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Abstract: In this paper, we address two specific areas: (a) how economic theory could 
provide a sound foundation to information quality (IQ) costing and (b) the extent both 
failure mode and effects analysis (FMEA) and service quality (SQ) literature could 
provide an empirical framework for estimating IQ cost curves.  A case study of how risk 
tends to impact problem ticket requests (PTRs) and system change requests (SCRs) 
costing is show-cased.  The empirical results show that the potential risks cannot be 
overlooked in so far as costing software maintenance projects.   

 
Key Words: Economic theory, Failure Mode & Effects Analysis, Service Quality, Data Quality 
 
  

INTRODUCTION 
Organizations cannot improve their ability to capture and harness the power of information unless they 
are able to determine the value of information quality (IQ).  In fact, a 100 percent customer satisfaction is 
a service quality (SQ) goal that can be achieved if organizations pursue managing the 5-20 percent 
defective data they tend to maintain at any given time [1].  Researchers have since developed clearer 
definitions of IQ such as accuracy, believability, relevancy, and timeliness [Ibid] – these are among the 
several dimensions of IQ which determine whether the quality of information meets or exceeds the 
requirements needed to solve business problems.  Decision makers have to come to terms with the true 
cost of IQ as their decisions on IT investments and expectations of market performance truly depend on it. 
 
 
BACKGROUND, RATIONALE, AND PURPOSE 
While IQ is a vital aspect of the SQ literature, it is often treated by some organizations as a product 
attribute and not as a product.  This in viewpoint could likely have a different ramification to the core IT 
business processes of a company [2].  That is, treating IQ as a product more than likely entails the 
involvement of specific processes such as the churning, marketing, and distribution of “IQ widgets”.  In 
addition, it remains to be seen how IQ’s nominal costs tend to vary from expected opportunity costs, 
which are the highest benefits forgone (e.g., cost as function of risk).  In other words, it is one thing to 
obtain software costs estimates to fix a system functionality issue.  It is another to quantify cost based on 
risk, e.g., by determining the cost of activities through valuing the inspection of products, excessive 
engineering changes, the cost of doing rework, and estimating repairs of substandard equipment [3].   
 



Another concern about IQ is that while some researchers (e.g., [4], [5], [6], [7], and [8]) speculate on the 
potential shape of IQ cost curves, they often lack the theoretical rigidity (e.g. economic theory) need to 
model IQ cost schedules.   
 

This approach is similar to the manner economists trace the production of widgets from the 
behavior of individual agents - regardless of whether they are households, firms or other 
organizations - are assumed to behave rationally, e.g., purposefully, and that their behavior can be 
described as if they maximized a specific objective function (e.g., utility).  Economists tend to 
apply the principle of rational, optimizing behavior to areas where researchers formerly assumed 
that behavior is habitual and often downright irrational. 

 
Other empirically related questions have also remained unanswered as well.  For instance, does it matter 
to the organization if the IQ cost curve is not linear in the logs (logarithm)?  How will the shape of the IQ 
cost curve have any bearing on public policy {e.g., optimal IQ tax scenarios on information as the 
growing debate on e-commerce continues ([9] and [20])}?  Thus, this paper also shows that the technique 
called failure mode and effects analysis (FMEA) could be utilized not only to address IQ problems as a 
subset of service quality failures (SQFs), but also to serve as a potential tool for building IQ cost curves. 
Typically, SQF actions require administrative actions that include documenting and classifying 
complaints, creating internal complaint forms, accessing complaints made to front-line employees, and 
categorizing customers who complain [10].  FMEA addresses those actions by incorporating notions of 
risks in the costing analysis.  This paper therefore addresses how: (a) IQ related costing can be better 
quantified and (b) to empirically estimate the shape of IQ cost curves. 
 
Literature Review 
 
The quality cost literature is primarily based on the Total Quality Management (TQM) movement.  For 
instance, one aspect in the literature proposes the taxonomy of data quality costs which could be used as a 
foundation for data quality cost benefit considerations.  Specifically, [7] query that “there is no validated 
economic theory of data quality costs that could be used as a basis for data quality cost analysis”, while 
some authors ([11] and [12]) utilize the cost-benefit analysis (CBA) literature to explain a part of that gap.  
In [11], the research direction takes the path of exploring the demand for information integrity, which is 
assumed to be driven by bounded rationality (BR) and how the agency theory concept can be interpreted 
using a decision making model.  On the other hand, [12] develop equations used in calculating the value 
of information and of improvement in the value of information integrity using CBA.  What is absent in 
these research efforts is how to evaluate DQ based on the requirement to treat it as a product [13].     
 
 Treating IQ as a Product 

 
In [13], the authors define the creation of IQ from a manufacturing concept.  Accordingly, the 
following can be observed about IQ:   
 
“(a) Output:  is akin to manufacturing a physical product such as raw materials, storage, 
assembly, processing, inspection, rework, and packaging (formatting).  Common IQ output items 
-- management reports, invoices, dashboard indicators, etc. are assembled in a production line.  
The operations needed to churn components and /or processes of an IQ may be outsourced to 
organizations that use a different set of computing resources.  
 
(b) Taxonomy:  IQ products can be grouped based on similar characteristics and common data 
inputs permitting this group to be managed as a whole -- multiple Information Products (IP) may 
share a subset of processes and data inputs, and may be created using a single “production line” 
with minor variations that distinguish each IQ product;  



 
(c) Business Process Improvement Methods: TQM methods at source, which are successfully 
applied in manufacturing, can be adapted for IQ.   By systematically using the manufacturing 
stages and evaluating data quality at each stage, the implications of poor-quality data can be 
evaluated.  Some implications for IQ include “impacts of delays in one or more manufacturing 
stages, trace a quality-problem in an IQ to the manufacturing stage(s) that may have caused it, 
and predict the IP(s) impacted by quality issues identified at some manufacturing step(s).” 

 
Economics of Information Quality 
 
In this paper, typical IQ problems are portrayed as in the economics literature with the use of production 
possibilities frontier as provided by [14] and [15].  The three questions concerning the likely production, 
distribution, and consumption of IQ are:  how, what, and for whom?  The assumption of handling IQ as if 
it were traded and valued in the market is hereby imposed.  This crucial assumption allows the IQ 
researcher to comment on the treatment of IQ as a product to allow for the endogenous changes of market 
forces and the pricing system to affect the supply IQ curve. 
 
 The Pricing System 
 

As in [22], organizations can be thought of as "small IQ factories" which produces IQ products 
such as IQ goods using time and input of ordinary market goods, "semi-manufactures", which the 
organization "purchases" on the "market".  In this type of analysis, prices of basic goods have two 
components. The first is comprised of the direct costs of purchasing intermediate goods on the 
market. The second is the time expenditure for production and consumption of the good in 
question for a specific good, this time expenditure is equivalent to wages multiplied by the time 
spent per unit of the good produced in the organization. This implies that an increase in the wage 
of one IQ laborer gives rise not only to changed incentives for work on the market, but also to a 
shift from more to less time-intensive product on and consumption of goods produced by the 
organization, i.e., basic goods.  

 
The pricing system coordinates markets so that rational agents, consumers and producers of IQ, 
pursuing their own self interest and end up creating a coordinated and smoothly operating 
economy.  As IQ becomes more abundant (scarce), their prices tend to increase (decrease) 
resulting to consumers pursuing their own self interest, which have an incentive to start 
economizing (splurging) on their use of the scarce resource, and substituting other products that 
are now relatively cheaper (exorbitant).  Simultaneously, producers pursuing their own self 
interest have an incentive to begin producing more (less) of the more precious IQ commodity 
because profits generally increase (decrease) with prices.  These simultaneous actions by 
consumers and producers of IQ are the appropriate responses when an IQ product begins to 
become more precious (less preferred).  Thus, such a pricing mechanism is what coordinates 
consumers' and producers' rational maximizing behavior. 

 
How:  Non-market valuation 
 
IQ is usually attributed as a key feature of information products, and not as marketed products.  However, 
the real price of IQ can be estimated either in the form of willingness to pay for a price change or attribute 
change.  Figures 1 and 2 depict how the demand curve is derived through equivalent variation and 
through willingness to pay (WTP).  The mathematical derivation for these charts is specified in [16].  In 
WTP models, estimation methods such as contingent valuation method (CVM) are drafted based on 
individuals’ hypothetical behavior on markets that are set up for IQ in a survey setting.  CVM is a widely 
used method in the field of externalities (incidental outcomes of legitimate economic activities which are 



not usually traded in the market place) such as providing estimates of elasticities of demand and 
willingness to pay WTP for environmental services.  If the decision maker’s dilemma stems from how to 
treat the nominal value (actual cost or benefit) of a public investment – e.g., it may not reflect the real 
investment costs or benefits to society, shadow pricing comes into play as well. 
 

The Economist definition of shadow pricing is that which pertains to “an opportunity cost of an 
activity which can be calculated by capturing all the variables involved in a decision and not 
merely those for which market prices exist” [18].  In  [21], the authors warn that there is a 
misconception in the public that the Internet is free – in fact, research shows that “while the 
marginal cost for Internet traffic may approach zero due to statistical sharing, other costs, such as 
congestion costs, may be significant”.  Other researchers [21] find that in network optimization 
problems, “classes of algorithms can be developed and interpreted in terms of either congestion 
indication feedback signals or explicit rates based on shadow prices”.  As economics theory 
suggests, IQ decisions on what to produce, what price to charge, and how much to produce will 
hinge on how much people are willing to buy and sell IQ at different prices.   

 

 
 



 
 
What:  Demand for IQ 
 
Consumers of IQ need to act on their purchasing decisions, which are based on the price of the product P, 
price of substitutes Ps, price of complements Pc, future expected prices Pe, tastes T, income Y, and 
population N, which are expressed in the  function:  QD= f(P, Ps, Pc, Pe, T, Y, N).  The mathematical 
derivation of QD is not provided in this paper, but is referenced in [15].  Holding all other variables 
constant with exception to price (ceteris paribus), the demand function becomes:  QD = f (P).  Figure 3 
portrays the hypothetical graph of demand expressed as the inverse relationship of price, P = f -1(QD) = 
10 – QD.   
 

 
 
For Whom: Supply of IQ 
 
Producers of IQ need to act on purchasing decisions based on price of the product P, technology T, price 
of inputs Pi, price of substitutes Ps (in production), price of complements Pc (in production), future 
expected prices Pe, number of firms F, goals of the firm G, which is expressed in the function:  QS = g (P, 
T, Pi, Ps, Pc, Pe, F, G).  The mathematical derivation of QS is not provided in this paper, but is cited in 
[15].  Salient point:  Supply curves stem from a flow concept, which is the amount of IQ supplied per unit 
of time, a schedule; ceteris paribus, generally Q = f(P).  Thus, this relationship will be positive: more IQ 
quantity will be supplied at higher prices than at lower prices. 



Equilibrium 
 
The equilibrium price and quantity where S = D is the point where there are no forces that will change the 
dynamics.  The equilibrium is stable as these forces will automatically slip back any displacement of S 
and D back to a new equilibrium position.   
 
To summarize, the economics of information quality hinges upon the treatment of IQ as a product.  Once 
that initial premise has been assumed, the analyst is able to take the mathematical derivation of supply 
and demand curves for IQ and speculate on the dynamics of those curves as they are impacted by the 
decision maker's policies, market conditions, or public policies.   
 
METHODS 
 
As identified by [10], companies that address SQ need to “generate additional information on service 
quality, disseminate it to those responsible for implementing improvements, and identify those process 
improvements that will have the greatest impact on profitability.”  These SQ efforts are also directly 
related with FMEA, a systems engineering process that identifies the likelihood of errors in business 
processes, and allows for process improvement over time ([19] and [20]).  The common denominator 
between the SQ and FMEA literature are complimentary processes that lead to the identification of the 
components of the total cost of IQ (TCIQ).  As adopted from [7] and [8], the total cost components of IQ 
can be divided into three areas:  Prevention + Appraisal + Failure Costs = TCIQ.   
 

While the detection of data defects is possible in spite of corrections, efforts to reconcile of data 
and continuing measurements to prevent errors from happing again are needed -- these efforts are 
called prevention/repair/detection costs.  To prevent poor quality, coding errors, design errors, 
mistakes in the user manuals, as well as badly documented or flawed complex codes must be 
corrected through expenditures in the programming, design, and marketing departments of, say, a 
software company.  For example by applying business rules (data constraints) some, but not all 
data input errors can be automatically detected and corrected. 

 
Appraisal costs are costs of activities designed to find defects in the system such as code 
inspections and through various types of testing.  Design reviews are part prevention and part 
appraisal in that looking for errors in the proposed design itself during the review can be 
accomplished during the appraisal -- looking for ways to strengthen the design implies prevention 
as well.   

 
Failure costs are costs that result from poor quality such as the cost of fixing bugs and the cost of 
dealing with customer complaints.  The two types of failure costs stem from those that arise 
before and after the product is delivered to the customer.  These costs stem from both internal and 
external failure costs.  Internal costs are borne by groups outside of the product development 
phase -- the costs of the wasted time, the missed milestones, and the overtime to get back onto 
schedule are all internal failure costs.  External Failure Costs are costs that arise after the product 
has been delivered to the customer, such as customer service costs, or the cost of patching a 
released software product and distributing the patch. 

 
During ICIQ 2004, it was proposed that the costs of problem ticket requests (PTRs) and system change 
requests (SCRs) are likely are likely to be biased ([19] and [20]) if risk, in the form of FMEA is not 
utilized in the costing analysis.  PTRs and SCRs are being utilized to capture data quality problems during 
systems integration and IT production.  There are three possible ways to estimate bias: (a) by taking the 
product of nominal costs with the probability of fault and the probability that it escapes detection; (b) by 



simply taking the product between nominal costs with the weighted risk priority number (RPN); and (c) 
through statistical analysis of omitted variables.  Suppose that pf and pd are independent vectors of 
probability underlying failure and non-detection, respectively, and that the probability that the user 
receives the IQ problem or defect is equal to the product of both risk variables, pf * pd.  Thus, if n items 
are produced periodically, then the expected cost EC of the PTR and SCR is equal to Cn * pf * pd., where 
Cn is the original nominal cost (ONC) multiplied by the frequency of occurrence or the total number 
work-arounds in a given period.  The difference between EC and the original nominal costs will 
determine how far the real costs are divergent from nominal costs.  The third way to estimate bias is to 
apply Ordinary Least Squares (OLS) on ONC and by using RPN and DURATION as the key regressors.  
If a key regressor's coefficient is insignificant (significant), then, it likely does not (does) contribute to the 
explained variations of the model.  Thus, omitting best, linear, and unbiased predictors of the model such 
RPN or DURATION would likely bias the results. 
 
The Data  
 
A panel data of 3,938 samples were obtained for ONC, RPN, and DURATION.  They were collected 
from an Oracle local development Department of Defense database of PTRs and SCRs for the period July 
2003 through January 2005 (Figure 4 illustrates sample data).  ONC (which are near estimates of costs 
and not actual costs were utilized to preserve procurement integrity) increases as a function of vendor 
level of effort or VLOE.  The VLOE rate used in this paper is $1200 per day; however, this rate can be 
altered during sensitivity analysis.  RPN is a vector of scores, which is usually derived from multiplying 
the probabilities of fault and non-detection with the system FMEA severity rating (Figure 5).  These RPN 
scores stem from the weekly decisions of Government process leads who conduct relative pair-wise 
comparisons and rankings of SCRs and PTRs.  Each RPN category’s minimum is 10, while its maximum 
is 103 or 1000.  DURATION is simply the time in number of days it takes for the vendor to accomplish 
the PTR / SCR. 
 

 
Figure 1:  From gap analysis, rank failure mode by risk priority number score 



 
Figure 2:  FMEA Tableau Procedures 

 
RESULTS 
 
Applying OLS on ONC, by way of the regressors RPN and DURATION provides the estimated statistical 
model ONCHAT = ƒ{RPNHAT, DURATIONHAT, and Ê}, where ONCHAT, RPNHAT, and DURATIONHAT are 
statistically derived coefficients from regressing PTR/SCR cost on risk priority number and the 
completion time in days to fix the problem or include a missing IT functionality.  Ê represents the residual 
or the stochastic error term of the equation, which is the portion of the model is that is unexplained by the 
regressors. 
 
Figure 6 show that both RPN and DURATION likely explains 96 percent of the variation in ONC in the 
sample.  The coefficients show that a one percent increase in RPN and DURATION will increase ONC 
by $1.24 and $884.75, respectively.  Both the positive signs and individual coefficients are significant at 
the 95 percent level.  Interestingly, if the impact of RPN on ONC is not taken into account as in the case 
of an omitted variable, it is estimated that ONC could be biased by about 5 percent of the time, or about 
plus or minus $953,047, from 2003 through the first quarter of 2005.   
 

 
Figure 3:  Results from Regressing PTR/SCR Original Nominal Cost on Risk Priority Number and Duration 



 
DISCUSSION 
 
First, the model results primarily show that while about 5 percent of the variations in ONC are explained 
by RPN, its significance and relevance cannot be ignored.  Thus, these results stress the important role of 
maintaining a strong applications support group (ASG), a body that would press on collecting statistics on 
the cost of rework such as software internal scrap data, rework, warranty costs, other cost-of-poor-quality 
factors, proxies for data quality failure work-arounds, and other systems aspects such as incidents of 
downtime.  Ultimately, estimates of cost per fault EC can be multiplied with both the number of items 
and the probabilities of fault and no detection to see whether they truly create an expected cost bias in the 
same magnitude as stated above. 
 
Second, TCIQ is defined as a function of the variables prevention, appraisal, and failure costs.  
Interestingly, these categories of cost closely mesh with those of the categories of risk that are itemized in 
FMEA.  From Figure 5, FMEA is attributed to: (a) potential failure modes and potential effects of failure 
are captured under severity; (b) potential appraisal and causes/mechanisms of failure are under the 
probability of failure; and (c) the manner current design and prevention controls are captured under the 
probability of non-detection.  It is therefore proposed that the model ONCHAT = RPNHAT*RPN + 
DURATIONHAT*DURATION + Ê likely approximates the theoretical cost profile stated in [7] and [8] 
(also see DQ cost taxonomy in Figure 7).  In other words, it is suggested that ONC, which is significantly 
correlated with VLOE, and is likely broken down by prevention, appraisal, and failure costs.   
 

 
Figure 4:  Theoretical Supply Curve for DQ (Eppler and Helfert, 2004) 

 
A graphic representation (scatter plot of the log of actual versus predicted costs) of the model is presented 
in Figure 8.  The data was obtained by taking the logarithmic transformation of both sides of the model 
before applying OLS.  The results of this regression is compatible with the economic theory pertaining to 
supply curves in so far as the slope (elasticity of the IQ supply cost curve with respect to the variables) is 
concerned as it is mathematically linear in the logs:  LOG{ONC}HAT = ß + ß1*LOG{RPN}HAT + 
ß2*LOG{DURATION}HAT + Ê.  This version of the model (Figure 9) shows that a 1% change in RPN 
will likely increase ONC by 0.02 percent, while a 1% change in DURATION will increase it by about 1 
percent.  In addition, a 1% change in the intercept ß will increase ONC by 3.1 percent.  All coefficient 
estimates are significant at the 95% confidence level.   
 



Potential DQ Supply Curve
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Figure 5:  Scatter plot of the log of actual nominal cost vs. predicted values of ONC 

 
Figure 6:  Results from applying Ordinary Least Squares on the logs of DEP and INDEP variables 
 
LIMITATIONS 
 
The paper has a few limitations that can be addressed in future work.  First, it utilizes economic theory to 
pursue the rationale that supply schedules can estimated by way of market and non-market valuations.  
The problem with market valuation is that it assumes that DQ is traded in the market and that there exists 
some sort of market clearing price for DQ.  Clearly, this is assumption is far from reality, although this 
pushes the notion that if DQ is to be treated as a product, it must be rationalized as a theoretical widget.  
On the other hand, the idea of estimating supply curves based on non-market valuation of DQ may seem 
feasible, yet this field of research is likely to be at its infancy stage as willingness-to-pay economic 
surveys for DQ still remains to be seen.  The second limitation of the paper is the stylized empirical 
model, which is derived from two assumptions.  First, it proposes that the DQ supply curve itself is the 
summation of Prevention, Appraisal, and Failure Costs as validated by [5], [6], [7], and [8].  Then, the 
paper proposes that FMEA methods (severity, likelihood of failure, detectability, and risk priority) likely 
approximate or lead to risk-based costs valuation.  More research, explanation, or examples could be 



utilized to make this connection. Perhaps as addressed by [8], the impact of introducing prevention 
measures on detection and repair costs might be the real issue.  Thirdly, the empirically estimated model 
ONCHAT = ƒ { ß, ß1*LOG{RPN}HAT, ß2*LOG{DURATION}HAT, and Ê } is so simple that: (a) the results 
could mask any other underlying drivers of costs.  In other words, structural dummy variables could be 
introduced into the panel data as additional regressors to see if other extraneous drivers could be singled 
out such as the imposition of a regulatory mandates (Clinger-Cohen Act-related IT actions, “Blue Book 
Certification” or Federal Financial Management Improvement Act-related testing, etc.) and (b) the 
financial impact ($953,047) of omitting the risk variable RPN needs to be treated notionally – for the sake 
of procurement integrity, near estimates of costs were utilized. 
 
CONCLUSION 
 
This paper addresses two specific areas: (a) how economic theory is employed by the decision maker to 
make decisions on IT investments based on the new found interpretations of IQ and (b) the extent FMEA 
and the service quality literature address the foundation for IQ cost curves.  This paper finds that the 
stylized model shows that risk cannot be overlooked in so far as accounting for the financial bias in PTR / 
SCR costing.  It also finds that IQ cost curves are linear in the logs, thus enabling the decision maker to 
look at optimal levels of IQ quantities and respective pricing.  Finally, if further research proves the 
robustness of empirically derived IQ cost curves, this will likely have implications for both private and 
public policy decision makers. 
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