

A FORMAL DEFINITION OF DATA QUALITY PROBLEMS
(Completed paper)

Paulo Oliveira

DI/gEPL – Languages Specification and Processing Group
University of Minho (Portugal), and

GECAD/ISEP-IPP – Knowledge Engineering and Decision Support Group
Institute of Engineering – Polytechnic of Porto (Portugal)

pjo@isep.ipp.pt

Fátima Rodrigues
GECAD/ISEP-IPP - Knowledge Engineering and Decision Support Group

Institute of Engineering – Polytechnic of Porto (Portugal)
mfc@isep.ipp.pt

Pedro Henriques
DI/gEPL – Languages Specification and Processing Group

University of Minho (Portugal)
prh@di.uminho.pt

Abstract: The exploration of data to extract information or knowledge to support decision making
is a critical success factor for an organization in today’s society. However, several problems can
affect data quality. These problems have a negative effect in the results extracted from data,
affecting their usefulness and correctness. In this context, it is quite important to know and
understand the data problems. This paper presents a taxonomy of data quality problems, organizing
them by granularity levels of occurrence. A formal definition is presented for each problem
included. The taxonomy provides rigorous definitions, which are information-richer than the textual
definitions used in previous works. These definitions are useful to the development of a data quality
tool that automatically detects the identified problems.

Key Words: Data Quality Problems, Formal Definition, Taxonomy

1. INTRODUCTION
Nowadays, public and private organizations understand the value of data. Data is a key asset to improve
efficiency in today’s dynamic and competitive business environment. However, as organizations begin to
create integrated data warehouses for decision support, the resulting Data Quality (DQ) problems become
painfully clear [12]. A study by the Meta Group revealed that 41% of the data warehouse projects fail,
mainly due to insufficient DQ, leading to wrong decisions [8]. The quality of the input data strongly
influences the quality of the results [15] (“garbage in, garbage out” principle).

The concept of DQ is vast, comprising different definitions and interpretations. DQ is essentially studied
in two research communities: databases and management. The first one studies DQ from a technical point
of view (e.g., [4]), while the second one is also concerned with other aspects or dimensions (e.g.,
accessibility, believability, relevancy, interpretability, objectivity) involved in DQ (e.g., [13, 17]). In the
context of this paper we follow the databases perspective, i.e., DQ means just the quality of the data
values or instances.

DQ problems are also labeled of errors, anomalies or even dirtiness and enclose, among others, missing
attribute values, incorrect attribute values, or different representations of the same data. It is not
uncommon for operational databases to have 60% to 90% of bad data [3]. These problems are an obstacle
to effective data usage and, as already said, negatively affect the results and conclusions obtained.
Therefore, before using an analysis-oriented tool, data must be examined to check whether the required
quality is assured. If not, DQ must be improved by removing or repairing any problems that may exist
[10].

DQ problems concerns arise in three different contexts [4]: (i) when one wants to correct anomalies in a
single data source, as files and databases (e.g., duplicate elimination in a file); (ii) when poorly structured
or unstructured data is migrated into structured data; or (iii) when one wants to integrate data coming
from multiple sources into a single new data source (e.g., data warehouse construction). In the last
situation, the problems are even more critical because distinct data sources frequently contain redundant
data under different representations. The representations must be consolidated and the duplicates removed
to provide an accurate and consistent access to data.

The paper reports the new developments of our work, initially presented in [11]. The main contributions
provided here are: (i) a formal definition for each DQ problem and (ii) a taxonomy of DQ problems that
organizes them by granularity levels of occurrence.

In [7, 9, 14] a comprehensive list of problems that affect DQ is presented. However, the problems are
only described through a textual definition. It is commonly accepted that natural language tends to be
ambiguous by nature. Therefore, doubts about the true meaning of some DQ problems arise, which means
that they need to be further clarified. Using a formal definition is a suitable approach to specify each DQ
problem in a rigorous way.

Besides rigorous, this kind of definition is also useful because has more extra information than a textual
definition. The definition makes explicit: (i) that it concerns just with a given data type (e.g. string data
type); (ii) the metadata knowledge needed to detect a problem (e.g. the attribute domain); (iii) the
mathematical expression that specifies the DQ problem, which can be computationally translated to
automate its detection (just for illustration purposes we show the definition of domain violation later
presented: ∃ t ∈ r : v(t,a) ∉ Dom(a)); and (iv) eventually a required function that allows to detect the DQ
problem (e.g. to detect a misspelling error, a spell checker function must be available). A framework for
DQ problems is our first step towards the development of an automated tool for detecting the problems.
With this tool we intend to complement the capabilities of today’s data profiling tools.

We argue that a taxonomy of DQ problems is important because: (i) it is useful to understand how far a
given DQ tool is able to go in detecting and correcting DQ problems, i.e., it allows to measure the
coverage of a DQ tool; (ii) guides the research efforts, emphasizing the DQ problems that deserve further
attention, i.e., if a DQ problem has no detection or correction support, this means that research attention
should be given to it.

The paper is organized as follows. Section 2 presents in detail our taxonomy, organized by granularity
levels of DQ problems. Section 3 compares our taxonomy to related work. Finally, in Section 4,
conclusions and some future work directions are described.

2. DATA QUALITY PROBLEMS
Figure 1 presents the well known typical model of data organization: (i) data is stored in multiple data
sources; (ii) a data source is composed of several relations and relationships are established among them;
(iii) a single relation is made up of several tuples; and (iv) a tuple is composed by a predefined number of
attributes. This model results in a hierarchy of four levels of data granularity: multiple data sources;
multiple relations; single relation; and attribute/tuple.

We have identified the DQ problems and created the taxonomy based on this model. Using real-world
data from the retail sector, we thoroughly analyzed each granularity level, from the lowest (attribute/
tuple) to the highest (multiple data sources), to detect specific DQ problems. The purpose was to tackle
first the most specific and easier to detect DQ problems and leave to the end the most generic and difficult
ones. The analysis was based on the fundamental elements of this model of data organization (e.g., data
types, relationships, data representation structure). The systematic approach used supports our conviction
that the taxonomy is complete.

The DQ problems identified are presented through a rigorous definition and properly illustrated with an
example. Our taxonomy covers the problems that affect data represented in a tabular format, i.e., at least
in the first normal form. The types of data considered are: numeric, date/time, enumerated, and string.
Multimedia data was excluded, since it requires a special kind of manipulation.

2.1 Preliminaries
We start by introducing the notation used throughout the paper, following [1]. A relation schema consists
of a name R (the relation name), along with a list A = a1,a2,...,an of distinct attribute names, represented by
R(a1,a2,...,an) or simply by R(A). The integer n represents the relation schema degree. A data source DS is
composed by a set of m relation schemas R1(A1), R2(A2),...,Rm(Am). A domain d is a set of atomic values.
Given a set D of domains, a set A of attribute names, we assume there is a function Dom: A → D that
associates attributes with their domains. The function Dom is applied to the set of attribute names, which
is represented by Dom(A) = Dom(a1,a2,...,an) = Dom(a1) × Dom(a2) × ...×Dom(an). A relation instance (or

...

Tuple
1

Relation
1

Relation
2

... Relation
n

at. 1

Tuple
2

...

at. 2 at. n ... at. 1 at. 2 at. n at. 1 at. 2 at. n

... ...

...

... ...

Data
Source

1

Data
Source

2

Data
Source

n

Tuple
n

... Attribute/tuple

Single relation

Multiple data sources

Multiple relations

Figure 1: Typical model of data organization

relation, for short) is a finite set r ⊆ Dom(a1)×Dom(a2)×...×Dom(an) and is represented by r(a1,a2,...,an) or
simply by r(A). Each element of r is called a tuple, and is represented by t. A tuple t can be viewed as a
function that associates a value of Dom(a1) with a1, a value of Dom(a2) with a2,... and a value of Dom(an)
with an. The value of attribute a in tuple t is represented by v(t,a). The values in tuple t of attributes
a1,a2,...,an i.e., v(t,a1),v(t,a2),...,v(t,an) are denoted by v(t,A). By analogy, the values attribute a take for all
tuples are represented by v(T,a). The application of a function f over a value v is represented by f(v) while
over a set of values V is represented by f(V). If, for some reason, a value transformation cannot be done,
the function f acts as the identity function, i.e., f(v) = v or f(V) = V. The data type of attribute a is denoted
by type(a).

2.2 DQ Problems at the Level of Attribute/Tuple
This level is divided into three groups of DQ problems that were encountered by analyzing the value(s)
of: (i) a single attribute of a single tuple; (ii) a single attribute in multiple tuples (a column); and (iii)
multiple attributes of a single tuple (a row).

2.2.1 Single Attribute of a Single Tuple
The following DQ problems were detected by analyzing the values of single attributes (with different data
types) in single tuples (as presented in Figure 2).

• Missing value

Definition: Let S be a set of attribute names, defined as: S = {a | a ∈ R(A) ∧ a is a mandatory
attribute}, i.e., S ⊆ R(A). There is a missing value in attribute a ∈ S if and only if (iff): ∃ t ∈ r :
v(t,a) = null.

Example: Absence of value in the mandatory attribute Name of a customer.
Note: The absence of value in an optional attribute is not considered by us as a DQ problem.

• Syntax violation

Definition: Let G(a) be the syntax of attribute a, given by a grammar or a regular expression. Let
L(G(a)) be the language generated by the grammar or regular expression. There is a syntax violation
in attribute a ∈ R(A) iff: ∃ t ∈ r: v(t,a) ∉ L(G(a)).

Example: The attribute Order_Date contains the value 13/12/2004, instead of 2004/12/13.

• Incorrect value

Definition: Let u(t,a) be the correct and updated value that the attribute a of tuple t was supposed
to have. There is an incorrect value in attribute a ∈ R(A) iff: ∃ t ∈ r : v(t,a) ∈ Dom(a) ∧ v(t,a) ≠
u(t,a).

...

Tuple
1

at. 1

Tuple
2

...

at. 2 at. n ... at. 1 at. 2 at. n at. 1 at. 2 at. n

Tuple
n

...

...

Figure 2: A single attribute of a single tuple

Example: The attribute Creation_Date contains the value 23/09/2003, instead of 23/09/2004.

• Domain violation

Definition: There is a domain violation in attribute a ∈ R(A) iff: ∃ t ∈ r : v(t,a) ∉ Dom(a).

Example: In a given order, the attribute Ordered_Quantity contains a negative value.

• Violation of business domain constraint

Definition: Let check be a function that receives an attribute value, checks whether it respects a
given constraint, and returns a boolean value. There is a violation of business domain constraint in
attribute a ∈ R(A) iff: ∃ t ∈ r : check(v(t,a)) = false.

Example: The attribute Name of a customer must have, at least, two words; however, in a certain
tuple this constraint is not respected.

A domain violation in an attribute whose data type is string, may be further detailed as presented next.

Let S be a set of attribute names, defined as: S = {a | a ∈ R(A) ∧ type(a) = string}, i.e., S ⊆ R(A). This set
is used in the following definitions.

• Invalid substring

Definition: Let v’(t,a) be a substring of v(t,a). There is an invalid substring in attribute a ∈ S iff: ∃ t
∈ r : v(t,a) ∉ Dom(a) ∧ v’(t,a) ∈ Dom(a).

Example: The attribute Customer_Name also stores the academic degree (e.g., Dr. John Taylor).

• Misspelling error

Definition: Let spell be a spelling checker function that receives a misspelled word, looks-up for
the correct word based on a language dictionary, and returns it. There is a misspelled error in
attribute a ∈ S iff: ∃ t ∈ r : v(t,a) ∉ Dom(a) ∧ spell(v(t,a)) ∈ Dom(a).

Example: The attribute Address_Place contains the value Sant Louis, instead of Saint Louis.

• Imprecise value

Definition: Let translate be a function that receives an abbreviation or an acronym, looks-up for its
meaning (in full words) in a dictionary (lookup table), and returns it. There is an imprecise value in
attribute a ∈ S iff: ∃ t ∈ r : v(t,a) ∉ Dom(a) ∧ translate(v(t,a)) ∈ Dom(a).

Example: The value Ant. in attribute Customer_Contact may represent Anthony, Antonia, etc.

2.2.2 Single Attribute in Multiple Tuples
The following DQ problems were identified by analyzing the values of a single attribute in multiple
tuples, as illustrated in Figure 3.

• Unique value violation

Definition: Let S be a set of attribute names, defined as: S = {a | a ∈ R(A) ∧ a is a unique value
attribute}, i.e., S ⊆ R(A). There is a unique value violation in attribute a ∈ S iff: ∃ t1, t2 ∈ r : v(t1,a)
= v(t2,a) ∧ t1 ≠ t2 .

Example: Two different customers have the same taxpayer identification number.

• Existence of synonyms

Definition: Let S be a set of attribute names, defined as: S = {a | a ∈ R(A) ∧ type(a) = string}, i.e.,
S ⊆ R(A). Let meaning be a function that receives a word, looks-up for its meaning in a dictionary,
and returns it. There are synonyms in attribute a ∈ S iff: ∃ t1, t2 ∈ r : v(t1,a) ≠ v(t2,a) ∧
meaning(v(t1,a)) = meaning(v(t2,a)).

Example: The attribute Occupation contains the values Professor and Teacher in different tuples,
which in fact represent the same occupation.

• Violation of business domain constraint

Definition: Let check be a function that receives the set of all values of an attribute, checks whether
a given constraint is respected, and returns a boolean value. There is a violation of business domain
constraint in attribute a ∈ R(A) : check(v(T,a)) = false.
Note: As defined in section 2.1, v(T,a) represents the values that attribute a take for all tuples.

Example: The values of attribute Invoice_Date must appear in the relation by ascending order, but
this does not happens.

2.2.3 Multiple Attributes of a Single Tuple
The following DQ problems were identified by analyzing the values of multiple attributes of a single
tuple, as illustrated in Figure 4.

• Semi-empty tuple

Definition: Let θ be a user-defined threshold (a real number between 0 and 1), and S the set of
attribute names that are empty in tuple t, defined as: S = {a | a ∈ R(A) ∧ v(t,a) = null}, i.e., S ⊆
R(A). Let m be the cardinality of set S, defined as: m = |S|, and n be the relation schema degree. The
tuple t is a semi-empty tuple iff: m/n ≥ θ.

...

Tuple
1

at. 1

Tuple
2

...

at. 2 at. n ... at. 1 at. 2 at. n at. 1 at. 2 at. n

Tuple
n

...

...

Figure 3: A single attribute in multiple tuples

Example: If 60% or more of the tuple attributes are empty, then the tuple is classified as semi-
empty

• Violation of functional dependency

Definition: Let a2 be an attribute whose value functionally depends on the values of other
attributes. The set of these attribute names is defined as: S = {a1 | a1, a2 ∈ R(A) : the value of a2
functionally depends on the value of a1}, i.e., S ⊆ R(A). Let value be a function that receives a set
of values of a tuple, computes the value of the functional dependent attribute, and returns it. There
is a violation of functional dependency in tuple t iff: ∃ t ∈ r : value(v(t,S)) ≠ v(t,a2).

Example: There is a functional dependency among Zip_Code and City. Each value of the first
attribute must be associated with exactly one value of the second. Therefore, the following values
of two customer tuples violate the functional dependency: (Zip_Code = 4000; City = “Porto”) and
(Zip_Code = 4000; City = “Lisboa”).

• Violation of business domain constraint

Definition: Let check be a function that receives the set of values of a tuple, checks whether a
given constraint x is respected, and returns a boolean value. Let S be a set of attribute names,
defined as: S = {a | a ∈ R(A) ∧ a is used in the formulation of x}, i.e., S ⊆ R(A). There is a violation
of business domain constraint in tuple t ∈ r iff: check(v(t,S)) = false.
Note: As defined in section 2.1, v(t,S) represents the values in tuple t of the attributes that belong to
S.

Example: The business domain constraint among attribute values: Total_Product = Quantity *
Sell_Price, does not hold for a given tuple of the Sales_Details relation.

2.3 DQ Problems at the Level of a Single Relation
The DQ problems described in this section were identified by analyzing the values of multiple attributes
in multiple tuples of a relation, as illustrated in Figure 1.

• Approximate duplicate tuples

Definition: Let S be a set of attribute names, defined as: S = {a | a ∈ R(A) ∧ a does not belong to
the primary key}, i.e., S ⊆ R(A). Let θ be a real number between 0 and 1. Let similarity be a
function that receives two values of an attribute, computes the similarity among them, and returns it
(also as a real number between 0 and 1). There are approximate duplicate tuples in relation r iff: ∃

...

Tuple
1

at. 1

Tuple
2

...

at. 2 at. n ... at. 1 at. 2 at. n at. 1 at. 2 at. n

Tuple
n

...

...

Figure 4: Multiple attributes of a single tuple

t1, t2 ∈ r ∀ a ∈ S : similarity(v(t1,a),v(t2,a)) ≥ θ ∧ t1 ≠ t2.

Example: The tuple Customer(10, ‘Smith Barney’, ‘Flowers Street, 123’, 502899106) is an
approximate duplicate of the tuple Customer(72, ‘S. Barney’, ‘Flowers St., 123’, 502899106).

• Inconsistent duplicate tuples

Definition: Let S be a set of attribute names, defined as: S = {a | a ∈ R(A) ∧ a does not belong to
the primary key}, i.e., S ⊆ R(A). Let θ be a real number between 0 and 1. Let similarity be a
function that receives two values of an attribute, computes the similarity between them, and returns
it (also as a real number between 0 and 1). There are inconsistent duplicate tuples in relation r iff: ∃
a2 ∈ S, t1, t2 ∈ r ∀ a1 ∈ S\{a2}: similarity(v(t1,a1),v(t2,a1)) ≥ θ ∧ similarity(v(t1,a2), v(t2,a2)) < θ.

Example: The tuple Customer(10, ‘Smith Barney’, ‘Flowers Street, 123’, 502899106) is an
inconsistent duplicate of the tuple Customer(72, ‘Smith Barney’, ‘Sun Street, 321’, 502899106).

• Violation of business domain constraint

Definition: Let check be a function that receives the attribute values of all tuples, checks whether a
given constraint x is respected, and returns a boolean value. Let S be a set of attribute names,
defined as: S = {a | a ∈ R(A) ∧ a is used in the formulation of x}, i.e., S ⊆ R(A). There is a violation
of business domain constraint in tuple t iff: check(v(T,S)) = false.
Note: v(T,S) represents the values that the attributes belonging to S take for all tuples.

Example: The maximum number of products families allowed in relation Products_Families is 10,
but the existent number of families is 12.

2.4 DQ Problems at the Level of Multiple Relations
In this section, we present the DQ problems detected when analyzing the values from multiple relations,
as presented in figure 1.

We assume there is a relationship among the relation schemas R1(A1) and R2(A2) of a data source DS. Let
S and T be sets of attribute names, defined as: S = {a | a ∈ R1(A1) ∧ a belongs to the foreign key that
establishes the relationship with R2(A2)}, i.e., S ⊆ R1(A1), and T = {a | a ∈ R2(A2) ∧ a belongs to the
primary key}, i.e., T ⊆ R2(A2). These two sets are used in the following definitions.

• Referential integrity violation

Definition: Let V be the set of values of the primary key attributes, defined as: V = {v(t,T) | t ∈ r2}.
There is a referential integrity violation among relations r1 and r2 iff: ∃ t ∈ r1 : v(t,S) ∉ V.

Example: The attribute Customer_Zip_Code of the Customer relation contains the value 5100,
which does not exists in the Zip_Code relation.

• Incorrect reference

Definition: Let V be the set of values of the primary key attributes, defined as: V = {v(t,T) | t ∈ r2}.
Let u(t,S) be the correct and updated value that was supposed to be in the foreign key S of tuple t of
relation r1. There is an incorrect reference among relations r1 and r2 iff: ∃ t ∈ r1 : v(t,S) ∈ V ∧ v(t,S)
≠ u(t,S).

Example: The attribute Customer_Zip_Code of the Customer relation contains the value 4415,
instead of 4445; both zip codes exist in the Zip_Code relation.

• Heterogeneity of syntaxes

Definition: Let G(a) be the syntax of attribute a, given by a grammar or a regular expression. There
is a heterogeneity of syntaxes among relations r1 and r2 iff: ∀ a1 ∈ R1(A1), a2 ∈ R2(A2) : type(a1) =
type(a2) ∧ G(a1) ≠ G(a2).

Example: The attribute Order_Date of relation Orders has the syntax dd/mm/yyyy, while the
attribute Invoice_Date of relation Invoices has the syntax yyyy/mm/dd.

• Circularity among tuples in a self-relationship

Definition: Let U be a set of attribute names, defined as: U = {a | a ∈ R1(A1) ∧ a belongs to the
primary key}, i.e., U ⊆ R1(A1). Let V be the set that contains the primary key values of all existing
tuples in r1, defined as: V = {v(t,U) | t ∈ r1}. Let v be the value of a primary key: v ∈ V. Let W be
the set that, starting from the tuple identified by the primary key v, contains the foreign key values
of all other tuples related with it, defined as: W = {v(t1,S) | v(t1,S) = v(t2,U) ∧ t1, t2 ∈ r1}. There is a
circularity among tuples in a self-relationship in relation r1 iff: v ∈ W.

Example: A product may be a sub-product in another product and this information is stored in
attribute Sub-product_Cod of the product; In relation Products there exists the information that
product X (Product_Cod = ‘X’) is sub-product of Y (Sub-product_Cod = ‘Y’) and simultaneously
that product Y (Product_Cod = ‘Y’) is sub-product of X (Sub-product_Cod = ‘X’); this is an
impossible situation.

• Violation of business domain constraint

Definition: Let check be a function that receives the attribute values of the tuples from relations r1
and r2, checks whether a given constraint x is respected, and returns a boolean value. Let U and V
be sets of attribute names, defined as: U = {a | a ∈ R1(A1) ∧ a is used in the formulation of x}, i.e.,
U ⊆ R1(A1), and V = {a | a ∈ R2(A2) ∧ a is used in the formulation of x}, i.e., V ⊆ R2(A2). Let W and
Z be sets of attribute values of related tuples from each relation, defined as: W = {v(t1,U) | v(t1,S) =
v(t2,T) ∧ t1 ∈ r1 ∧ t2 ∈ r2} and Z = {v(t2,V) | v(t2,T) = v(t1,S) ∧ t1 ∈ r1 ∧ t2 ∈ r2}. There is a violation
of business domain constraint among relations r1 and r2 iff: check(W, Z) = false.

Example: The attribute Invoice_Total of a tuple of the relation Invoices contains the value 100,
while the sum of the values of attribute Product_Value (for each product of the invoice) of the
relation Invoices_Details is only equal to 90 (instead of 100).

2.5 DQ Problems at the Level of Multiple Data Sources
The DQ problems presented below were identified by analyzing the values of multiple data sources, as
illustrated in Figure 1. As referred in section 1, this paper only addresses the DQ problems related with
the instances (values) of data, i.e., the extensional level [6]. There are other kinds of DQ problems that
occur at the intensional level, i.e., problems related with the structure of data [6], also known as problems
among data schemas. For the reader interested in these problems, we suggest the work of Kashyap and
Sheth [5].

In this section, we assume that the relation schemas R1(A1) and R2(A2) belong to two different data
sources, respectively, DS1 and DS2. Both schemas concern the same real-world entity (e.g., customers).
We also assume that relation schema heterogeneities among DS1 and DS2 are solved, i.e., two attributes
referring to the same real-world property (e.g., unitary price) have the same name. However, the number
of attributes used in each data schema may be different.

• Heterogeneity of syntaxes

Definition: Let G(a) be the syntax of attribute a, given by a grammar or a regular expression. There
is heterogeneity of syntaxes among relations r1 and r2 iff : ∀ a1 ∈ R1(A1), a2 ∈ R2(A2) : a1 = a2 ∧
type(a1) = type(a2) ∧ G(a1) ≠ G(a2).

Example: The attribute Insertion_Date of relation Customers from DS1 has the syntax dd/mm/yyyy,
while the attribute Insertion_Date of relation Customers from DS2, has the syntax yyyy/mm/dd.

• Heterogeneity of measure units

Definition: Let S be the set of attribute names common to both relations, defined as: S = {a | a ∈
R1(A1) ∧ a ∈ R2(A2) ∧ type(a) = numeric}. Let k be a numeric constant value. There is
heterogeneity of measure units in attribute a of relations r1 and r2 iff: ∃ a ∈ S ∀ t1 ∈ r1 ∃ t2 ∈ r2:
v(t1,a) = k * v(t2,a) ∧ k > 0 ∧ k ≠ 1.

Example: The attribute Product_Sell_Price is represented in euros in DS1, while in DS2 is
represented in dollars.

• Heterogeneity of representation

Definition: Let S be the set of attribute names common to both relations, defined as: S = R1(A1) ∩
R2(A2). Let translate be a function that receives an attribute value from a relation, looks-up in a
dictionary (lookup table) for the corresponding value in the other relation, and returns it. There is
heterogeneity of representation in attribute a among relations r1 and r2 iff: ∃ a ∈ S, t1 ∈ r1, t2 ∈ r2 :
v(t1,a) ≠ v(t2,a) ∧ translate(v(t1,a)) = v(t2,a).

Example: To represent the attribute Gender the values F and M are used in DS1, while in DS2 are
used the values 0 and 1.

• Existence of synonyms

Definition: Let S be the set of attribute names common to both relations, defined as: S = {a | a ∈
R1(A1) ∧ a ∈ R2(A2) ∧ type(a) = string}. Let meaning be a function that receives a word, looks-up
for its meaning in a dictionary, and returns it. There are synonyms in attribute a among relations r1
and r2 iff: ∃ a ∈ S, t1 ∈ r1, t2 ∈ r2 : meaning(v(t1,a)) = meaning(v(t2,a)) ∧ v(t1,a) ≠ v(t2,a).

Example: The relation Occupations of DS1 contains a tuple with Professor, while the equivalent
relation in DS2 contains a tuple with Teacher; both represent the same occupation.

• Existence of homonyms

Definition: Let S be the set of attribute names common to both relations, defined as: S = {a | a ∈
R1(A1) ∧ a ∈ R2(A2) ∧ type(a) = string}. Let meaning1 and meaning2 be functions that receive a
word, look-up for its meaning in a dictionary (in the context of DS1 or DS2), and return it. There are
homonyms in attribute a among relations r1 and r2 iff: ∃ a ∈ S, t1 ∈ r1, t2 ∈ r2 : meaning1(v(t1,a)) ≠
meaning2(v(t2,a)) ∧ v(t1,a) = v(t2,a).

Example: In relation Products of DS1, there exists a product named Mouse (a branch of a company
sells computer hardware), while in relation Products of DS2, there also exists a product named
Mouse (another branch of the company sells domestic animals, so the products here are the animals
themselves).

• Approximate duplicate tuples

Definition: Let S be a set of attribute names, defined as: S = {a | a ∈ R(A) ∧ a does not belong to
the primary key}, i.e., S ⊆ R(A). Let θ be a real number between 0 and 1. Let similarity be a

function that receives two values of an attribute, computes the similarity between them, and returns
it (also as a real number between 0 and 1). There are approximate duplicate tuples among relations
r1 and r2 iff: ∃ t1 ∈ r1, t2 ∈ r2 ∀ a ∈ S : similarity(v(t1,a),v(t2,a)) ≥ θ.

Example: The tuple Customer(10, ‘Smith Barney’, ‘Flowers Street, 123’, 502899106) in DS1 is
an approximate duplicate of the tuple Customer(27, ‘Smith B.’, ‘Flowers St., 123’, 502899106) in
DS2.

• Inconsistent duplicate tuples

Definition: Let S be a set of attribute names, defined as: S = {a | a ∈ R(A) ∧ a does not belong to
the primary key}, i.e., S ⊆ R(A). Let θ be a real number between 0 and 1. Let similarity be a
function that receives two values of an attribute, computes the similarity between them, and returns
it (also as a real number between 0 and 1). There are inconsistent duplicate tuples among relations
r1 and r2 iff: ∃ t1 ∈ r1, t2 ∈ r2, a2 ∈ S ∀ a1 ∈ S\{a2}: similarity(v(t1,a1),v(t2,a1)) ≥ θ ∧
similarity(v(t1,a2),v(t2,a2)) < θ.

Example: The tuple Customer(10, ‘Smith Barney’, ‘Flowers Street, 123’, 502899106) in DS1 is an
inconsistent duplicate of the tuple Customer(27, ‘Smith Barney’, ‘Sun Street, 321’, 502899106) in
DS2.

• Violation of business domain constraint

Definition: Let check be a function that receives the attribute values of the tuples from relations r1
and r2 (of DS1 and DS2), checks whether a given constraint x is respected, and returns a boolean
value. Let S be the set of attribute names common to both relations, defined as: S = {a | a ∈ R1(A1)
∧ a ∈ R2(A2) ∧ a is used in the formulation of x}. Let T and U be sets that contain the attribute
values of all tuples from relations r1 and r2, defined as: T = {v(t1,S) | t1 ∈ r1} and U = {v(t2,S) | t2 ∈
r2}. There is a violation of business domain constraint among relations r1 and r2 iff: check(T, U) =
false.

Example: The maximum number of products families allowed is 10; the relation Product_Families
in DS1 contains 7 families, and the relation Product_Families in DS2 contains 8 families; the
number of distinct product families resulting from the integration (union) of both sources is 11; this
number violates the constraint.

2.6 Summary
Table 1 presents a summary of our taxonomy of DQ problems. The problems and the corresponding
granularity levels where they occur are shown in the table.

3. RELATED WORK
Kim et al. [7] present a quite complete taxonomy of DQ problems, describing the logic behind its
structure. They adopt a successive hierarchical refinement approach. The taxonomy is based on the
premise that DQ problems manifest in three different ways: missing data; not missing but wrong data; and
not missing and not wrong but unusable. Unusable data occurs when two or more databases are integrated
or representation standards are not consistently used when entering data. The taxonomy is a hierarchical
decomposition of these three basic manifestations of DQ problems. Considering the approach used and
the DQ problems identified, this taxonomy is the closest to ours.

Attribute/Tuple Data Quality Problem
Attrib. Column Row

Single
Relation

Multiple
Relations

Mult. Data
Sources

Missing value x
Syntax violation x
Incorrect value x
Domain violation x
Invalid substring x
Misspelling error x
Imprecise value x
Violation of business domain
constraint x x x x x x

Unique value violation x
Existence of synonyms x x
Semi-empty tuple x
Violation of functional
dependency x

Approximate duplicate tuples x x
Inconsistent duplicate tuples x x
Referential integrity violation x
Incorrect reference x
Heterogeneity of syntaxes x x
Circularity among tuples in a
self-relationship x

Heterogeneity of measure units x
Heterogeneity of representation x
Existence of homonyms x

Müller and Freytag [9] roughly classify DQ problems into syntactical, semantic, and coverage anomalies.
Syntactical anomalies describe characteristics concerning the syntax and values used for representation of
the entities (e.g. lexical errors, domain syntax errors). Semantic anomalies hinder the data collection from
being a comprehensive and non-redundant representation of the real-world (e.g. duplicates,
contradictions). Coverage anomalies are related with the amount of entities and entities properties from
the real-world actually stored in the data collection (e.g. missing values). This work is limited to DQ
problems that occur in a single relation of a single source, so important DQ problems are not covered.

Rahm and Do [14] distinguish between single-source and multi-source problems as we do. However, at
single-source they do not divide the problems into those that occur in a single relation and those that
occur as a result of existing relationships among multiple relations. Single-source and multi-source
problems are divided into schema-related and instance-related problems. Schema-related problems are
those that can be addressed by improving the schema design, schema translation and schema integration.
Instance-related problems correspond to errors and inconsistencies in the actual data contents that can not
be prevented at the schema level. As referred in the introduction, we are only concerned with the DQ
problems related with the instances of the data, so we do not make this separation. In single source
problems, for both schema-related and instance-related, they distinguish between the following scopes:
attribute; record; record type and source. This is similar to the organization that we present in our
taxonomy.

Table 1: DQ problems organized by granularity level

Even tough the term used may be different (e.g. enterprise constraint violation; business rule violation),
the DQ problem violation of business domain constraint included in our taxonomy is mentioned in almost
every book about databases (e.g. [2, 16]). However, surprisingly it is not included in any of the
taxonomies analysed. The other new DQ problems also introduced by our taxonomy are: (i) semi-empty
tuple; (ii) heterogeneity of syntaxes (at the level of multiple relations and multiple data sources); and (iii)
circularity among tuples in a self-relationship. All the problems identified in the three taxonomies are also
covered by ours, although the names used to label the problems are sometimes different. Finally, the DQ
problems have been described only through a textual description, while we present a rigorous definition
for each problem.

4. CONCLUSION
This paper has presented our taxonomy of DQ problems. The taxonomy results from the research
conducted to identify DQ problems on each granularity level of the usual data organization model. The
study followed a bottom-up approach, from the lowest (attribute/tuple) to the highest granularity level
(multiple data sources) where DQ problems may appear. The taxonomy was also presented in the paper
following that approach. Six groups of related DQ problems were derived from the four granularity
levels. As the approach followed to identify the problems was exhaustive and systematic, it allows us to
be confident that no other problem is missing.

The DQ problems included in our taxonomy were specified through rigorous definitions. This feature
distinguishes our taxonomy from the related ones, since they only use text to describe the problems. We
believe that giving a formal framework to DQ problems is a valuable contribution, since: (a) it is the only
way to assure a clear and precise definition for each DQ problem; and (b) it is useful because it specifies
what is required to detect automatically the problem, i.e.: (i) the metadata knowledge needed; (ii) the
mathematical expression that defines the DQ problem, which can be seen as a logical procedure (rule) to
detect it; and (iii) eventually the function that is required to perform some transformation. These elements
are explicitly included in each definition of DQ problem.

This work is a first step towards the development of a tool to automatically detect DQ problems. The
entire set of DQ problems that may affect data is now known and understood by us. We also know what is
needed to detect each DQ problem and how that can be translated to a computational method. All these
items need to be organized to produce the DQ tool architecture. In fact, this is what we intend to do as our
next work. After, we intend to start the tool development. We believe that it will complement the limited
detection capabilities currently supported by commercial data profiling tools.

ACKNOWLEDGMENTS
We would like to thank Helena Galhardas for the fruitful discussions and useful comments that helped us
to improve the contents of the paper.

REFERENCES
[1] Atzeni, P. and Antonellis, V. – Relational Database Theory. The Benjamin/Cummings Publishing Company,

Inc., 1983.
[2] Connolly, T. and Begg, C. – Database Systems: A Practical Approach to Design, Implementation and

Management. Addison Wesley Longman Limited, 1999. ISBN 0-201-34287-1.
[3] Dasu, T.; Vesonder, G. T. and Wright, J. R. – “Data Quality through Knowledge Engineering”. In Proceedings

of the SIGKDD'03 Conference, Washington. August 2003. pp. 705-710.
[4] Galhardas, H.; Florescu, D.; Shasha, D.; Simon, E. and Saita, C.-A. – “Data Cleaning: Language, Model, and

Algorithms”. In Proceedings of the Very Large Databases Conference (VLDB). 2001.
[5] Kashyap, V. and Sheth, A. – “Schematic and Semantic Similarities Between Database Objects: a Context-

Based Approach”. Very Large Databases Journal, 5 (4). 1996. pp. 276–304.
[6] Kedad, Z. and Métais E. – “Ontology-Based Data Cleaning”. Lecture Notes in Computer Science, 2553, 2002.

pp. 137 – 149.
[7] Kim, W.; Choi, B.-J.; Hong, E.-K.; Kim, S.-K. and Lee, D. – “A Taxonomy of Dirty Data”. Data Mining and

Knowledge Discovery, 7. 2003. pp. 81-99.
[8] Meta Group – Data Warehouse Scorecard. Meta Group, 1999.
[9] Müller, H. and Freytag, J.-C. – “Problems, Methods, and Challenges in Comprehensive Data Cleansing”.

Technical Report HUB-IB-164, Humboldt University, Berlin, 2003.
[10] Oliveira, P.; Rodrigues, F. and Henriques, P. – “Limpeza de Dados: Uma Visão Geral”. In Belo, O.; Lourenço,

A. and Alves, R. (Eds.) – Proceedings of Data Gadgets 2004 Workshop – Bringing Up Emerging Solutions for
Data Warehousing Systems (in conjunction with JISBD’04), Málaga, Spain, November 2004. pp. 39-51 (in
Portuguese).

[11] Oliveira, P.; Rodrigues, F.; Henriques, P. and Galhardas, H. – “A Taxonomy of Data Quality Problems”. In
Proceedings of the 2nd International Workshop on Data and Information Quality (in conjunction with
CAiSE’05), Porto, Portugal, June 2005.

[12] Orr, K. – “Data Quality and Systems Theory”. Communications of the ACM, 41 (2). 1998. pp. 66-71.
[13] Pipino, L.; Lee, Y. and Wang, R. – “Data Quality Assessment”. Communications of the ACM, 45 (4). 2002. pp.

211-218.
[14] Rahm, E. and Do, H. H. – “Data Cleaning: Problems and Current Approaches”. IEEE Bulletin of the Technical

Committee on Data Engineering, 24 (4). 2000.
[15] Sattler, K. and Schallehn, E. – “A Data Preparation Framework based on a Multidatabase Language”. In

Proceedings of International Database Engineering and Applications Symposium (IDEAS 2001), Grenoble,
France. IEEE Computer Society. 2001. pp. 219-228.

[16] Ullman, J. and Widom, J. – A First Course in Database Systems. Prentice-Hall, Inc., 1997. ISBN 0-13-861337-
0.

[17] Wand, Y. and Wang, R. – “Anchoring Data Quality Dimensions in Ontological Foundations”. Communications
of the ACM, 39 (11). 1996. pp. 86-95.

