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Abstract: Network logs are the key to many critical functions such as network security, 
network monitoring and network management. They play an important role in intrusion 
detection and early warning for potential worm and virus attacks. However, network log 
data are under-utilized -- largely ignored until the occurrence of an event that requires 
back tracking for diagnostic purposes. There are two main reasons why network logs are 
not subject to more rigorous analysis – the sheer volume and the inherent information 
quality challenges.  In this paper, we use the context of classical data quality principles to 
outline some of the issues that we encountered, and the solutions that we devised, while 
working on a real network management application involving large amounts of network 
log data. While our discussion is centered on our case study, the problems we encounter 
and the solutions we devise are general and apply to a wide array of network log data and 
applications.  
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INTRODUCTION  
Monitoring, maintaining and trouble shooting networks have always been a critical function. Recent 
events such as terrorist threats and cyber attacks on sensitive financial and medical data have added new 
urgency. However, device logs, which are the primary data that reflect network functioning, have 
occupied a low place in the data priority chain. They are mainly used as a diagnostic tool after an event of 
interest has already occurred. Quite often, they are discarded after a period of time, typically about a year 
or less. While enterprises take pride in keeping long histories of data for fickle customers, they seldom 
maintain the data that reflect the workings of the networks that enable them to serve their customers and 
run their businesses.  
 
A common technique in network maintenance is to gather and scan logging messages from switches and 
routers for conditions that need correction. A large network can generate huge amounts of data, making 
the task difficult. Messages are often ignored, either because they are not immediately indicative of a 
serious condition, or because their infrequency is assumed to be a system anomaly.   Occasionally, critical 
messages can be lost altogether in a mass of irrelevant data. Furthermore, the logs generated by these 
devices have limitations that create serious data quality issues. We believe that network device logs are an 
important data source that can yield valuable information for predicting network events but that the data 



 

are often treated in a casual fashion. There are several reasons for this. Logging can generate large 
volumes of data and it can be difficult to pick a single performance-affecting event or trend out of all the 
normal messages being recorded.  The “noise” level is very high. In addition, data quality problems make 
the data difficult to parse and understand. Extracting an intelligent assessment of what may be going on is 
not always simple or easy.  
 
Classical statisticians make a distinction between “found” data and experimentally collected data. The 
latter tend to be planned, well thought out and carefully calibrated to meet analytical and experimental 
criteria. For example, in genetic and agricultural experiments, data are collected from plants that are 
carefully planted according to a well-defined experimental design [3]. In contrast, most modern data sets 
are found data – we have no control over how they are generated. Our ability to control and manage the 
data starts only at the data gathering stage. Network logs fall into the category of found data, 
characterized by a frustrating lack of consistency of formatting, semantics and a host of other data quality 
ailments. 

Data Quality 
The study and analysis of data has led to the definition of data quality principles. Classical criteria for 
“good” data include: consistency; uniqueness; timeliness; completeness and accuracy [7]. More recent 
work [2] has shown that in non-experimental settings such as enterprise operations, some of these criteria 
are neither measurable nor realistic. Updated definitions of data quality include operational criteria such 
as: successful end-to-end processing of data; extent of automation; interpretability of the data and 
measurability of data quality. Data quality dimensions are often inter-related, for instance consistency and 
automation, and it is difficult to choose a cut-and-dry data quality dimension to apply.   
In this paper, we discuss the data quality challenges we encountered while building a tool for monitoring 
and predicting network events using network device log data. The tool itself is discussed in detail in a 
companion research paper [5] and merely provides context here.  We give a brief outline of the tool; focus 
on the data quality challenges; and explain how they relate to classical data quality principles. For our 
application, we focus on process related data quality dimensions and metrics which often subsume 
classical metrics such as consistency of representation and uniqueness. Our main goal is automation of 
data processing to feed the network monitoring application. Therefore, we focus on the following metrics: 

• Successful end-to-end processing  
• Completeness 
• Interpretability 

Note that the learning from this case study is generally applicable to network log data and are not specific 
to this particular application. We found our experience with device log data to be completely transferable 
to network log data for a security application that we are working on. The issues of time stamps that are 
difficult to parse, irregular formats and a bewildering array of field separators are common to log data. 
Such data are becoming increasingly important in network monitoring and security, and are no longer a 
niche data type relegated to obscurity.  

PROBLEM DEFINITION 
We are interested in analyzing network device logs to identify historical patterns that are associated with 
network events of interest. For example, are potentially severe events preceded by distinctive patterns of 
less severe events? Or, do clusters of events observed on multiple devices share a common root cause? 
Automation of such diagnoses and associated remedies can make network maintenance more timely, 
robust and efficient. 



 

The Application 
The tool is a mid-layer function in an agent architecture geared to monitoring large systems.  Specifically, 
its aim is to examine logging data over a long interval for trends or activities that may not be readily 
apparent over a short period.   One of the stated goals is to identify and automate useful techniques by 
folding them into an expert front-end.  The expert system will have the ability to examine the historical 
data gathered, select the correct analytical method from a suite of methods, and extract some meaningful 
information about the state of the examined system. The suite includes statistical methods based on point 
processes and other discrete event models, in contrast to the approach based on clustering log messages in 
[9] and [10]. 
Existing tools are often limited to a pre-defined set of rules gathered from experts. A limitation of such an 
approach is that an event that is not in the rule base will not be flagged and the rules will only be as good 
as the domain expert who generated them [8]. We propose using statistical methods to discover 
associations and allow the expert system to pick the best statistical technique given the state of the 
network. Statistical analysis of complementary data sources such as netflows and packet level data can 
identify events that are not a part of the rule-base and hence result in adding new rules to the expert 
system. 

The Data 
We describe a general scenario below because we cannot reveal the details of the actual application for 
proprietary reasons. The data in question is log data gathered from the devices that form the bulk of an 
internal research network.  The network, shown in Figure 1, consists of Cisco switches (S) built around a 
core router block composed of two Cisco Catalyst 6000 class switches with MSFC routing modules 
(R/S). HSRP (Hot Spare Router Protocol) coupled with network link redundancy between the distribution 
switches and the core block gives the network resilience and flexibility. Please see [6] for details.  
We selected a small network comprised of hardware from a single vendor. The network was large enough 
to produce the type of data we needed and small enough to be manageable.  Its hardware homogeneity 
ensured that we would avoid issues arising from a multiple vendor network.  The expectation was that we 
could focus on our application without worrying about data issues but, as it turned out, this was not 
always the case. 
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FIGURE 1 – Network Topology 

INFORMATION QUALITY CHALLENGES 
In this section, we will discuss some commonly found data problems we encountered while monitoring 
the Cisco network and outline the solutions we developed. Our ultimate goal is to automate the treatment 
of glitches to derive a well-behaved dataset where each record conforms to some defined template. A 
consistent and clean data set permits further automation of analysis and prediction with minimal manual 
intervention. As experience shows, manual intervention often leads to the introduction of other human 
errors leading to further corruption of the data. A by-product of the automation of data cleaning is a 
general set of heuristics and rules for data quality assurance and data quality measurement that are widely 
applicable to log data. 

Consistency 
As mentioned above, consistency of format and representation is essential for automation, which in turn 
reduces cycle times and manual errors. Sometimes, the consistency issues were compounded by 
insufficient domain knowledge, context and expert opinions. We had to gather this additional information 
in order to resolve the consistency issues.   



 

Record Consistency 
A Cisco error message, as recorded by a Unix syslog, has four basic components arranged as 

<Server Timestamp><Device><Device Timestamp><Error> 
The details within each component are not necessarily consistent from one device to the other.  The log 
data, as recorded by the syslog server, is considered “dirty” in the sense that there is no guarantee that two 
records picked at random will submit gracefully to the same parsing algorithm.  Some of the disparities 
cannot always be controlled.  In many cases, a quick resolution is reached with filtering scripts that use 
tools such as grep, sed and awk. Other examples are more complex and cannot be resolved without 
knowing the circumstances surrounding the records.  Explaining that data with two different device 
names really came from the same physical device cannot be done without knowledge of each name’s 
history. Logs simply do not capture this type of information; without this kind of knowledge, some 
records cannot be merged.  

Device Names 
Device names are a critical component in any analysis.  Hence they must be correct and consistent across 
all records. Although our logging records stretched back almost 3 years, they were originally archived as 
a reflex rather than with any kind of long-term analysis in mind.  When we began examining records, we 
discovered that some devices first appeared as IP addresses then later as DNS names.  For any meaningful 
analysis, we needed to know that they were both the same device.  For future records, changing device 
configurations to use the short DNS name as the standard was feasible. For existing records, correction 
was a nuisance but it could be done if you had access to the DNS.  In some instances, this was not enough 
because we needed historical information that is not available from the DNS.  We could not always state 
with certainty that a particular IP address had always been assigned to the same device. An exploratory 
analysis involving a simple plot of errors in time (Figures 2 and 3) revealed that two devices (red and 
green) occupied non-overlapping intervals of time but generated the same patterns of errors. Further 
investigation of external data showed that the two names referred to a device that had been renamed. This 
is an example of a case where an examination of the historical data revealed a curious fact that could be 
explained only through external data not stored in any log file or data source.   

Error Message Variations 
There is variability within the error message component of the log records.  The logging data sent by a 
group of network devices may be consistent within a particular switch model and OS version, but there is 
no guarantee that this will be true for different device models or software versions.  In addition, although 
there is overlap between IOS and CatOS messages, there are also some significant differences. 
Software upgrades can introduce changes in the error messages being reported.  In the following example, 
ckore1 used facility PAGP to report that a port had left the bridge at 7:57.  However, the same switch 
used facility ETHC to report the same action at 8:31.  Both messages are reporting the same activity but 
the messages that did so are slightly different.   

Apr 3 07:57:22 ckore1 2003 Apr 03 07:57:27 Eastern -05:00 %PAGP-5-PORTTOSTP:Port 4/1 left bridge port 4/1 
Apr 3 08:32:20 ckore1 2003 Apr 03 08:31:08 Eastern -05:00 %ETHC-5-PORTTOSTP:Port 1/2 joined bridge port 1/2 

The cause, in this case, was a CatOS upgrade. To mitigate this problem, we grouped messages according 
to the type of event being reported.  For example, PAGP-5-PORTTPSTP and ETHC-5-PORTTOSTP 
were given the same group number because they were both reporting that a port dropped off the bridge.  
Group numbers were inserted into each record as a way of quickly finding a particular type of event 
without worrying about the different types of messages that could have generated it. We needed to devise 
this manual workaround in order to overcome the lack of standard representation. This is a common 
challenge in data mining activities, particularly those involving data federated from multiple sources or 
data from patchy legacy systems.  



 

Date and Time Consistency 
The timestamp recorded by the log server does not always agree with a device’s timestamp.  Normally, 
timing differences are less than a few seconds but improperly configured date and time functions can 
cause significant discrepancies.  Enabling NTP (Network Time Protocol) on each device synchronizes 
them to the same master and reduces differences between the logging server and the network device [1].  
For our dataset, using the date and time as recorded by the log server offered the only consistent reference 
point.  Since not all devices were originally configured for NTP, this made event ordering an even more 
difficult problem [8] [1]. The delay between the time the event occurred and the time it was recorded by 
the server determined the amount of timing uncertainty.  In some cases, we may never know for certain 
which event occurred first.  

Interpretability  
A major issue with found data is interpretability. The data becomes inaccessible to analysis when we 
cannot parse, understand and interpret the data accurately. An improper or incomplete understanding of 
the data can lead to incorrect analysis and misleading interpretation of the results. An obvious source of 
problems is lack of metadata such as data definitions and data dictionaries. Other problems include 
ambiguous representations and imprecise field separators.  

Year Ambiguity 
As shown below, not all devices include the year in their log messages.   

(CatOS) Aug 19 14:43:54 rdlb1 2004 Aug 19 14:32:22 EDT -04:00 %PAGP-5-PORTTOSTP:Port 2/46 joined bridge port 2/46 

(IOS) Aug 3 14:03:47 rdlb4 213: Aug  3 17:53:42: %LINEPROTO-5-UPDOWN:Line protocol on Interface GigabitEthernet0/3, 
changed state to down 

In this example, rdlb1, a CatOS device, has supplied the year (2004) while, rdlb4, running IOS, has not.  
Ordinarily, this is not an issue because log records are not retained for any extended period. Consider the 
manner in which they are used – as a tripwire, an indication that a problem may exist. Immediacy is the 
goal, not long-term analysis. 
Long-term retention is workable if the records are kept in the same order they were received and if some 
of them include the year. Since CatOS and IOS records are interleaved, a record containing the correct 
year can always be found. But inferring the year in this manner is risky at best. The difficulty arises when 
an IOS record is extracted from a dataset.  Suppose a search seeks out all rdlb4 errors.  The resulting 
record set would contain only rdlb4 records and any references or markers that might have indicated the 
year are lost.  To compound the problem, manipulating or sorting the extracted records would remove any 
vague order that might have existed when the records were mined.  There is no way to know if two 
records with the same month are even in the same year.  
This issue is relatively easy to correct.  The logging server archives the records by month with a file name 
of the form <year><month>, where the year is the full number (2004, not 04) and the month is its 
number (01 through 12).  Since each month is preprocessed separately, the year indicated in file name is 
inserted in each record. 

Field Separators 
A particular concern is the variability in message formats from completely different sources [9].  
Although the blank space is the most common field separator, other characters can also be used.  Our 
dataset contained only Cisco devices so we only had to deal with Cisco’s message format.  Even so, log 
messages, as the following example shows, have more than one type of field separator.  

May 1 09:53:31 klab1 2002 May 01 09:52:53 EDT -04:00 %SYS-2-PS_OK:Power supply 2 okay 

 



 

The blank space is commonly used to delineate most of the fields.  In the preceding example, the logging 
timestamp (May 1 09:53:31), device (klab1), device timestamp (2002 May 01 09:52:53 EDT -04:00) and 
error message (%SYS-2-PS_OK:Power supply 2 okay ) are all separated by blank spaces.  The fields 
within the two timestamp groups use both blank spaces and colons.  The month, date and time use spaces 
while hour, minutes and seconds use colons. 
The four-part error message uses both the hyphen and colon as delineators.  Its structure is 

%<Facility>-<Severity>-<Mnemonic>:<Description> 
All the information between the percent sign and the colon defines a specific message.  It contains the 
facility affected, the severity of the error and a mnemonic identifying the type of error.  The description 
field after the colon gives details on the specific port, board, protocol, or service affected.  To simplify 
matters, the facility, severity level and mnemonic are treated as a single field and the hyphens inside are 
ignored.   The description following the first colon in the error message is also treated as a single field.  
This field can contain blank spaces, colons, percent signs and hyphens. Treating the description as a 
single field avoids the issue of using characters that can appear elsewhere in the log record as a field 
separator.   
Hierarchical and nested representations require preprocessing to make the data accessible to standard 
analysis models. In our example, preprocessing replaces the original field separators with the pipe symbol 
(|).  The pipe is a good choice because it does not appear within any of the fields.  

Accuracy 
Accuracy is perhaps the most emphasized data quality principle. However, it is difficult to enforce, 
especially in large data sets that are common in the data mining community. Text data presents its own 
challenges.  

Data Validation 
The log server stores the data as it is received without performing any validation tests. The server will 
accept any message as long as it passes syslog’s general criteria – the message is of the right form and is 
sent to the right port and facility [4].  The contents of the message can be meaningless.  Data verification 
is usually done by another application.  
Despite using UDP, a connectionless unreliable protocol as the transport, garbled messages seemed to 
occur relatively infrequently. A few cases were discovered where characters were either inserted into or 
deleted from fields.   Locating them can be a nuisance and the reason for the error is sometimes difficult 
to explain.  In one instance, the three-character month field suddenly began appearing with four 
characters.  For a four-hour period in 2003, logging messages from an MFSC module consistently 
reported the month as “.Jan” instead of “Jan”.  Messages from the CatOS side correctly reported the 
month as “Jan”.   After four hours, the aberration disappeared and was never seen again. Other devices 
with the same configuration never exhibited the problem.  The best explanation is that it was a bug caused 
by an unusual set of circumstances.  Correction, in this case, was simple, but tracking one-of-a-kind errors 
are an issue. 

Completeness 
Missing data are a commonly encountered problem in data mining and analysis applications. Individual 
observations, records, entire attributes, or even big sections of the data matrix can be missing. Gaps in 
temporal data are of concern because they might contain rare events (outliers) that could change the 
analysis and predictions significantly.  The lack of log records can be the result of data being misdirected 
or lost rather than a smoothly running device. The absence of data does not necessarily imply the absence 
of nasty events. A device may have failed to recognize or record a significant or interesting event because 



 

its logging level was set too low.  Log messages may have failed to reach their destination because of a 
transmission error or because the log server was down. Whatever the reason, interesting data has been 
lost. 
Since logs are event-driven, determining that there is a problem based on a lack of messages is difficult.  
Because of a tendency to ignore logging data until a problem occurs, the reason why events are missing 
may not be discovered until it is far too late.  Once an event has occurred, references to it can only be 
found in log files. Any recovery months after an event has happened is usually impossible.  Some 
inferences may be made from existing data but concluding that a system is in a particular state when data 
may be incomplete or missing is inherently risky.   

Consistent Logging Levels 
A hidden form of missing data is non-uniform levels of data from different sources. Low or inconsistent 
logging levels affect the quantity of data being delivered.  While the presence of data is more important 
than its absence, the more data you have, the more options you have. Mining data from multiple devices 
can be more difficult when not all of them are supplying the same level of detail.  
The severity level is a single digit that describes how serious an event is.  The range is from 0 (system 
unusable) to 7 (debugging). As you would expect, 0 produces few messages while 7 is a veritable flood of 
data. The best logging level is the one that produces enough data without interfering with the performance 
of the device. A reasonable choice is 5 or 6.  The biggest difference between the two is that level 6 
generates data on actions that may be contextually significant.  Reporting that a configuration block has 
been changed and identifying the culprit can be helpful when trying to explain a sudden burst or absence 
of errors. 

Domain Knowledge 
Knowledge of the domain and features peculiar to it are an important component in the correct 
understanding, use and interpretation of the data. For instance, peculiar data representations to 
accommodate the specific needs of an application are quite common. These conventions tend to be 
undocumented and are often lost when the experts leave. We describe below an instance where context 
plays an important role in interpreting and solving the data quality issues.  

The Role of Context 
While examining a trend in one of our devices, a curious absence of data occurred in two time periods.  
One of them was explainable, the logging server had been disabled during one of the intervals, but the 
second one was a puzzle.  What had happened?  Why was data available for other devices but not this 
one?  Was the lack of data significant?  Because the events had occurred over two years earlier, no one 
could remember what could have caused the gap.  This situation illustrates the significance of maintaining 
a history of external events. Part of the power of log files resides in event sequencing.  To some extent, 
the implication of those events depends on other actions that may have occurred at the same time but were 
not recorded within the log file. 
One of the biggest operational failures is that log files are only examined when something bad happens.  
During troubleshooting, correlating a possible external action that could have led to a logged event is 
painless.  A configuration change that was performed yesterday can be easily remembered; a name 
change that happened two years ago is more difficult. In one analysis, the relocation and renaming of a 
switch (Figures 2 and 3) led to some confusing results.  If a history of the physical device had existed, we 
would have known immediately that the two different sets of records could be combined.  We were able 
to sort out the “context” by examining a number of external resources - old emails, one brief entry in a 
logbook, and an archived document that included a list of switch names, their IP addresses and the 
networks they supported.  This case is typical.  Organizations do not normally systematically collect and 
retain this kind of information because of the administrative overhead. 



 

Information about external events is useful for two reasons.  First, there were too many things we couldn’t 
easily explain without knowing the circumstances surrounding the events.  Aberrations could have been 
explained if knowledge about name changes, IP changes, software upgrades, device moves and policy 
changes had existed. The disappearance of a particular message and the appearance of another could only 
be explained after we had assumed that an upgrade might have taken place, then backtracking the upgrade 
notes until we found the right one.  Second, separating or merging records without knowing a device’s 
pedigree, history or its operational environment can have unexpected results.  
Contextual information relevant to logged events relies primarily on administrator recollections.  We’ve 
never met an admin with an eidetic memory so it should not be surprising if events that occurred some 
time ago should be fuzzy.  Recalling a set of circumstances that occurred a few weeks ago is feasible; 
remembering the exact conditions after a few months is not. To some extent, increasing the severity level 
is useful but what is really needed is a method to collect the actions taken or the events observed as 
timestamped log records. By inserting records of external events into the logs, context can be integrated 
into the temporal flow.  Because external context-specific events happen far less frequently than normal 
logging events, the number of messages generated is small and should not pose a burden to the log server.   
The difficulty is not the mechanics of inserting records in log files; the hard part is the discipline required 
to do it in an organized and timely fashion.   

EXPLORATORY ANALYSIS 
We present below a small example of exploratory analysis of historical network device logs. Details of 
the actual network-monitoring tool built using longitudinal models and an expert system front-end are 
found in [5].  



 

 
FIGURE 2 – Error distribution across time 

 

Figure 2 shows a minimalist representation of errors of different kinds observed across 5 devices over a 2-
3 year time period. We have suppressed titles, axes and legend for proprietary reasons, without losing the 
general information. The X-axis represents time (granularity=seconds) and the Y-axis identifies the 
device, re-enforced by color. In order to make a point, we have isolated two devices (red and green) and 
shown all the others in gray.  The presence of a needle indicates an error on that device. There are two 
interesting observations: (1) The two gaps in the data, the first caused by an intentional turning off of the 
logging feature and the second gap (half way through the time period) caused by unknown factors. The 
gaps in logs are observed across all devices. (2) The renaming of a device half way through the 
observational period (initially represented in red with a circle plotting symbol and later in green with a dot 
for a plotting symbol.)  The renaming of the devices is quite evident here where the devices are present in 
clearly non-overlapping intervals. A tool that relied on pre-defined “rules” for detecting network 
problems would not have identified this kind of an error.  For precisely this reason, we need exploratory 
analysis that can bring to light errors that are not previously known or not included in the set of rules.  
 



 

 

FIGURE 3 – “Errors” caused by scheduled events 
 

In Figure 3, we show a particular kind of error related to a power supply. This is usually a high severity 
error but is often caused by anticipated maintenance that is scheduled well in advance. The regularity in 
the errors is an indication of this. Clusters of power supply errors are often a side effect to 
troubleshooting. Here too, we notice the renaming of devices evident in the error patterns. Sometimes, the 
absence of an ‘event’ is significant – for instance, the unusually long gap between the two green needles 
could indicate the failure of a scheduled maintenance event. Similarly, the absence of the grey needles 
beyond the half way time point might indicate a change in devices or logging levels that must be recorded 
in the context database for future analysts. There are many other interesting events that we do not include 
here due to space constraints. 

DATA QUALITY METRICS 
While there are many data quality metrics that we could discuss, due to space constraints we mention just 
a few that are of special interest from a preprocessing perspective. 

• Successful end-to-end processing: When we started our analysis, a good 30% to 40% of the 
data was rejected by the data mining algorithm. Because of the non-standard representation of 
data, records could not be parsed properly, leading to many values being read as missing or 
invalid. However, after we applied our preprocessing filter to tease out the fields using a pipe 
separator and enforced a standard format for a given field, the data mining algorithm accepted 
99.999% of the data. So the percentage of data accepted by the analysis algorithm serves as a 
crude but effective preliminary data quality metric. 



 

• Completeness: As shown in Figure 2, there was an unscheduled lapse in logging that accounted 
for approximately 2% of the data that was logged during the analysis period, depending on how 
you estimate the number of lost records. While we could not recover this data, we have 
established procedures for preventing this in the future. As a part of this procedure, we have 
instituted “context databases” that help with the next metric as well. Note that despite our best 
efforts, there will always be missing, incomplete or damaged data. The best one can hope for is 
to be aware of such data and make statistical adjustments in the analysis to account for biases 
introduced by such situations. Statistical techniques such as missing value imputation and 
ignorable and non-ignorable patterns of missing data can help in making such adjustments. 

• Interpretability: Inadequate information can lead to misinterpretation of the data and incorrect 
conclusions. For instance, our example of a device name change would have given completely 
different results if we hadn’t recognized that two different names referred to the same device.  In 
this case, we drew on a body of external data that put the anomaly in perspective.  By contrast, 
we were able to explain a cluster of port security violations caused by a summer visitor trying to 
plug his laptop into a forbidden network because we realized what the sequence of log messages 
meant.  In both cases, our knowledge was broad enough to recognize the problems and devise 
ways of resolving them.  We were able to identify and explain almost 100% of the anomalies we 
found during the exploratory analysis because we successfully linked log events to external data 
sources.  The implication is that an expert system tasked with data interpretation would require 
an extensive and flexible body of domain knowledge as well as access to information sources 
outside the device logs. It must recognize when the log messages by themselves are sufficient 
and when additional information is necessary. 

CONCLUSION 
Network device logs are an important data source for monitoring and predicting network events and 
should not be ignored because of its daunting size or inherent messiness. We have presented an overview 
of data challenges commonly encountered when dealing with network device logs. These range from 
inconsistent representations that make automation difficult to interpretation issues that require knowledge 
outside the data and metadata.  Our experience shows that preprocessing is almost always necessary if a 
found log set is to be translated to a more manageable form.  There are a number of points that should be 
kept in mind if long-term analysis is the goal. We summarize our experience below: 

Configure everything with long-term analysis in mind: Log files are commonly used as a short-
term troubleshooting tool without regard to what the long-term implications might be.  Set device 
configuration standards for things like naming, and timing (NTP) and apply them consistently.  
More data is better: Set logging to the highest level that doesn’t interfere with the operation of the 
device.  Filtering data is easier than working around missing or incomplete data. 
Keep everything: There is a tendency to delete log files after too short a time. Device failures to 
include the year in their timestamps can be corrected if historical data are available. If storage is a 
problem, use off-line storage. 
You need context: Knowing about external events is a valuable asset. Keep track of anything that 
might have a bearing on the logs either by inserting timestamped messages in the log file or by 
maintaining a separate database. 
Normalize the data: Even with our Cisco logs, there were variations between devices. Adding 
different devices makes the problem worse.  Preprocess log files to conform to a standard template. 
Examine the log files: Mine the data regularly using any techniques or tricks that might isolate 
unusual or interesting patterns.  

 



 

While our advice is a specific interpretation of the data quality principles in the context of network device 
log data, it is also applicable to other types of data.  A parallel effort investigating IDS (Intrusion 
Detection System) and network vulnerability logs has revealed similar problems to those we faced while 
evaluating network device logs.  Our experience with network device logs and the techniques we used can 
be applied directly to these logs and, by extension, to other types of log data. 

Future Research 
Historical network logs can be “mined” to discover predictive patterns to anticipate and perhaps prevent 
undesirable network events. This is in contrast to monitoring the network logs for pre-specified rules. We 
employ longitudinal models based on point processes and other discrete event models to identify 
predictive patterns. We combine this with an expert system front-end to automatically select the most 
appropriate analytical model given the recent log history.  Details can be found in [5], under preparation.  
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