(R.k) (σR.k≠null, 

R.k=S.k, R.f=q, S.f=p(R S)) = 0 and the consistency metric for a dataset decreases in value as 
ambiguity is added. Using these conditions, our metric for consistency would be the same as that 
of Ordonez and García-García metric if both were to be calculated from the same dataset. 
 
Timeliness has been defined as inversely related to the degree data is out of date [2]. Volatility is 
the length of time between real world change and a subsequent change which invalidates the 
original data, and currency is the length of time between real world change and data input. The 
three component points of time used in these definitions are shown in Figure 1: 
 

 
Figure 1: The points in time used to define timeliness 

 



When multiple indicators of data quality need to be aggregated into a single metric such as those 
using currency and volatility, Pipino et al. [22] suggested min/max operators. We follow this  
form and base our metric on one defined for timeliness by Su and Jin [26] which is: 
 

( )( )0,1 /Max Currency Volatility−  
To represent varying degrees of currency and volatility we first derived a classification model 
from a generated dataset containing training and test dataset and then injected varying 
percentages of new instances for re-classification by the model. We took currency to be fixed – 
the data in a dataset has already been inputted - but volatility to vary as differing percentages of 
new data replaced existing, potentially stale, data. From these assumptions our metric for 
timeliness T is defined as: 

( )( ) /T N R N= −  
where N is the number of instances in the training and test data and R the number of new 
instances introduced for re-classification. 
 
Metric for problem complexity 
Our problem complexity metric is based on the entropy of the class variable and only the class 
variable. Many established measures of problem complexity use entropy directly. Alternative 
representations such as those based on the information content of patterns found in data often 
produce results that are similar to, if not the equivalent of, entropy [14]. Of equal importance to 
our study is that many data mining algorithms for classification, including the algorithm we use,  
integrate entropy into the criteria for tree induction and pruning [16]. Entropy is a measure of 
uncertainty contained in data and defined using the probabilities of membership in each of the 
classes of a categorical class variable: 

( ) ( )
1

log
n

i i

i

p x p x
=
∑

 
 
where there are n classes and p(xi) is the probability of any instance belonging to class i.  
 
Using alternate means to calculate problem complexity such as conditional or mutual entropy 
would include the attribute variable and the class variable and introduce a potential co-variance. 
To avoid this confound, problem complexity was represented only in the class variable.  
 
Metric for data mining outcomes  
The F-measure is a popular metric for representing the outcomes of data mining because it can be 
expressed as a single figure [32]. This measure is based on a combination of recall and precision 
which can be found in the confusion matrix produced by evaluating a test dataset with a 
classification model. Recall measures the percentage of instances in a test dataset belonging to a 
category of a class variable that the model correctly identifies. Precision measures the percentage 
of instances the model identifies as belonging to a category of a class variable that are correct. 
The elements of a confusion matrix are shown in Table 1. 
  

 Actual 
positive 

Actual 
negative 

Predicted positive TP FP 
Predicted negative FN TN 

Table 1: Elements of a confusion matrix 
 



where: 
TP = Percentage of True Positives, 
FP = Percentage of False Positives, 
TN = Percentage of True Negatives, 
FN = Percentage of False Negatives, and 

 
TP + FP + TN + FN = 100%. 

 
From those elements recall and precision are defined as: 

          and 
 
 
 
   

   where TP, FP, TN, FN are defined as above. 
 
From the harmonic mean of precision and recall, the F-measure is calculated as:  
 

( ) ( )F-measure 2 Precision Recall / Precision Recall= ⋅ ⋅ +  
 
Precision and recall are weighted equally when the F-measure is calculated in this way. An 
alternative calculation weights each differently to balance differences in the desirability of a false 
positive and a false negative. We choose equal weights but note that unequal weightings for 
specific applications could readily be incorporated in our experimental design.  
 
 
 
Hypotheses 
Each hypothesis posits significant effects on data mining outcomes from two factors: data quality 
and problem complexity. In our experimental design a continuous attribute variable is used for 
representing varying levels of data quality and a categorical class variable for varying levels of 
problem complexity. However, we do not know if our metrics for data quality and problem 
complexity will bear a relationship and possible correlation to one other. Separating data quality 
from problem complexity in two variables isolates the effects of each on data mining outcomes. 
To the extent that the metrics for data quality and problem complexity are related, separating 
them ensures that any significant effects found for data quality or problem complexity are 
significant when controlling for the other factor.  
 
There are four major hypotheses, each consisting of a group of analogous individual hypotheses. 
Each individual hypothesis involves a single dimension of data quality and the effects of one or 
more levels of data quality and one or more levels of problem complexity on data mining 
outcomes. The null hypothesis for each is that there will be no significant effects of data quality 
or of problem complexity on data mining outcomes. Each is stated in the positive form as an 
alternate hypothesis that there are significant effects. None of the four major hypotheses are 
intended to be collective; rather, analogous individual hypotheses have been grouped together to 
avoid a lengthy list of highly similar hypotheses.  
 

Recall = 
TP

TP + FN

Precision = 
TP

TP + FP



Hypothesis I: Taken individually, each level of data quality or level of problem complexity will 
have a significant effect on data mining outcomes as indicated by the F-measure.  
 
Hypothesis I is comprised of five individual hypotheses, one each for accuracy, consistency, 
completeness, timeliness, and problem complexity, all for their effects on the outcomes of data 
mining.  
 
Hypothesis II: For any given level of problem complexity, as the level of data quality in any given 
dimension decreases there will be a corresponding negative and significant effect on data mining 
outcomes as indicated by the F-measure. 
 
Hypotheses II is concerned with the impact of the effects of data quality on data mining 
outcomes. To establish whether there are significant main effects, and if so the direction of those 
effects, comparisons between the low and medium, medium and high, and low and high levels of 
data quality while holding the level of problem complexity constant are required. Since three 
comparisons of data quality are to be made for each of three levels of data quality and four 
dimensions of data quality, 36 individual analogous hypotheses comprise Hypothesis II. Table 2 
enumerates the nine main effects hypothesized for accuracy in Hypothesis II; an analogous set is 
hypothesized for the remaining three dimensions of data quality. 

 
Table 2: The nine comparisons evaluating the impact of decreasing levels of data quality 

(Hypothesis II) 
 
In addition, Hypothesis II states that not only will there be significant effects of data quality on 
data mining outcomes, but that those outcomes will decrease with lower levels of data quality. A 
graphical representation in Figure 2 shows the posited effects in Hypothesis II to be evaluated for 
each comparison between two levels of data quality. 
 

 Treatments Control 
Dimension Data quality comparisons Complexity  

Hypothesized main effects on 
data mining outcomes 

Accuracy High Medium Low  Significant 
Accuracy High Medium Medium  Significant 
Accuracy High Medium High  Significant 
Accuracy High Low Low  Significant 
Accuracy High Low Medium  Significant 
Accuracy High Low High  Significant 
Accuracy Medium Low Low  Significant 
Accuracy Medium Low Medium  Significant 
Accuracy Medium Low High  Significant 



 
Figure 2: Hypothesized direction of effects in Hypothesis II 

 
Hypothesis III: For any given level of data quality in a stated data quality dimension, as the level 
of problem complexity increases there will be a corresponding negative and significant effect on 
data mining outcomes as indicated by the F-measure. 
 
Hypotheses III is concerned with the significance and direction of the main effects of problem 
complexity levels on data mining outcomes. To establish whether there are significant main 
effects, and if so the direction of those effects, there needs to be comparisons between the low 
and medium, medium and high, and low and high levels of problem complexity while holding the 
level of data quality constant. Since there are three comparisons of problem complexity to be 
made for each of three levels of data quality and four dimensions of data quality, 36 individual 
similar and analogous hypotheses in total make up Hypothesis III. Each of the comparisons 
involves the effects of two levels of data quality as treatments while holding a single level of 
problem complexity constant. Figure 3 illustrates the hypothesized direction of main effects for 
comparisons to be made in evaluating Hypothesis III.  
 

 
 

Figure 3: Hypothesized direction of effects in Hypothesis III 
 
Hypothesis IV: Taken together, as the data quality level of any single data quality dimension 
decreases and the level of problem complexity increases, their interactions will have a 
corresponding significant and negative effect on data mining outcomes as indicated by the F-
measure.  



 
Hypothesis IV has one individual hypothesis for each dimension of data quality. Each hypothesis 
is based on a statement that the interaction effects of single dimensions of data quality and 
problem complexity on data mining outcomes will be significant. Furthermore, as data quality 
degrades or problem complexity increases, the individual effects of each on data mining 
outcomes will be negative and significant. These hypothesized effects are represented in Figure 4. 
 

 
Figure 4: Direction of interaction effects hypothesized in Hypothesis IV 

  
The main effects hypothesized in Hypotheses I through III are intended to build towards 
Hypothesis IV and evaluating interaction effects. The effects to be evaluated in Hypotheses I 
through III are all expected to be significant; findings of significant interaction effects in 
Hypothesis IV and any patterns in those effects would be useful in determining how efforts to 
improve data quality should be prioritized and how it affects data mining. 
 
Presented next is the experimental design for evaluating Hypotheses I through IV, first for how 
data quality and problem complexity metrics were equated to levels to use as factors, then for the 
methods used to generate datasets. 
 
 
 
Experimental design 
 
Data quality measurements 
To measure their effects, specific ranges of values for the data quality metrics as described above 
were related three levels of data quality. Using levels to measure data quality has been established 
in the literature. Some have measured data quality in two levels, low and high [29]. We use three 
levels of each metric to measure data quality to be consistent with Parssian’s research [20]: 
“Often, subjective qualitative measures, such as low, medium, and high, are used to indicate the 
quality of data.”  
 
The metric for accuracy is defined as the rate (percentage) of correct attribute values in a dataset. 
In our datasets we introduce inaccuracy by randomly selecting and changing an attribute value. 
To avoid any inadvertent correlation of the attribute with the class that could come through 
systematic perturbations, attribute values were changed to that of another tuple at random.  
 



Prior research provides several guidelines for appropriate rates of incorrect values. Parssian [21] 
discussed accuracy levels from three sources ranging from 80% to 90%, and others have 
simulated accuracy rates in the range of 90%. [5]. Klein et al. found that even the most critical 
databases have estimated inaccuracy rates of being from 1% to 10% [10]. Given their critical 
nature presumably those are databases of high quality. Based upon our preliminary investigation 
with similar datasets, a high level of accuracy was established as having a range of 92-100% 
correct values (a mean of 96%), a medium level as 88-92% (a mean of 90%), and a low level as 
80-88% (a mean of 84%).  
 
The metric for completeness is an attribute level metric derived from the rate of nulls inserted into 
an attribute. From base datasets generated as described above, different rates of null values were 
inserted into the attribute variable to represent different levels of completeness. Guidelines from 
past research indicate a wide range of null value rates have been used to represent completeness. 
Parssian et al. [21] discuss examples of completeness rates ranging from 75% to 95%. Others 
have experimented with 50% null attribute values [6], and some have reported databases with 
missing value rates of 50% and more [12]. Based on this we use the same mean rates and ranges 
of completeness as for accuracy. 
  
The consistency metric by Ordonez and García-García was well developed but those authors did 
not explore particular values to represent levels of data quality. Referential integrity metrics 
developed elsewhere also provide little guidance. We chose the parameters for the three 
measurement levels to be consistent with accuracy and completeness for both mean values and 
the range of consistency. 
 
Prior work does not suggest values of the timelines metric for low, medium, or high levels. In our 
datasets varying levels of timeliness were represented by varying the proportions of new 
instances replacing old instances in a test dataset. We ran our data mining algorithm with 10-fold 
cross validation to avoid any exaggeration of effects. A high level of timeliness was represented 
by retaining an average of 82% of the instances, a medium level by retaining 50%, and a low 
level by 18%. 
 
Problem complexity measurement 
As stated earlier, entropy is used as the metric for problem complexity. Entropy is related to the 
number of categories a class variable has – at one extreme is a class variable with one category 
and therefore no complexity, while towards the other extreme is a class variable many categories 
and high complexity. To develop measurement levels a Monte-Carlo simulations and a k-means 
cluster analysis was conducted which determined that low complexity was best represented by a 
class variable having two categories, medium complexity by a class variable having three or four 
categories, and high complexity as a class variable having five through eight categories.    
 
Dataset generation 
The data mining problems we analyzed each had a categorical class variable and one continuous 
attribute variable. Data with this structure corresponds to a relation extracted from a data 
warehouse, such as those having one identifier and one non-identifier in the schema used for data 
quality analysis by Parssian [1]. This structure also equates to the relations having a foreign 
attribute and a foreign key analyzed by Ordonez and García-García [19] to develop data quality 
metrics. 
 
Each data mining problem classified a dataset with 300 instances. This number of instances is an 
approximate performance threshold beyond which improvements in the performance of 



classification algorithms may not be appreciable [18]. Each of these datasets was created as a 
base dataset with a specific level of problem complexity and perfect data quality, and from that 
varying levels of data quality were induced. The attribute variable was generated from a uniform 
distribution.  
 
The sequence for our analysis begin with the generation of a sample of 100 datasets for each 
combination of the four data quality dimensions, three data quality levels, and three problem 
complexity levels. Each of these 100 datasets was analyzed by the J48 classification algorithm 
and the F-measure was calculated. One observation for subsequent statistical analysis consisted of 
a single F-measure derived from one dataset and the corresponding metrics for problem 
complexity and data quality used to generate that dataset. 
 
In order to make the analysis of a large number of combinations of dimensions, data quality 
levels, and problem complexity levels feasible, an application was written to automate the entire 
procedure from dataset generation through statistical analysis and hypothesis testing. This 
application was written in C# and architected by utilizing Weka 3.5.6 using the IKVM 0.36.0.5 
bridge and using SPSS version 15.0.1 through the SPSS .NET API. Weka’s J48 was selected to 
build and test classification models for each dataset.   
 
 
 
Results 
One-way ANOVAs were used to evaluate each of the five factors in Hypothesis I, namely the 
level of data quality for each of the four dimensions and for the level of problem complexity. 
Each was found to have significant main effects (p < .01, the criteria used for all statistical tests in 
this research).  Confirmation of Hypothesis I was expected and a necessary step before 
proceeding. 
 
Hypothesis II theorized the existence of significant differences in F-measures when two levels of 
data quality were compared while controlling for the effects of problem complexity. Thirty six 
one-way ANOVAs for each individual hypothesis in Hypothesis II showed significant main 
effects for all but one minor case. The direction of effects confirmed the significance of the 
component hypotheses in Hypothesis II; decreasing data quality levels lead to decreasing F-
measures. 
 
Subsequent analysis found a pattern of effects when data quality levels were varied. The same 
relative effect size and the same relative response in F-measures to changes in data quality were 
evident for each dimension. The smallest effect sizes were for varying levels of timeliness. 
Varying levels of completeness and accuracy had similar effect sizes, despite the difference in the 
algorithm used to generate them. Consistency stood out as the dimension in which varying levels 
produced the greatest effect sizes and the most rapid deterioration for decreasing levels. Figure 5 
is a representative plot of mean F-measures as a function of data quality level for problems of 
medium complexity. The same pattern of data quality dimensions relative to each other could be 
seen in plots for other levels of complexity. 
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Figure 5: Comparison of data quality dimensions for problems of medium complexity 

 
Hypothesis III theorized significant effects from comparisons of problem complexity levels while 
controlling for data quality. In evaluating its 36 individual hypotheses using one-way ANOVAs, 
problem complexity was found to have significant effects on data mining outcomes for all but 
two comparisons of accuracy, completeness, and timeliness. Decreasing F-measures in these three 
dimensions for decreasing levels of problem complexity confirmed Hypothesis III for the 
significant effects: increasing levels of problem complexity have a significant and negative effect 
on data mining outcomes. 
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Figure 6: Comparison of data quality dimensions for medium data quality 

 
An initially unintuitive result was that no significant effects were found for any comparisons of 
two levels of problem complexity when the dimension of consistency was held at one level. 
Reflecting on the results from Hypothesis II it became clear that not only did consistency have the 
largest effect size, but that F-measures degrade much more rapidly in response to decreases in 
consistency than any of the other three dimensions, a pattern evident in Figure 5 by the widening 
gap in F-measures between consistency and the other three dimensions as data quality decreases.  



 
The outcomes of data mining are also more sensitive to changes in consistency than problem 
complexity. Correlations between the values of data quality and problem complexity metrics 
expressed as R2 are shown in Table 1. Consistency explains more of the variability in F-measure 
than any other dimension. More importantly, even changes in consistency within the bounds of a 
single level of quality have a greater effect than changes between two levels of problem 
complexity as can be seen by the low R2 of .005 for problem complexity when compared to 
consistency. 
 

Dimension 
Correlation (R2) of F-

measure with data quality 
Correlation (R2) of F-measure 

with problem complexity 
Accuracy 0.689 0.126 
Completeness 0.755 0.073 
Consistency 0.884 0.005 
Timeliness 0.131 0.233 

Table 1: Coefficients of correlation between data quality and problem complexity by dimension 
 
Because the method used to represent varying levels of consistency reduces the separation 
between classes it might be expected that this dimension is most related to problem complexity. It 
therefore might be expected that this dimension would have the least chance of having either 
significant main or interaction effects. This is not the case and the effects of small changes in 
consistency outweigh those of larger changes in problem complexity. This surprising result 
indicates that the lack of consistency, symptomatic of problems with referential integrity, has a 
much greater impact on data mining than does entropy or problem complexity.  
 
Hypothesis IV hypothesized the existence of significant interactions between the levels of both 
data quality and problem complexity for each dimension. Two-way ANOVAs showed there are 
significant interaction effects between data quality and problem complexity for accuracy, 
completeness, and timeliness, but again not for consistency. 
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Figure 7: Plot of mean F-measures for varying levels of timeliness and complexity 

 
The interaction effects for timeliness can be visualized in Figure 7. This plot shows mean F-
measures decrease as either data quality decrease or problem complexity increase. It also shows 
that the combination of decreasing data quality and increasing problem complexity decrease F-
measures more than either alone, as indicated by the non-linear drops in F-measure as either 



factor degrades. Plots for the other two dimensions were similar; as with the main effects of data 
quality, the interaction effects with problem complexity were strongest for accuracy and 
completeness, and lowest for timeliness. Hypothesis IV was confirmed for these three dimensions 
by the direction of the interaction effects. 
 
Again the results found for consistency stood apart from the other three dimensions, and again for 
the same reasons as found for consistency in evaluating Hypothesis III. The conclusions that can 
be made from the results found for consistency and from the findings of significant main and 
interaction effects are brought forward next. 
 
 
 
Conclusions 
For the first time, our research takes a comprehensive view of data quality and demonstrates that 
specific metrics for accuracy, completeness, consistency, and timeliness can be formulated and 
used to measure data quality and demonstrates that each of four dimensions data quality has a 
significant effect on data mining outcomes. Our research shows that decreasing levels of data 
quality have correspondingly significant and negative effects on those outcomes.  
 
From our study it can be concluded that there is a pattern in the sizes of effects for all four 
dimensions. Timeliness has the smallest effects; next higher are accuracy and completeness with 
nearly equal effects, and consistency the largest. Whether considered at each level of complexity 
as data quality changes, or at each level of data quality when problem complexity changes, the 
ordering and relative size of effects from highest to lowest dimension stays the same.  
 
For the first time we can conclude that consistency has larger effects on data mining outcomes 
than either of accuracy, completeness, or timeliness. The effects of consistency are strong enough 
to outweigh effects from varying levels of problem complexity both for main and interaction 
effects. This was an unexpected and important finding of our study.  
 
March and Hevner [15] pointed to the areas of data quality and data mining as at the confluence 
of data warehousing and decision support systems and as particular challenges for research. Data 
warehouses are frequently used for data mining, and referential integrity problems in data 
warehouses have been found to be common [19].  Our metric for consistency is based on a 
representation of referential integrity and the results we found for this dimension are a step 
towards addressing those challenges emphasized by March and Hevner. 
 
Our research confirms that there are significant interaction effects between each of three 
dimensions of data quality - accuracy, completeness, timeliness - and problem complexity. The 
findings of significant main and interaction effects along with finding of patterns in those effects 
have implications for building models of data quality as a manufactured product and models of 
trade-offs between data quality dimensions. These findings also have importance for creating 
representations of data quality through meta-data. 
 
For the real world this study shows that a set of metrics to assess data quality can be used by 
practitioners to determine which dimensions of data quality will most likely influence their data 
mining outcomes, and to alert them to potential negative synergistic effects of data quality and 
problem complexity. These results can be used to choose from alternate sets of attributes or to 
prioritize data cleaning efforts in order to minimize those negative effects. 
 



Our research can be extended in several ways. Interaction effects between the four data quality 
dimensions themselves warrant investigation. The datasets generated for this study had one class 
and one attribute variable; this schema could be expanded to include multiple attribute variables 
possibly with varying statistical distributions as a factor. Finally, although the J48 classification 
algorithm is widely used different classification algorithms could be evaluated. Each of these is a 
potentially productive area for new research. 
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