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Abstract: The purpose of this research is to develop a theory that helps produce accurate 
data integration output given multiple, overlapping, inaccurate sources. At present, the 
theoretical foundations of solutions that center on source selection and conflict resolution 
with a similar goal are limited. This paper introduces a new solution approach and 
theory that center on notions of complementarity, based on the assumption that errors 
are not random. The essence of the new approach is the following: instead of 
concentrating on sources that are individually highly accurate, center on sources that have 
a complementary nature and yield highly accurate output when integrated. The theory can 
offer guides for the characterization of accuracy, effective use of accuracy estimates, 
source selection, and conflict resolution strategies. Implementations will require 
information about error patterns.  
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INTRODUCTION  
Consider a situation in which needed data appear in each of n equally accessible relation instances, all 
sharing the same schema and same semantics. All the relation instances have the same number of tuples, 
designating the same set of real world objects. All object identification problems have been resolved. 
However, the data sources, in this case relation instances, are not entirely accurate. They suffer from 
errors, causing inconsistencies among related data values in different sources. The question of interest in 
this work is how to apply data integration to get the highest accuracy out of the available data sources.  

Various solutions have been proposed to this question, aiming to maximize integration output accuracy 
through “good” source selection and conflict resolution (e.g., [8,11,13]). However, the theoretical basis of 
these solutions has often been neglected. The conditions that would guarantee a desired outcome have not 
been specified, and the properties of the desired outcome are not clear either. This paper introduces a new 
solution approach and theory. A major assumption of this work is that errors are not random. Causal 
factors may include, for example, deliberate supply of false data by humans, lack of understanding by 
those who contribute the data, equipment malfunctions, and so on. Regardless, factors that produce errors 
in one source may have different effect or no effect at all on alternative sources. Subsequently, errors in 
different sources may have a complementary nature that can be taken advantage of through integration, 
provided this nature is detected and understood. The essence of the new approach is the following: instead of 
concentrating on sources that are individually highly accurate, center on sources that have a 
complementary nature, one way or another, and yield highly accurate output when integrated. 



This paper refers, in particular, to the complementarity that exists when error rates vary widely within 
each source, such that subsets of the data that have high error rates in one source match subsets with low 
error rates in other sources. More precisely, the paper addresses a simpler scenario, where, rather than 
having low error rate, some data subsets are completely error free, or, more generally, have what is called 
here “limited perfect accuracy.” The method of study is analytical, employing the Information Structure 
(IS) model [2,6] to portray error distributions—this model has the advantage that it enables the 
representation of variations in errors rates. Such representations serve for defining notions of 
complementarity, which prove to be useful in the identification of conditions under which the output of 
integration is error free. The study also separates circumstances that necessitate utilization of data from 
multiple sources, from those where the use of data can be limited to one source. This distinction is 
achieved through the concept of fusion. Ultimately, this work demonstrates the potential value of a data 
integration approach that is guided by complementarity as an organizing design principle. Applications 
would require information about error patterns. 

The structure of the paper is the following. The second section outlines related work, and the contribution 
of the current work in that context. Notation, definitions, and terms that are used throughout this study are 
presented next, as well as definitions of notions classified as “limited perfect accuracy.” The latter serve 
as a basis for definitions of complementarity and derivation of conditions under which the output of 
integration is free of errors. A following section discusses implications to source selection, conflict 
resolution, and metadata requirements. In addition, since this paper’s assumptions about error patterns are 
narrow compared to the varied possible patterns in practical application settings, future extensions of this 
theory are discussed as well. The paper ends with a brief conclusions section. Proofs are provided in an 
appendix.  
 

 
 

RELATED WORK 
In recent years there is a growing number of studies that address data integration under the assumption 
that data are not necessarily accurate, such that an important objective of the integration process is to 
minimize the number of errors. Various studies focus, in particular, on problems of source selection, 
source ranking, and conflict resolution, given the availability of multiple, overlapping data sources that 
are not error free. For the most part, such work has been conducted under the relational database 
framework.  

Several of these studies apply models of information about quality (metadata) [1,5,7,9,10,11,13,14,15], 
typically viewing data quality as multi-dimensional such that accuracy as an important dimension. 
Current work emphasizes the value of highly accurate sources. Measures of accuracy include the standard 
deviation of a value (a lower standard deviation corresponds to higher accuracy) [9], the ratio of correct 
values to the total number of values [10], and percentage of correct values [5].  

Proposed conflict resolution solutions are fully automatic, semi-automatic, or manual. A fully automatic 
conflict resolution method is described in [13]. This method is supported by quality estimates and their 
respective reliability estimates. A semi-automatic conflict resolution model is proposed in [9]. The model 
applies quality and performance metadata combined with user-supplied weights, to provide utility-based 
resolution. Tools that enable experts to express their preferred resolution strategy are suggested in [4,8]. 
For related work on source ranking and source selection see, for example, [1,5,11,16].  
At present, the theoretical basis of solutions that aim to maximize integration output accuracy through 
source selection and conflict resolution is limited. In particular, in many cases there is no proof that a 
proposed approach would result in a desired outcome in any sense. This work takes a step towards 
addressing the existing shortage of theory, and introduces a theory that centers on notions of 
complementarity rather than on highly accurate individual sources. Such theory can offer guides for the 
characterization of accuracy, effective use of accuracy estimates, source selection, source ranking, and 
conflict resolution strategies.  



The assumptions that underlie this paper, mainly that error rates can vary significantly in different data 
subsets, resemble the understanding that has been recommended by Motro and Rakov (e.g., [10,13]), and 
has also been accepted by other researchers. However, unlike other studies, this work highlights its 
positive potential as far as data integration solutions. 
 
 
 
BASIC DEFINITIONS  
Prior to any analysis, we begin by introducing fundamental concepts.  

A data source is represented by a one-dimensional or multidimensional random variable, denoted by Y or 
Z. Data values are taken to be instances of Y (or Z). The actual variable is represented by a one-
dimensional or multidimensional random variable denoted by S. Correct values are instances of S.  

A distinction between a data source and the information that a data source provides about the correct 
values is achieved through the notion of an information structure (IS) [2,6]. An information structure is a 
function f:SxY → ℜ+ where S denotes a set of states of the world, Y denotes a set of signals, and, for 
every element s of S, f(y|s) is a probability density function over Y. The set of states, S, and the signal set, 
Y, are not restricted, e.g., they can be finite or infinite. The example that serves throughout this paper 
refers to finite sets, however, the results apply also, in particular, to real numbers. Similarly, the 
probability density functions are not restricted. In fact, they need not even be the same under different 
states of the world. This way the definition of an IS provides a means for expressing variations in error 
rates or error distributions. 

Assuming Y and S that take values in the sets Y and S, respectively, if, for every element s of S and y of 
Y, f(y|s) is the conditional density of Y=y given S=s, then f models the information that Y provides about 
S. If Y is multidimensional, i.e., Y’=(Y1,..,Yn), then, under equivalent conditions, f models the integration, 
or aggregate, information  that Y1,..,Yn, provide about S. Specifically, assume that, for j=1,..,n, Yj takes 
values in the set Yj. Then, an IS f:SxY→ ℜ+, where Y=Y1x..xYn, models the integration information that 
Y1,..,Yn, provide about S if for every s in S and yj in Yj, j=1,..,n, f(y1..yn|s) is the joint conditional density 
of Yj=yj, j=1,..,n, given S=s. 

To clarify the notion of an IS, assume that Y is a one-dimensional variable that corresponds to a source 
about the occupations of customers of some organization, and S corresponds to their actual occupations. 
The information that Y provides about S is modeled by an IS as follows. Suppose, for the sake of 
simplicity, that there are only three occupation types: business, engineering, and education. The state set 
is, therefore, S={business, engineering, education}. The signal set is, for instance, Y={Buss, Eng, Edu}, 
and f, the IS, is described by the matrix:  

 
(1)    

Signal 
/State 

Buss Eng Edu 

Business  .97 .02 .01 

Engineering .03 .85 .12 

Education 0 .10 .90 

According to this IS (1), if a customer’s occupation is in business, the probability that the reported value 
is “Buss” is 0.97, the probability that it is “Eng” is 0.02, and the probability that it is “Edu” is 0.01. When 
the customer is an engineer the probability that the recorded value is “Eng” is 0.85, the probability that it 
is “Buss” is 0.03, and the probability that it is “Edu” is 0.12, and so on.  
  



NOTIONS OF (LIMITED) PERFECT ACCURACY 
An important understanding that motivates this work is that data sources are generally not error free. 
Error free data are modeled here by a perfect IS. A perfect IS is an IS where every signal is a perfect 
signal, i.e., a signal that points unambigously to one state.  
 
Definition 1: Perfect signal. Let f denote an IS defined over SxY. If y in Y is such that f(y|s)>0 implies 
f(y|s’)=0 for every s’, s’≠s, then y points to s with certainty, or y is a perfect signal.  
 
Definition 2: Perfect IS. Let f denote an IS defined over SxY. If, for every y in Y, y is a perfect signal, 
then f is a perfect IS. 
 
The IS in the earlier example (1) is not a perfect IS. An IS representing an error free source under that 
scenario would be a 3x3 identity matrix, i.e., a square matrix whose diagonal elements are 1s and whose 
off-diagonal elements are all 0s. Such matrix associates every signal with exactly one state. For instance, 
the signal “Buss” would be exclusively associated with the state “Business,” since the probability of the 
signal “Buss”given any other state would be zero.  

It is easy to see that if the information provided by a source is a perfect IS, then an IS that models the 
integration information provided by that source and any other source(s) is a perfect IS as well.  

We assume that data sources have errors, and errors are not randomly distributed. In particular, the 
analysis will focus on conditions in which errors demonstrate characteristics that may be classified, 
broadly, as “limited perfect accuracy.”  Definition 3 portrays one instance in this category: perfect IS 
given state s. Definition 3 designates a situation in which, even if the source as a whole has errors, the 
source is accurate when the correct value is s. Accordingly, an IS is perfect given state s if every signal 
that has positive probability given s is associated exclusively with that state, i.e., the signal has zero 
probability given any other state. 
 
Definition 3: Perfect IS given state s. Let f denote an IS defined over SxY. If s in S is such that, for 
every y in Y, y points to s with certainty, then f is a perfect IS given s. 
 
Evidently, if an IS is perfect given every possible state, then it is a perfect IS. In the following IS, the 
signal “Buss” is a perfect signal—it points to the state “Business” with certainty:  
  

(2)    

Signal 
/State 

Buss Eng Edu 

Business  .91 .05 .04 

Engineering 0 .85 .15 

Education 0 .10 .90 
 
The signal “Buss” in IS (2) is not produced unless the state is “Business,” since the probability of that 
signal given any other state is zero. However, IS (2) is not perfect given the state “Business” or any other 
state. In contrast, the IS below (3)  is perfect when the state is “Business.” Hence, the respective source is 
always accurate when the actual occupation is in business. 
 

(3)    

Signal 
/State 

Buss Eng Edu 

Business  1 0 0 

Engineering 0 .85 .15 

Education 0 .10 .90 



It is easy to show that if the information that a source provides is a perfect IS given some state, then the IS 
that models the integration information provided by that source and any other source(s) is, too, a perfect 
IS given that state (see also Lemma 1 in the next section). 

The conditions that Definition 3 stipulates are significantly weaker compared to the requirements on a 
perfect IS. Nonetheless, Definition 4 forms a second instance of limited perfect accuracy that involves 
weaker conditions than those of Definition 3. The concept of an IS that has perfect distinction between 
states s and s’ targets situations in which a value that a source shows is not error free altogether, but it 
reduces the range of possibilities for the true value. Accordingly, an IS has perfect distinction between the 
states s and s’ if every signal that has a positive conditional probability given s has zero conditional 
probability given s’.  
 
Definition 4: An IS has perfect distinction between states s and s’. Let f denote an IS defined over 
SxY. A signal y in Y enables perfect distinction between states s and s’ in S, if f(y|s)>0 implies f(y|s’)=0. 
If every y in Y enables perfect distinction between s and s’, then f has perfect distinction between s and s’. 
 
When the information that a source provides has perfect distinction between states, then, again, so does 
the aggregate information provided by that source and any other source(s) (see also Lemma 3). In 
addition, if an IS has perfect distiction between a state s and any other state, then it is a perfect IS given 
state s. 

The following IS (4) is such that the signal “Buss” enables perfect distinction between the states 
“Business” and “Education” on one hand, and “Engineering” on the other. The validity of “Engineering” 
is ruled out given this signal—only “Business” and “Education” are possible. 
  

(4)    

Signal 
/State 

Buss Eng Edu 

Business  .91 .05 .04 

Engineering 0 .85 .15 

Education .05 .05 .90 
 
However, IS (4) does not have perfect distinction between “Business” and “Engineering,” or any other 
state. In contrast, the IS below (5) has perfect distinction between “Business” and “Engineering,” since 
every signal enables perfect distinction between them. 
 

(5)    

Signal 
/State 

Buss Eng Edu 

Business  .91 0 .09 

Engineering 0 1 0 

Education .05 .05 .90 
The concept of perfect distinction between states is somewhat related to the notion of “partial values” [3], 
which has been introduced in the database integration literature in the context of conflict resolution when 
inconsistencies arise due to semantic mismatch. Partial values are “a finite set of possible values such that 
the “true” or “real” value of the partial value is exactly one of the values in that set.” The combination of 
two partial values is given by their intersection.  

One way in which partial values differ from the concept of ISs that have perfect distinction between 
states, is that the latter refers to errors, while the former refers to semantic differences. Hence, their 
treatment is not always the same. For example, partial values are created part of a database integration 
process, through user-defined, one-many and many-many mappings between domains of actual attributes 



and domains of virtual attributes. In contrast, implementation of the concept of perfect distinction 
between states will involve, in some cases, analysis of errors in individual databases that will lead to the 
creation of metadata. Second, Definition 4 is not limited to finite sets. When the state set and the signal 
set are subsets of the real numbers, perfect distinction between states may be expressed using, for 
instance, intervals that contain the actual state (e.g., S<n1, n1≤S≤n2).  

Definition 3 and Definition 4 have outlined the error patterns that will be examined in this study. 
Subsequent analysis will center on the integration of overlapping data sources that are not error free, 
though errors display limited perfect accuracy in agreement with Definition 3 and/or Definition 4. The 
investigation will focus on conditions in which the integration of sources that exhibit such errors yields 
error free output, but it also illustrates how integration can generally improve accuracy in a known ways, 
given such sources.  
 
 
 
INCREASING DATA INTEGRATION OUTPUT ACCURACY: 
COMPLEMENTARITY RELATIONS  
Suppose that none of the available sources is error free, but some obey one or more of the error patterns 
defined above. Two alternative sets of conditions that enable error free output when sources of this kind 
are integrated are identified. These conditions are collectively recognized by the term “complementarity.” 
The second set of conditions is a generalization of the first and is perhaps less congruent with existing 
data quality solutions. Both have an advantage as far as their implementation. For the most part, they refer 
to data quality properties of data in individual sources—such properties may be known, or studied, 
independent of any integration setting.  

The analysis also addresses a property of the output of integration that is termed “fusion.” The notion of 
fusion assists in distinguishing between settings in which the output of the integration of two (or more) 
values is determined based on both values, from settings in which it can be based on just one value. This 
distinction can be useful in guiding conflict resolution, and may have efficiency implications—when the 
identity of the preferred source is known, there may be no need to consult additional sources.  

We begin with the definition of fusion, and proceed with a study under the assumption that sources adhere 
to Definition 3 (ISs are perfect given one or more states), followed by a more general analysis in 
agreement with Definition 4. 

In essence, a signal in an integration IS is a fusion if none of the signals that it comprises suggests the 
same likelihood of states.  An integration IS is a fusion if at least one of its signals is a fusion.  
 
Definition 5: Fusion. Let fj, j=1,..,n, denote ISs defined over SxYj, respectively, such that, for every j, fj 
models the information that Yj provides about S. Let h, defined over SxY, Y=Y1x..xYn, denote the 
integration information that Yj, j=1,..,n, provide about S. A signal (y1..yn) in Y such that h(y1..yn|s)>0 for 
some s in S is a fusion if, for every j, there exist sj1, sj2, in S such that 
h(y1..yn|sj1)/h(y1..yn|sj2)≠fj(yj|sj1)/fj(yj|sj2). If there exists a signal in Y that is a fusion, then h is a fusion. 
 
When ISs are perfect given a state  
Assume several ISs where none is a perfect IS, but one or more is perfect given a state(s). We say that one 
IS complements another IS in a certain state, if, given that state, the former is perfect, while the latter is 
not perfect. Definition 6 corresponds to a situation in which a source that is consistently accurate when 
the actual value is a certain value is integrated with a second source that is not error free as far as that 
value. 
 



Definition 6: Complementarity in state. Let f, g, denote ISs defined over SxY, SxZ, respectively. It is 
said that f complements g in state s, if f is perfect given s, and g is not perfect given s. 
 
The notion of complementarity in a state creates an asymmetric, irreflexive, binary relation over the set of 
ISs over S.  

When an IS complements another IS in a state, then an IS that models their integration information is 
perfect given that state. Lemma 1 asserts this understanding. 
 
Lemma 1: Let f, g, denote ISs defined over SxY, SxZ, respectively. f models the information that Y 
provides about S, g models the information that Z provides about S, and h models the integration 
information that Y and Z provide about S. If f complements g in state s in S, then h is a perfect IS given s. 
 
Lemma 1 hints that by repeatedly adding sources of this kind the integration information can reach perfect 
accuracy. Proposition 1 refers to such conditions in detail. The integration information of any number of 
ISs is a perfect IS if for any IS that is not perfect given some state, there is another IS that complements it 
in that state. 
 
Proposition 1: Let fj, j=1,..,n, denote ISs defined over SxYj, respectively, such that, for every j, fj models 
the information that Yj provides about S, and fj is not a perfect IS. Let h denote the integration 
information that Yj, j=1,..,n, provide about S. Then, if, for every j and every s in S, fj is not perfect given s 
implies that there exists k, 1≤k≤n, such that fk complements fj in s, then h is a perfect IS.  
 
Turn to the fusion property, Lemma 2 suggests that any signal of an integration IS that comprises a signal 
which points to a state with certainty, is not a fusion. The intuition behind this lemma is that a signal that 
points to a state with certainty is just as accurate as a composite signal that comprises it. Subsequently, 
when every signal of the integration IS comprises a signal which is just as accurate, as is the case when 
the conditions of Proposition 1 are met, then that IS is not a fusion (Proposition 2).  
 
Lemma 2: Let fj, j=1,..,n, denote ISs defined over SxYj, respectively, such that, for every j, fj models the 
information that Yj provides about S. Let h, defined over SxY, Y=Y1x..xYn, denote the integration 
information that Yj, j=1,..,n, provide about S. If yj in Yj points to s in S with certainty, then, every signal 
(y1..yj..yn) in Y (i.e., that comprises yj) is not a fusion. 
 
Proposition 2: Under the assumptions of Proposition 1 h is not a fusion.  
 
Example: 
Consider three overlapping sources about customer occupations, such that none is free of errors. The rates 
of errors in each of these sources vary. The variation is mainly due to special discounts and other bonuses 
that are given to customers in selected occupations, and motivate strict verification of those occupations. 
One of the sources is maintained in an environment in which customers from the education sector must 
show appropriate documents that verify their occupation. The other two sources are products of similar 
verification procedures, applied to business, and engineering, respectively. The ISs that describe these 
sources are given by:  
 
(6)     (7)     (8)    

Signal 
/State 

Buss Eng Edu  Signal 
/State 

Buss Eng Edu  Signal 
/State 

Buss Eng Edu 

Business .1 0 0  Business .85 0 .15  Business .9 .1 0 

Engineering 0 .83 .17  Engineering 0 1 0  Engineering .06 .94 0 

Education 0 .07 .93  Education .08 0 .92  Education 0 0 1 



Proposition 1 requires that for every state where an IS is not perfect, there is another IS that complements 
the former in that state. The ISs above satisfy this requirement. IS (6) complements the other two ISs in 
“Business,” IS (7) complements the other ISs in “Engineering,” and IS (8) complements the other ISs in 
“Education.” The integration IS is: 
 
 

(9)             
Signal 
/State 

Buss, 
Buss, 
Buss 

Buss, 
Buss, 
Eng  

Buss, 
Edu, 
Buss 

Buss, 
Edu, 
Eng 

Eng, 
Buss, 
Edu 

Eng, 
Eng, 
Buss 

Eng, 
Eng, 
Eng 

Eng, 
Edu, 
Edu 

Edu, 
Buss, 
Edu 

Edu, 
Eng, 
Buss 

Edu, 
Eng, 
Eng 

Edu, 
Edu, 
Edu 

 
Business .765 .085 .135 .015 0 0 0 0 0 0 0 0 

Engineering 0 0 0 0 0 .0498 .7802 0 0 .0102 .1598 0 
Education 0 0 0 0 .0056 0 0 .0644 .0744 0 0 .8556 

 

In accord with the conclusion of Proposition 1, this IS (9) conforms to the definition of a perfect IS, 
representing error free output. (The numbers in this matrix were derived based on an assumption of 
conditional independence.)  

In accord with the conclusion of Proposition 2, IS (9) is not a fusion, since none of the signals of that IS is 
a fusion. Take, for example, the signal (Buss, Buss, Buss), which points to the state “Business” with 
certainty. According to Lemma 2, this signal is not a fusion. It consists of three signals, such that the first 
one is derived from the IS in (6). However, that signal, just like the composite signal, points to “Business” 
with certainty. Therefore, given that signal, the other two signals are redundant.  
 
 
When ISs have perfect distinction between states  
We now turn to conditions in which none of the ISs is perfect, yet one or more has perfect distinction 
between states. A second notion of complementarity is defined, that assists in portraying conditions in 
which a respective integration IS is perfect. More precisely, the ensuing analysis focuses on conditions 
under which the integration IS is perfect given a state. (This analysis can be easily combined with the 
earlier analysis to produce understanding regarding conditions that yield a perfect IS.) Unlike before, the 
findings show that when ISs are not perfect given a state but have perfect distinction between states, the 
outcome of integration is a fusion.   

When ISs have perfect distinction between states we say that one IS complements another IS in 
distinguishing between two states if the former has perfect distinction between the states while the latter 
does not.  
 
Definition 7: Complementarity in distinction. Let f, g, denote ISs defined over SxY, SxZ, respectively. 
It is said that f complements g in distinguishing between states s and s’, if f has perfect distinction 
between s and s’, and g does not have perfect distinction between s and s’. 
 
Again, this definition creates asymmetric, irreflexive, binary relation over the set of ISs over S. 

When an IS complements another IS in distinguishing between states their integration inherits the perfect 
distinction property. Lemma 3 asserts this understanding.  
 
Lemma 3: Let f, g, denote ISs defined over SxY, SxZ, respectively. f models the information that Y 
provides about S, g models the information that Z provides about S, and h models the integration 
information that Y and Z provide about S. If f complements g in distinguishing between s and s’ , then h 
has perfect distinction between s and s’ in S. 



Lemma 3 suggests that by repeatedly adding sources of this kind the integration information can reach 
perfect accuracy. Proposition 3 centers on this issue directly, by pointing to conditions where the 
integration IS is perfect given some state. The integration IS is perfect given state s if, for any state s’, 
there is an IS that complements any IS that does not enable perfect distinction between s and s’. 
 
Proposition 3: Let fj, j=1,..,n, denote ISs defined over SxYj, respectively, such that there exists s in S 
where for every j, fj is not a perfect IS given s. Suppose that, for every j, fj models the information that Yj 
provides about S, and let h denote the integration information that Yj, j=1,..,n, provide about S. Then, if, 
for every j and every s’ in S, fj does not have perfect distinction between s and s’ implies that there exists 
fk, 1≤k≤n, such that fk complements fj in distinguishing between s and s’, then h is a perfect IS given s.  
 
Turn, again, to the fusion property. Unlike the former scenario, the integration IS can be a fusion under 
the current assumptions. The (composite) signal of the integration may point to s with certainty although 
none of the signals that it comprises does. Such signal is a fusion, and, by definition, the IS is a fusion as 
well.  
 
Proposition 4: Suppose, under the assumptions of Proposition 3, that yj in Yj, j=1,..,n, are such that none 
is a perfect signal. Then, if h(y1...yn|s)>0, h is a fusion.  
 
 
Example: 
Consider two, overlapping, sources about customer occupations, that are not free of errors. The scenario 
of the previous example still applies, with some variation. Despite the strict verification procedures as far 
as some occupations, the accuracy of occupation data is deliberately compromised in special cases. The 
motivation for such compromise could be to enable certain customers enjoy discounts, or bonuses, that 
they would not normally get due to their actual occupation. In particular, we assume that in one instance 
there are strict verification procedures as far as the business sector, but a few customers from the 
education sector are registered as business people (10 below). In a second case, there are strict procedures 
as far as educators, but a few engineering people are registered, nonetheless, as educators (11 below):  
 

(10)      (11)    

Signal 
/State 

Buss Eng Edu   Signal 
/State 

Buss Eng Edu 

Business 1 0 0   Business .9 .1 0 

Engineering 0 .83 .17   Engineering .04 .94 .02 

Education .03 .04 .93   Education 0 0 1 
 

The ISs (10) (11) satisfy the requirements of Proposition 3. Especially, none of them is perfect given the 
state “Business,” however, IS (10) has perfect distinction between “Business” and “Engineering,” and IS 
(11) has perfect distinction between “Business” and “Education.” Consequently, the two ISs complement 
each other. The integration IS is: 
 
 

(12)          
Signal 
/State 

Buss, 
Buss 

Buss, 
Eng 

Buss, 
Edu 

Eng, 
Buss 

 Eng, 
Eng 

Eng, 
Edu 

Edu, 
Buss  

Edu,  
Eng  

Edu,  
Edu 

Business .9 .1 0 0 0 0 0 0 0 
Engineering 0 0 0 .0332 .7802 .0166 .0068 .1598 .0034 

Education 0 0 .03 0 0 .04 0 0 .93 
 



The IS above (12) is perfect given the state ”Business.” (Again, the numbers in this matrix were derived 
assuming conditional independence.)  

IS (12) is a fusion. For example, the signal (Buss, Buss) points to “Business” with certainty, although, 
taken individually, the signal “Buss” is not a perfect signal in any of IS (10) or IS (11). When the signal 
“Buss” is received from a source that matches IS (10), the possibility that the state is “Engineering” is 
ruled out. When the signal “Buss” is received from a source that matches IS (11), the possibility that the 
state is “Education” is ruled out. Together, the two signals determine that the state is “Business.” 
Therefore, the signal (Buss, Buss) is a fusion. 
 
 
 
DISCUSSION 
If errors are not randomly distributed, such that, for example, error-rates vary significantly within each 
source, then errors in different sources may have a complementary nature that can be exploited through 
data integration. This is a major assumption of this research. This paper refers, in particular, to error 
patterns that are broadly described as “limited perfect accuracy.” One instance in this category is when a 
source as a whole has errors, but it is accurate within a subset of the values. A second instance, which is a 
generalization of the first, is when a source has errors, but a given value rules out a subset of the range of 
possible values. Although the examples in the paper refer to sources that are described by one-
dimensional random variables, the analysis applies also to multidimensional variables.  

The analysis demonstrates very intuitive points. Mainly, when sources that have errors as above are also 
complementary, namely, when error free subsets vary among different sources, or different sources rule 
out different possible values, their integration can increase the accuracy of the data in known ways. In 
fact, under best conditions the outcome will reach perfect accuracy. Nonetheless, such theory suggests a 
new approach to integration. This approach assumes the availability of information about errors, and 
instead of concentrating on data that are individually highly accurate, centers on data that have a complementary 
nature, one way or another, to produce accurate outcome through integration. These aspects, as well as future 
extensions of this theory, are discussed next.  
 
Complementarity and source selection  
With a fast-growing number of competing sources in numerous domains, effectiveness and efficiency 
considerations advise the importance of correct selection of sources for data integration. The traditional 
approach to source selection says that sources that score highest by some measure of accuracy are 
preferred (e.g., [11]). A source selection decision based on complementarity could lead to a substantially 
different choice. This argument is clarified by an example—the example does not apply any defined 
measure of accuracy, it merely aims to convey an underlying intuition.  
Example: 
Consider three overlapping sources that are modeled by the following ISs.  
 

(13)     (14)     (15)    

Signal 
/State 

Buss Eng Edu  Signal 
/State 

Buss Eng Edu  Signal 
/State 

Buss Eng Edu 

Business 1 0 0  Business 1 0 0  Business .87 .02 .11 

Engineering 0 1 0  Engineering 0 1 0  Engineering 0 1 0 

Education 0 .01 .99  Education 0  .02 .98  Education .12 0 .88 

 
Suppose that only two sources are allowed to take part in data integration. The question then is which two 
of the three sources would offer the best outcome. IS (13) and IS (14) look more similar to a perfect (IS) 
than IS (15). Therefore, selection based on accuracy might point to the sources matching (13) and (14). In 



contrast, IS (15) complements each of the ISs (13) and (14) in distinguishing between “Engineering” and 
Education.” Therefore, the aggregate information of the sources represented by (13) and (15) is a perfect 
IS, and so is the aggregate information of the sources represented by (14) and (15). At the same time, both 
(13) and (14) reflect the same weakness—none enables perfect distinction between “Engineering” and 
“Education.” Consequently, selection that obeys complementarity would prefer any of the pairs (13) and 
(15), and (14) and (15), over (13) and (14). 

Assuming that a set of data sources satisfies the conditions of Proposition 1 or Proposition 3, the problem 
of finding a subset that satisfies these conditions such that data exchange cost is minimal can be 
formalized, when the state set S is finite, by an integer programming set covering model. An algorithm 
for optimal solution of such model would be exponential, however, the set covering problem has an 
efficient heuristic algorithm with a performance guarantee [12].  
 
Complementarity and conflict resolution  
Conflict resolution strategies can be guided by complementarity relations. Each complementarity relation 
introduced in this paper implies a different conflict resolution strategy. When complementarity in state is 
observed, conflict resolution can be limited to singling out the data of the suitable source. Handling 
complementarity in distinction would involve processing data from multiple sources, in order to eliminate 
all the impossible values.  
 
Information requirements  
Data integration that is guided by complementarity as a design principle requires information about error 
patterns. Furthermore, a detailed study of the errors may reveal pockets of high accuracy, which an 
aggregate measure of accuracy would not disclose. Therefore, for best results, application should be based 
on detailed understanding of error distributions (e.g., metadata). A good feature of the theory presented 
here is that it is largely based on properties of individual sources—such properties may be known, or 
studied, independent of any integration setting. In some cases, the source of the desired understanding 
may be domain experts, e.g., people that handle the creation of the data. However, in recent years there is 
also research about automatic approaches. For example, Motro and Rakov [10,13] present a data analysis 
approach for producing detailed estimates of accuracy and completeness. Surprisingly, existing source 
selection and conflict resolution work does not make direct use of detailed accuracy estimates even when 
such estimates are assumed available—aggregates are preferred over detailed estimates (e.g., [1,5,10,11, 
13]).  

Here is a simple example that illustrates the importance of detailed understanding of the data. The 
information source in this example is represented by a multidimensional variable rather than a one-
dimensional variable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Example:  
Consider a situation in which data about occupations corresponds to an attribute in a relation part of a 
relational database, such that a subset of the ideal relation is as depicted by Table 1. (“S” in the age group 
column in Table 1 refers to seniors, “Y” refers to young customers, and “A” to adults.) 
 

Rec 
# 

First 
Name  

Last Name Age 
Group 

Occupation Rec 
# 

First 
Name  

Last Name Age 
Group 

Occupation 

1 Jim Davis Y Buss 11 Robert Young A Edu 

2 Jennifer Duarte A Edu 12 David Wood A Buss 

3 Gerald Gutierrez A Edu 13 Raina Wiley Y Buss 

4 Erin Henderson A Eng 14 Joice Spitz Y Buss 

5 Tiffany  Knuth A Buss 15 Daniel  Sanders S Eng 

6 Sam Newell Y Eng 16 Andrew Richards S Edu 

7 Leslie Ann Presnell S Edu 17 Michael Campbell A Edu 

8 Daniel Reed S Eng 18 Elaine Cook S Buss 

9 Martin Sawyer S Buss 19 Andrea Billings Y Eng 

10 Adele McKinley A Edu 20 Bryan Ross S Eng 

Table 1: A subset of the correct relation instance. 
 
Suppose that a customer’s declared occupation is checked if the customer associates himself or herself 
with the business sector. In addition, although verification is strict with customers in the mid-age group, it 
is not as strict with people in the young age group and seniors. (Members of the latter age groups may 
receive age-specific bonuses, therefore they may be required to prove their claimed age group.)  

Error rates could vary in this case both by occupation and by age group. Assume that the aggregate 
information that occupation and age data provide about customers’ occupations is portrayed by the 
following IS:  
 

(16)          

Signal 
/State 

Buss, 
Y 

Buss, 
A 

Buss, 
S 

Eng, 
Y 

Eng, 
A 

Eng, 
S 

Edu, 
Y 

Edu, 
A 

Edu, 
S 

Business .22 .39 .3 .02 .02 .01 .02 .01 .01 

Engineering .01 0 .01 .21 .45 .25 .01 .04 .02 

Education .03 0 .01 .01 .06 .01 .23 .39 .26 
 
According to (16), the signal (Buss, A) points to the state “Business” with certainty. Therefore, whenever 
the data report that a customer’s occupation is “Buss” and he/she is in the “A” age group, the data are free 
of errors. However, a less detailed portrayal of the data, which ignores the joint effect of age and 
occupation on errors and considers only the pattern of errors in the occupation data, would miss the above 
described, potentially useful, perfect signal:   
 
(17)    

Signal 
/State 

Buss Eng Edu 

Business .91 .05 .04 

Engineering .02 .91 .07 

Education .04 .08 .88 

 



Potential theory extensions 
The assumptions that this work makes on error patterns do not cover the varied potential in practical 
application settings. However, the theory can be extended to comparable notions of complementarity 
based on weaker assumptions on error patterns. Such theory will apply to circumstances in which sources 
demonstrate less than perfect distinction between states, i.e., subsets of the data that have high error rates 
in one source match subsets with low error rates in other sources. 

A more complete understanding of data integration accuracy should also involve the introduction of 
notions of complementarity associated with dependence between errors, or sources. An example scenario 
will clarify this direction:  

Two sources show basic demographic data relating to a chosen population. The origins of the data are 
self-reports volunteered by users. Data in the first source are collected part of users’ job seeking efforts, 
while in the second source data are collected in social circumstances. Age data form part of the 
information. Age data have errors in both sources, primarily because people often misreport their age. 
Errors are most common at the tails of the population, i.e., relatively young or relatively old people. Error 
patterns suggest that young people that tend to inflate their age in job seeking contexts take years off their 
age in social circumstances, such that, mainly, there is a negative correlation between respective errors in 
the two sources. On the other hand, older people take years off in both cases—correlation is positive.  

Knowledge about dependence relationships of this kind may be useful for decision-making about source 
selection and conflict resolution. Take conflict resolution, for instance—when errors are negatively 
correlated, a conflict resolution strategy that combines the data (e.g., average) can produce highly 
accurate estimates of the true age. Subsequently, negative correlation between errors may be viewed as 
another form of complementarity that can contribute to higher integration output accuracy.  
 
 
 
CONCLUSIONS 
The purpose of this research is to develop a theory that can help produce the highest integration output 
accuracy, given multiple, overlapping, inaccurate sources. This paper introduces a theory that 
demonstrates the potential value of a data integration approach that is guided by complementarity as an 
organizing design principle. Such theory can offer guides as far as the characterization of accuracy, 
effective use of accuracy estimates, source selection, source ranking, and conflict resolution strategies.  

Future work should be conducted in several directions. There is a need to extend this work, in particular, 
develop a corresponding theory under different assumptions on error patterns. Theory should be 
implemented and evaluated in practical scenarios—issues such as fitness to existing approaches and 
technological environment, costs, and gains in performance would be, in general, of interest. Importantly, 
regardless of the specific integration setting, implementation must be based on information about error 
distributions. Therefore, research in this direction is relevant too.    
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APPENDIX  
Proof of Lemma 1: ∀y∈Y, if h(y,z|s)>0, then, by the definition of marginal density, f(y|s)>0. However, 
by assumption, f is perfect given s. Therefore, by Definition 3 and Definition 1, f(y|s’)=0, ∀s’∈S s.t. s’≠s. 
It follows, by the definition of joint density, that h(y,z|s’)=0, ∀s’∈S s.t. s’≠s. We have proved that, 
∀y∈Y, h(y,z|s)>0⇒h(y,z|s’)=0, ∀s’∈S s.t. s’≠s. Therefore, by Definition 3 and Definition 1, h is a perfect 
IS given s. 
 
Proof of Proposition 1: ∀s∈S and fj (1≤j≤n), if fj is not perfect given s, then, by assumption, ∃k, 1≤k≤n, 
s.t. fk complements fj in s. Therefore, by Definition 6, ∀s∈S, ∃i (1≤i≤n) s.t. fi is perfect given s. Now add 
a second source, Ym (1≤m≤n). Consider fi, fm, and him, where him denotes an IS that models the integration 
information of Yi and Ym about S. The proof of Lemma 1 applies to fi, fm, and him, whether or not fm is 
perfect given s. It follows that him is perfect given s. Adding one source at a time this logic can be 
repeatedly applied to show that h is perfect given s. We have proved that, ∀s∈S, h is perfect given s. 
Therefore, h is a perfect IS. 
 
Proof of Lemma 2: Since yj∈Yj points to s with certainty, then, by Definition 1, fj(yj|s)>0⇒fj(yj|s’)=0 
∀s’∈S s.t. s’≠s. If fj(yj|s)=0, then, by the definition of joint density, h(y1..yj..yn|s)=0, so (y1..yj..yn) is not a 
fusion. Therefore, assume fj(yj|s)>0, h(y1..yj..yn|s)>0. Since fj(yj|s’)=0 ∀s’∈S s.t. s’≠s, it follows 
h(y1..yj..yn|s’)=0, ∀s’∈S s.t. s’≠s. But then, ∀s’∈S s.t. s’≠s, h(y1..yj..yn|s’)/h(y1..yj..yn|s)=fj(yj|s’)/fj(yj|s)=0. 
Moreover, since h(y1..yj..yn|s’)=0 and fj(yj|s’)=0 ∀s’∈S s.t. s’≠s, an inequality as in Definition 5 is not 
possible as far as yj. Therefore, (y1..yj..yn)  is not a fusion. 
 
Proof of Proposition 2: Consider (y1..yn)∈Y1x..xYn. If (y1..yn) is such that h(y1..yn |s)=0 ∀s∈S, then 
(y1..yn) is not a fusion. Therefore, assume that h(y1..yn|s’)>0. According to Proposition 1, ∀s∈S and fj 
(1≤j≤n), if fj is not perfect given s, then, ∃k, 1≤k≤n, s.t. fk complements fj in s. Therefore, ∃i (1≤i≤n) s.t. fi 
is perfect given s’. Consider yi∈Yi s.t. yi appears in the composite signal (y1..yn). By Definition 3, yi points 
to s’ with certainty. Therefore, by Lemma 2, (y1. .yn) is not a fusion. We have shown that, ∀(y1..yn), 
(y1..yn) is not a fusion. It follows, by definition, that h is not a fusion. 
 
Proof of Lemma 3: Suppose that h(y,z|s)>0. Therefore, by the definition of marginal density, f(y|s)>0. 
However, by assumption, f has perfect distinction between s and s’. Therefore, by Definition 4, f(y|s’)=0. 
It follows by the definition of joint density that h(y,z|s’)=0. Therefore, (y,z) enables perfect distinction 
between states s and s’. We have shown that ∀(y,z), (y,z) enables perfect distinction between states s and 
s’. Therefore, by Definition 4, h has a perfect distinction between s and s’. 
 
Proof of Proposition 3: ∀s’∈S, if fj does not have perfect distinction between s and s’, then, by 
assumption, ∃k (1≤k≤n) s.t. fk complements fj in distinguishing between s and s’. Therefore, by Definition 
7, ∀s’, ∃i (1≤i≤n) s.t. fi has perfect distinction between s and s’. Now add a second source, Ym (1≤m≤n). 
Consider fi, fm, and him, where him is an IS that models the integration information of Yi and Ym about S. 
The proof of Lemma 3 applies to fi, fm, and him, whether or not fm has perfect distinction between s and s’. 
It follows that him has perfect distinction between s and s’. Adding one source at a time, the same logic 
can be repeatedly applied to show that h has perfect distinction between s and s’. We have proved that, 
∀s’∈S, h has perfect distinction between s and s’. Therefore, h is a perfect IS given s. 
 
Proof of Proposition 4: According to Proposition 3, h is a perfect IS given s. Since, by assumption, 
h(y1...yn|s)>0, then, by definition, h(y1...yn|s’)=0, ∀s’∈S, s.t. s’≠s,. Therefore, h(y1...yn|s’)/h(y1...yn|s)=0, 
∀s’∈S. In addition, by the definition of marginal density, ∀j s.t. 1≤j≤n, fj(yj|s)>0. Since, by assumption, 
yj, j=1,..,n, are such that none is a perfect signal, then, ∀j, ∃sj∈S, sj≠s, s.t. fj(yj|sj)>0. Therefore, ∀j, 
fj(yj|sj)/fj(yj|s)>0, h(y1...yn|sj)/h(y1...yn|s)=0. Therefore, by definition, (y1...yn) is a fusion. Therefore, h is a 
fusion. 


