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Abstract: Modern business strategies are focused on customer satisfaction and especially on 
one-to-one marketing. Customer preferences and needs are inferred by analyzing information on 
their behaviour and attitudes. This information can be collected, stored, and analyzed by 
implementing data warehouse and CRM functionalities. However, companies also need market 
information about their competitors. A solution to obtain this information is to request data from 
syndicated data providers. The market of syndicated data is heterogeneous. Data providers own 
different data sets characterized by different quality and granularity. To obtain the required 
information, customers must buy multiple data sets from different providers and then clean and 
merge them. This paper proposes a broker architecture that works as an intermediary between 
users and syndicated data providers. On the basis of data quality and cost requirements, the 
broker builds the most suitable data set by integrating data from different providers. In the 
selection phase, the broker uses optimization and negotiation mechanisms in order to satisfy 
requirements. 
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1. INTRODUCTION 
Modern business strategies are focused on customer satisfaction. Marketing is aimed at predicting 
customer preferences and designing products and services accordingly. Customer preferences and needs 
are inferred by analyzing information on their behaviour and attitudes. Data warehouses, data mining 
functionalities, and CRM applications are commonly adopted by large enterprises to collect, store, and 
analyze customer data. However, companies also need market information about their competitors. A 
solution to obtain this information is to request data from syndicated data providers.   
Syndicated data providers play a key role in the modern information economy. Information can provide a 
competitive advantage and information quality is a determinant of the success of marketing initiatives. 
The market of syndicated data is heterogeneous and a major difficulty for enterprises is the selection of a 
data provider within a multitude of potential suppliers. Syndicated data are gathered with a variety of data 
collection mechanisms. These include surveys, questionnaires, polls, forums or transaction processing 
applications gathering data through various tracking devices. Usually, syndicated data providers are 
different from each other as they obtain data with different collection mechanisms and from different 
sources. Usually, a data source, such as a merchandising outlet, signs a data provisioning contract with a 
single provider. Therefore, companies are often forced to purchase data from different providers in order 
to have a complete picture of their customers’ behaviour and attitudes.  
 
 



 

When data can be obtained from multiple providers, companies often select their supplier inefficiently. 
Companies tend to interact with a limited set of data providers, which are often leader in the syndicated 
data market [8]. This excludes minor providers from the selection process, although niche players could 
outperform market leaders in the quality of specific data sets. This paper aims at supporting organizations 
in the supplier selection phase. We propose the use of an intermediary infrastructure, called broker, for 
the selection and provision of high quality syndicated data. On the basis of the requested data and of the 
quality and cost requirements associated with the request, the broker finds the most suitable solution by 
integrating information among different available data sets owned by different providers and suggesting 
the set of best data sets to the client. In order to guarantee the efficiency of the selection phase, the broker 
is based on optimization and negotiation mechanisms based on quality and cost parameters.  
The paper is organized as follows. Section 2 presents the quality broker architecture, justifies the data 
quality dimensions that are considered in the paper and discusses the data model and the query 
mechanisms implemented by the broker. Section 3 focuses on the brokering methodology and presents all 
the actions that the broker performs in order to satisfy requests. Section 4 provides an example to clarify 
the selection process and outcome. Section 5 reviews alternative approaches in the literature. Conclusions 
are drawn in Section 6. 

2. A QUALITY-ORIENTED REPRESENTATION OF SYNDICATED DATA  
The broker is supposed to receive a query from a customer specifying the data request along with quality 
and cost requirements (Figure 1). The broker processes the query by selecting the most suitable set of data 
sets. The next section discusses the data model supporting the specification of both queries and responses.  
 

 

2.1 The data model  
The broker is modelled according to the Local-As-View (LAV) perspective [11]. Accordingly, the data of 
a provider are represented as views of a global schema, called broker schema. The broker knows both this 
global schema and how to build the global data set by integrating the data of all providers. Figure 2 shows 
the global data set. Data are divided into fragments fek, organized into E rows re and K columns ck. |fek| 
indicates the cardinality of data fragment fek, i.e. the number of data values contained in fek. The broker 
knows the cardinality of all data fragments.   
 
 

Figure 1- Broker architecture



 

 
Figure 2- Representation of query Q* on the global data set GD 

 
Users specify: 
- A query Q on the global schema representing the data set that is requested. Q is based on selection and 

projection operations. The projection operation selects a set of columns from the global schema, while 
the selection operation identifies the rows that satisfy the selection condition (see Figure 2).  

- The data quality requirements that should be satisfied by the data set extracted by query Q. Data quality 
requirements are specified for different quality dimensions QDr, e.g. accuracy, completeness, and 
timeliness, described in Section 2.2. Users specify the minimum level of quality that is considered 
acceptable, referred to as *

rQD . Users can also express preferences among quality dimensions by 

specifying weights wr, with 1 r R, such that 
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q* on the overall value of quality q is also specified. 
- Price requirements in terms of the maximum price that they are willing to pay, Price*. 
 
On the basis of available data sets, the broker identifies the result Q* of query Q. Q* is a set of fragments, 
according to the global schema representation illustrated in Figure 2.  
 
The data sets that can contribute to build the response Q* are referred to as id  (see Figure 3). Each data 
set represents the smallest subset of data that can be supplied by a provider including all the data values 
owned by the provider that satisfy Q. We assume that data quality is homogeneous within each data set 
(HP1). 
A data set di is defined as a set of fragments. For each di, we define the number of its elements |di| as the 
sum of the cardinalities of all fragments in di. In general, the query result Q* can be built by using 
multiple combinations of id . The broker identifies all data sets that can contribute to satisfy the user’s 

request, either globally or partially. A query plan is defined as a vector 1 2, ... Nx x x x=
r

 such that: 
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Let { }| 1,...,iD d i N= =  be the set of all data sets, where N represents the total number of data sets 
available in the system. The size of the solution domain has an order of magnitude equal to 2N-1. The goal 
of the optimization algorithm presented in Section 3.2 is to identify the optimum query plan x

r
* without 

exploring all possible solutions. 
Query plans are identified by considering all data sets di available in the system (see Figure 3). As 
represented in Figure 4, data sets can overlap. With odu, we denote the overlaps among data sets di.  
 

 

 

Figure 3 – Different data sets including data satisfying Q* 

Figure 4 - Overlaps among data sets



 

The broker is in charge of managing the relationship with providers, but has no visibility on data values. 
The broker is also supposed to receive the average value of quality QDr(di) of each data set from 
corresponding providers. We assume that providers have the responsibility for the evaluation of data 
quality, i.e. each provider has implemented data quality tools for the evaluation of data quality along the 
dimensions considered in this paper.  
 

2.2 Data Quality Dimensions   
The quality dimensions considered in this paper are accuracy, completeness, and timeliness. However, 
our model can be extended to consider other quality dimensions. Accuracy and completeness assess data 
along their numerical extension and correctness. Timeliness evaluates the validity of data along time. 
Accuracy, completeness, and timeliness are objective dimensions and, therefore, are suitable for a 
quantitative evaluation. These three dimensions constitute a minimal set that provides sufficient 
information about the suitability of data along the process in which they are involved. In the following we 
clarify the definition associated with each data quality dimension.       
Different definitions of accuracy are provided in the data quality literature [15][18]. In the following, we 
adopt a measure of accuracy associated with data sources, defined as the ratio between the number of 
correct values and the total number of values available from a given source [15]. This definition supports 
the mathematical operations that involve the accuracy dimension discussed in Section 3.1.  
The definition of completeness is consistent across research contributions. In [15] completeness is 
associated with data values and is defined as the degree to which a specific database includes all the 
values corresponding to a complete representation of a given set of real world events as database entities.  
Timeliness is defined as the property of information to arrive early or at the right time [5]. We measure 
timeliness as a function of two elementary variables, currency and volatility [2][3]. The measure of 
timeliness is defined as in [2]: 

max 1 ;0
s

CurrencyTimeliness
Volatility

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, 

where exponent s is a parameter necessary to control the sensitivity of timeliness to the currency-volatility 
ratio. With this definition, the value of timeliness ranges between 0 and 1. 
Currency is not provided a standard definition in the literature. Currency is usually defined as a time 
measure [2][3][18]. In this paper we use the definition provided in [3], in which currency is defined as the 
time interval that goes from the time when data are updated to the time when data are used. Volatility, is 
the time interval measured as the average time length for which data remain valid [2]. Volatility is 
considered a static property that is dependent of the frequency of updates.  
 
Note that currency and, consequently, timeliness, have an influence on both accuracy and completeness. 
For example, delays in propagating changes across databases are a cause for either inaccuracy or 
incompleteness [4]. If new data are created in a database, other databases may be incomplete until 
changes are propagated. If existing data are updated, other databases are inaccurate until propagation. The 
higher the number of changes, the lower the accuracy and completeness of data.   
 
With these definitions, accuracy, completeness, and timeliness are positive quality dimensions, i.e. the 
higher is their value, the higher the quality perceived by the end user. This characteristic allows us to use 
the generic notation QDr to refer to any quality dimension in the mathematical model presented in Section 
2.3 and to introduce “greater or equal to” constraints. 
 

 



 

2.3 Evaluation of the quality of data from multiple sources  
To support the selection of the most suitable set of suppliers, the broker must calculate the overall quality 
of each query plan. We assume that QDr(di) is normally distributed among data fragments fek contained in 
data set di (HP1). The quality of a query plan is indicated as ( )rQD x

r
. In order to calculate ( )rQD x

r
, let 

us consider the set V of overlapping data sets. In our model, we define an overlap among data sets as:  
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Where ODu is a member of the power set 2V such that |ODu| >1 and u varies between 1 and U=2|V|-1-|V|. 
By definition, fragments belonging to Q* will be covered by at least one data set.  
 
a) If V is the empty set, i.e. there are no overlaps among di, then:   
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Where |di Q*| represents the number of data values (i.e., the cardinality multiplied by the number of 
attributes) that data set di provides to build query result Q*. 
 
b) If V is different from the empty set, i.e. there are overlaps among di, then for each odu≠  it is necessary 
to identify the set di’ that is a subset of di which does not overlap with any other data set:  
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The QDr(di’) value is calculated from QDr(di) on the basis of HP1 of uniform distribution.  
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The quality dimension evaluation of the overlapped parts is determined as follows, considering the data 
sets associated with the best data quality. For each odu, we select the data set di*  ODu which maximizes 

the overall quality q=
1
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Next, we identify the set odu’ that does not overlap with other overlapping data sets:  
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Then QDr(odu) is given by: 
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c) Once that  i,u QDr(di) and QDr(odu) have been calculated, QDr ( x

r
) is given by: 
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d) QDr ( x
r

) provides an aggregate value of quality dimensions QDr for query plan x
r

. Since we analyze 
an aggregate entity, the same value can correspond to different distributions of the value QDr on the data 
sets. For example, let us compare a query plan ( x

r
)1 in which all the data sets are characterized by an 

average quality with another query plan ( x
r

)2 in which high quality data sets are alternated with very low 
quality data sets. ( x

r
)1 and ( x

r
)2 can be associated with the same aggregate value QDr and in a preliminary 

analysis they will be considered as equivalent solutions. It is instead clear that for the users the query plan 
( x
r

)1 is a better solution than ( x
r

)2. In order to avoid this critical situation and to provide to the users the 
most suitable solution along their needs, we introduce a new property called uniformity. Uniformity is 
defined as the degree with which a data quality dimension value QDr varies in the data sets that compose 
a query plan x

r
. The measure of the uniformity is given by: 
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In order to be considered, a query plan has to be characterized by a uniformity value lower than a 
specified value *rUniformity . In case two or more query plans are characterized by similar values of the 
quality dimension QDr , it is preferable to select the query plan that is associated with the lowest 
uniformity value(see Section 3.1).  
 
e) The broker calculates Price ( x

r
), the price of the solution as: 
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3. A DATA QUALITY BROKERING METHODOLOGY 
A query plan is considered feasible if it satisfies both quality and price constraints. A query plan is 
optimum if it is feasible and maximizes quality. The goal of the broker is to select the optimum query 
plan x

r
*. If no feasible plans exist, the broker can negotiate data quality characteristics with syndicated 

data providers. Providers can improve the quality of their data with an additional cost. Negotiation 
identifies a new set of candidate plans which may provide a solution satisfying constraints (see Figure 5).  
Our optimization algorithm is based on the tabu search approach, while the negotiation process is based 
on multi-party, multi-attribute, single-encounter negotiation. The next section discusses the optimization 
model. The optimization algorithm is presented in Section 3.2. The negotiation process is explained in 
Section 3.3. 
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Figure 5 – Data quality brokering methodology   

 

3.1 Formulation of the optimization problem 
The identification of the optimum query plan x

r
* can be formalized as follows: 
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                                                                   ( ) *q x q≥
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We consider the problem of minimization of the query plan price with quality constraints instead of the 
dual problem of maximization of quality with a price constraint.  
In this ways, if P1) has no feasible solution, the optimization domain can be extended by the negotiation 
process.  Vice versa, if the dual problem has no feasible solution (i.e., all of the possible combinations of 
the data sets have a price greater than Price*), the negotiation process is not effective, since syndicated 
data providers can only improve the data quality by performing data cleaning procedures and increasing 
data sets prices.   
Note that, if the price of the optimum solution of P1) is greater than Price*, then query Q cannot be 
satisfied, since no combinations of data sets have a price lower than Price* while satisfying quality 
constraints. 
Problem P1) is an integer problem with a linear objective function and non linear constraints (constraint 
families (1)-(3)).  If the end user does not specify a completeness constraint, the following constraint is 
introduced: 
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which guarantees that the selected data sets cover the result Q* (see Figure 3).   
Furthermore, constraint (2) can be strengthened as follows: 
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constraint (2’) can be obtained by adding up each constraint (1) multiplied by the corresponding weight 
wr. Problem P1) is NP-hard, since it represents an extension of a set covering problem (see [14]). 



 

3.2 Optimization algorithm 
Our optimization approach is based on the tabu search (TS) algorithm [9]. Tabu-search is a meta-heuristic 
that guides a local search procedure to explore the solution space beyond local optimality. Let X denote 
the set of feasible solutions of our problem. To each x

r
   X, TS associates a subset of X, called 

neighborhood of x
r

 and denoted with N( x
r

). The neighborhood of x
r

 contains all the solutions that can be 
obtained with simple modifications of x

r
, called moves. Given a feasible solution x

r
, TS selects the 

solution with the best value of the objective function within a subset of N( x
r

). The selection of a solution 
in N( x

r
) is forbidden if that solution has already been selected in a previous iteration. Forbidden solutions 

are called tabu. To identify a solution, TS records the necessary information, called attributes, in a 
memory structure, called tabu list. The length of the tabu list, called tabu-tenure T, is limited and the tabu 
list is managed with a first in first out policy. The tabu status of a solution can be overruled if certain 
conditions, called aspiration criteria, are verified. A common adopted aspiration criterion accepts a tabu 
solution if its objective function is strictly better than that of all the solutions that have already been 
explored. TS stop criteria are based on total elapsed time or total number of iterations. 

The query optimization algorithm is reported in Figure 6. First an initial solution x
r

 is built (step 1 in 
Figure 6). If the initial solution is not feasible, then x

r
 is modified by the FindFeasibleSolution procedure 

(step 3 in Figure 6), which may start the negotiation process. If x
r

 is still unfeasible, then the algorithm 
returns a null solution (step 5 in Figure 6). If x

r
 is feasible, the TabuSearch optimization procedure is 

performed and the query result Q* is computed by the Query procedure (step 8 in Figure 6). 
In the next section, the procedure FindInitialSolution is presented. In Section 3.2.2 we introduce the 
moves that implement the TabuSearch optimization procedure. The same moves are adopted by the 
FindFeasibleSolution procedure, which is discussed in Section 3.2.3.  
 

1. x
r
←FindInitialSolution(); 

2. if x
r

 is unfeasible then 
3.                             x

r
←FindFeasibleSolution( x

r
); 

4. if x
r

 is unfeasible then  
5.     Q*← ;  
6.     else{ 
7.                             x

r
←TabuSearch( x

r
); 

8.                             Q*←Query( x
r

);  
9.                             } 
10. return Q*;    

Figure 6 – Query optimization algorithm   
 
3.2.1 Building an initial solution 
The goal of the FindInitialSlution procedure is to find a solution that covers the result Q*. First, data sets 

di are sorted by non increasing value of 
( )

*
( )

r r i
r

i
i

w QD d
d Q

Price d
∩

∑
. A data set is added to the initial 

solution following this order if the completeness (or the coverage of Q*) is improved until the 
completeness constraint (or constraint (4)) is satisfied (or all data sets are added to the initial solution).  
This method favours data sets with a higher quality to cost ratio or with greater size. The complexity of 
the procedure is given by the sorting algorithm and is O(N log N). 



 

3.2.2 Tabu search optimization 
The neighbourhood of a solution is defined by the following moves: 

- add a data set di to the current solution, i.e. set xi=1, 
- remove a data set di from the current solution, i.e., set xi=0, 

Quality constraints (1)-(3) have to be evaluated in the exploration of the neighbourhood. Note that the 
overlapping data sets can be obtained from the current odu without re-computing the whole power set 2V 
(see Section 2.3). The search is guided by a tabu-search meta-heuristic in which only the short-term 
memory mechanism has been implemented [9]. The tabu list is implemented as a vector whose elements 
tli store the latest iteration that has updated decision variable xi. Let l be the current iteration of the tabu 
search. A move is considered tabu if l-tli≤ T, where T represents the maximum length of the tabu list. The 
complexity of the neighbourhood exploration is O(N). 
 

3.2.3 Finding a feasible solution 
The TS algorithm requires an initial feasible solution which is the starting point of the neighborhood 
exploration. If the initial solution identified by the greedy algorithm discussed in Section 3.2.1 is 
unfeasible, then the procedure FindFeasibleSolution() reported in Figure 7 is executed. 
 

1. n←1; 
2. CONTINUE←TRUE; 
3. While (n ≤ nMax) and CONTINUE{ 
4.     m←1; 
5.     While (m ≤ mMax) and ( x

r
 is unfeasible) { 

6.        Identify the most violated constraint k( x
r

) ≥ k* among (1)-(4’). 
7.        N( x

r
)←EvaluateNeighborhood( x

r
); 

8.        Identify x
r

’ N( x
r

) such that 
( ) *

*
k x k

k
−

r

 is maximized and no constraint is violated; 

9.        x
r
← x
r

’; 
10.        m←m+1; 
11.      } 
12.      if ( x

r
 is unfeasible) and (Price( x

r
) ≤ Price*) then 

13.                                      D’←Negotiate( x
r

); 
14.                                      D←D’ D; 
15.                                      CONTINUE←TRUE; 
16.                                       n←n+1; 
17.                             else{ 
18.                                      x =

r
0 

19.                                      CONTINUE←FALSE; 
20.                              } 
21. } 
22. return x

r
; 

Figure 7 – FindFeasibleSolution procedure 
At each iteration, the most violated constraint in percentage among (1)-(4’) is identified k( x

r
).  Then, the 

neighborhood  introduced in Section 3.2.1 is explored and the move that allows the highest percent 
improvement of the constraint (without causing other violations) is selected (steps 4-9 in Figure 7). If a 
feasible solution cannot be found, but the price of the current solution is lower than the constraint Price* 
(step 10), then the negotiation procedure is executed, higher quality data sets are obtained (step 13) and 
the neighborhood exploration is restarted in a broader solution domain (steps 14-16). The algorithm is 
repeated until a feasible solution is found or the maximum number of iterations is reached. 



 

Note that, if the current solution has a price higher than Price*, i.e. both quality and price constraints are 
violated, then we argue that no feasible solution exists. The search is stopped (step 18) and the broker 
returns an empty set as result of Q*.  
 

3.3 The negotiation process 
According to Figure 7, negotiation is required when a solution violates data quality constraints, while 
satisfying the price constraint. The goal of the negotiation process is to generate new set of data fragments 
D’ with higher quality. Our negotiation algorithm is an adaptation of the service-oriented algorithm 
described in [7]. Two types of negotiation are started depending on constraint violations: 

- Case 1: one among constraints 1-3 is the most violated. In this case, negotiation will focus on 
price and on the most violated data quality dimension. 

- Case 2: constraint 4 is the most violated; in this case, negotiation will focus on price and on all 
quality dimensions, i.e., completeness, accuracy and timeliness. 

 
The negotiation process can be always considered multiparty, multiattribute, and single encounter. 
Multiple parties are involved, i.e., all providers supplying a data set di in xr  and the broker. Negotiation is 
multiattribute since at least price and a data quality dimension are negotiated. Finally, negotiation is 
single encounter, since each broker-provider negotiation is considered as an independent bilateral 
bargaining problem. Thus, the whole negotiation process is defined as a set of parallel bilateral bargaining 
sessions between the broker and each provider. 
 
The specification of an automated negotiation process relies on three elements [10]: 

- Negotiation objectives: they define the features of the object or service that is negotiated. 
- Negotiation protocol: it identifies the participants involved in the negotiation process and the 

actual protocol adopted in the process, in terms of allowed messages and message flow patterns 
between the parties. 

- Decision models of negotiation parties: they define the behaviour of negotiation parties in terms of 
strategies to produce offers and counter-offers, methods to evaluate offers, and rules to determine 
whether an offer cab or cannot be accepted. 

 
Case 1 and 2 described above provide our negotiation objectives. The messages exchanged by negotiation 
parties and their decision models are formalized in the next section. 
 
3.3.1 Decision models of broker and providers 
First, it is important to identify the value ranges of negotiation attributes. According to the outcome of the 
optimization process, the difference between the maximum price Price* and the price associated to the 
unfeasible query plan xr  represents a price gap that the broker can exploit during negotiation. This gap is 
partitioned among the providers that contribute to solution xr . The fraction of price gap that is allocated to 
each provider is proportional to the fraction of data provided to build Q*. Therefore, the price gap PG(di) 
considered for the negotiation on data set di is defined as: 

*
*

*( ) ( ( )) i
i

d Q
PG d Price Price x

Q

∩
= − ⋅r

. 

In Case 1, a single quality dimension QDr is negotiated. Let us consider the accuracy dimension and 
define the variable QD1 as Acc. When negotiating with the zth provider, the broker has to fill a gap 
between the objective value of accuracy Acc* and the actual value Acc( xr )associated with the unfeasible 
starting solution. In Case 2, the gap is identified by the aggregate quality value q* and the corresponding 
aggregate value q( xr ) of the starting solution. The gap is partitioned among the providers according to 



 

their contribution to Q* and among quality dimensions according to weights wr. In Case 1, the gap 
allocated to data set di is defined for quality dimension QDr as follows: 
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*
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r i r r

d Q
QDG d QD QD x
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In Case 2, for each quality dimension the broker allocates a quality gap that is weighed according to the 
importance attributed by the user to each quality dimension: 

 ( )
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*
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Negotiation ranges are shown in Table 1. The upper bound of each quality dimension is related to the 
providers’ ability to perform data cleaning and increase quality, while the upper bound of price is the 
price associated with the data cleaning activity by the provider (Pincr(di)). By adopting a quadratic model 
of the cost of data cleaning (see [6]), the new price Price(di’) is evaluated as: 
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where z
rα  are parameters describing the zth provider. 
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Table 1-Definition of negotiation ranges 
 
In the remainder, price and quality values are considered generic negotiation attributes ah, with h=1,2 in 
Case 1 and h=1,…,R+1 in Case 2. H is the number of negotiated attributes. We refer to min

ha  as the lower 

bound of a generic negotiation attribute h; conversely, max
ha is the upper bound (e.g., Price(di)+PM(di) for 

the broker and PriceMAX(di) for the provider). During the negotiation process, an offer is represented as a 
vector A

r
 of values ah. In Case 1, A=(a1,a2), h=1 identifies price and h=2 the most violated quality 

dimension; in Case 2, A=(a1,a2,…,aH), where a1 is price. 
The decision model of negotiation parties requires the specification of utility functions which are used by 
each party to evaluate their counterpart’s offer and make an accept of reject decision. In this paper, we 
consider a global utility function defined as the weighed sum of utility functions defined for each 
negotiated attribute: 

 ( ) ( )
1

H
B B B

h h h
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, for the broker B, 
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H
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=
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, for the zth provider, 



 

where 
1

1
H

h
h

ω
=

=∑ , for both the broker B and the zth provider. The zth provider sets the value of weights z
hω  

according to its own business strategies. The values of B
hω  are calculated as follows. From the broker’s 

perspective, price becomes an important negotiation attribute when the price gap is low. Once the weight 
associated with the price is evaluated, weights related to data quality dimensions can be directly derived 
from the w weights, already defined to measure the user preferences along different quality dimensions. 

Thus, 1 *
( )1B iPG d

Price
ω = − , in every case. In Case 1, 2 11B Bω ω= − , while in Case 2, ( )11B B

h rwω ω= − ⋅ .  

In the latter case, it is easy to verify that B
hω  add up to 1: 
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Functions ( )h hV a  can assume two different forms. When utility increases as a consequence of an increase 
of a negotiation attribute, ( )h hV a  is expressed as: 
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. 

For instance, the broker attributes greater utility to higher values of data quality dimensions and, 
similarly, the provider attributes greater utility to a higher price. On the contrary, when the utility 
decreases as a consequence of an increase of a negotiation attribute, such as price for the broker, ( )h hV a  
is expressed as: 

( ) ( )
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1min max min min max

max

1

( ) 1
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h
h h

k h h h h h h h h

h h

a a
V a a a a a a a a
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⎧ ≤⎪⎪⎡ ⎤= − − − < <⎨⎣ ⎦⎪ ≥⎪⎩

. 

The γh parameter controls the trend of the ( )h hV a  function, as shown in Figure 8. In case of increasing 
utility values, for lower values of γh negotiation parties are satisfied only if the offer to be evaluated is 
close to the upper bound associated with the negotiation parameter. Obviously, utility remains high even 
if the negotiation parameter exceeds its upper bound. 



 

 
(a) V increasing 

 
(b) V decreasing 

 
Figure 8 – Sample utility functions (ah

min=5 and ah
max=12) 

 
In addition to utility functions, the decision model of negotiation parties is defined by their strategies, that 
is the set of rules applied to generate offers and counter-offers. For the sake of clarity, it is useful to 
describe the typical scenario of a bilateral bargaining between the broker and the zth provider. Let us 
suppose that the broker makes the first offer, i.e., the broker proposes a vector of values A

r
 to the 

provider. A global deadline tmax is associated with each bargaining process. Time instants are associated 
with offers and counter-offers: the first offer is posted by the broker at time t=0, the provider’s counter-
offer at t=1, the broker replies at t=2, and so on. The process ends when a participant accept the last offer 
made by the counterpart or when time exceeds the deadline tmax. In this latter case, an agreement is not 
reached by negotiation parties and the broker cannot introduce a new data fragment in D’. 
Let us consider negotiation at time t. Let us suppose that the broker has just sent an offer 1tA −

r
 to the 

provider. The provider defines counter-offer At according to its own strategy and accepts the broker’s 
proposal 1tA −

r
 if the following condition is verified: 

 ( ) ( )1
z z

t tV A V A− ≥
r r

, 

otherwise it will post counteroffer At. 
The evaluation of each term t

ha in At is different when considering attributes with increasing or decreasing 
utility values, in particular: 
 ( )( ) ( )min max min1t z

h h h h ha a g t a a= + − ⋅ −  

if utility is increasing, and: 

( )min max min( )t z
h h h h ha a g t a a= + ⋅ −  

if utility is decreasing. 
The function ( )z

hg t  measures the time-dependent degree of concession of the provider on the hth 
negotiation attribute and is expressed as: 

 ( )
1
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(1 )

z
h

z z z
h h h
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The trend of ( )z
hg t  for different values of the z

hβ  parameter is shown in Figure 9. Higher values of z
hβ  

are associated with a more conceding behaviour, since the provider will move faster towards values of the 



 

negotiation attribute that are closer to the broker’s offer, while lower values of z
hβ  are associated with a 

non conceding behaviour, generally referred to as boulware in the classical negotiation literature [10]. 
Similar functions ( )B

hg t  are defined to characterize the broker’s strategy. 
The broker’s first offer is assembled by considering upper bounds for negotiation parameters with 
increasing utility values and lower bounds for negotiation parameters with decreasing utility. According 
to this strategy, the utility value associated with the first offer will be maximum. Similarly, if the provider 
posts the first proposal, it will use its own upper and lower bounds of negotiation attributes. 
 

 
Figure 9- gh(t) for kh=0.1 and tmax=10 

 
 
In summary, the provider’s decision model is fully specified by assigning a value to: 

- z
hω , for the global utility function; 

- z
hγ , for the utility functions defined for individual negotiation attributes; 

- z
hβ , defining the degree of concession on each negotiation attribute. 

The broker’s decision model is specified by: 
- B

hγ , for the utility functions defined for individual negotiation attributes; 

- B
hβ , defining the degree of concession on each negotiation attribute. 

4. A RUNNING EXAMPLE 
In this section, we present a simple test case showing how optimization and negotiation are interleaved in 
order to identify the final query plan.  
The end user requires data on customers which access financial services by means of mobile phones. Let 
us consider the following query Q: provide the number of banking and trading transactions and the 
corresponding average value made by customers whose age is in the range 30-50 years, such that the 
maximum price is 8.000$, while completeness and accuracy are greater than or equal to 0.9 and 0.8, 
respectively. Let us assume that weights w1 and w2 for completeness and accuracy are equal to 0.5. Query 
result Q* and the available data sets provided by four different syndicated data providers are reported in 
Figures 3 and 4, where: 
- d1 includes banking and trading transaction data for customers less than 40 years old; 
- d2 provides data on banking transactions for customers less than 45 years old; 
- d3 provides data on trading transactions for customers living in the United Kingdom; 
- d4 includes data on trading transactions. 



 

The price, completeness and accuracy of data sets are reported in Table 2, while the characteristics of 
overlapping data sets are reported in Table 3. Let us assume that |Q*|=900. In the providers’ pricing 
models we set 10z

rα =  for each QDr and for each provider z.  
 
 

Data set Price Completeness Accuracy *
id Q∩ ( )

*
( )

r r i
r

i
i

w QD d
d Q

Price d
∩

∑

d1 2.000 $ 0.8 0.7 500 0.375
d2 2.200 $ 0.85 0.85 400 0.309091
d3 2.500 $ 0.96 0.85 400 0.2896
d4 3.000 $ 0.75 0.8 300 0.155

Table 2 – Characteristics of data sets 
 

Overlapping 
data set 

Completeness Accuracy *
uod Q∩  

od1 0.85 0.85 200 
od2 0.95 0.85 200 
od3 0.75 0.8 300 
Table 3 – Quality values of overlapping data sets 

 
The initial solution includes data sets d1, d2, and d3 with a $ 7.000 total price and with completeness and 
accuracy equal to 0.88 and 0.78, respectively. Both completeness and accuracy constraints are not 
fulfilled, and accuracy is the most violated constraint. The initial solution is improved by the 
FindFeasibleSolution() procedure which adds d4 and removes d2 from the initial plan. In this way, the 
accuracy constraint is satisfied while the completeness constraint remains violated (the plan xr =<1,0,1,1> 
has completeness 0.854 and accuracy 0.8). Then, the negotiation process is started. Negotiation 
parameters are reported in Table 4. Negotiation with P1 and P4 leads to two new data sets d5 and d6 which 
replace d1 and d4 in the current plan xr =<0,0,1,0,1,1> and are characterized by the attributes reported in 
Table 5.   
 

 
Priceβ  Completenessβ ,price completenessγ  

Broker 4 1 1 
P1 3.3 3 1 
P3 0.05 0.05 1 
 P4 14 0.5 1 

Table 4 – Negotiation parameters 
 
 

Data set Price Completeness Accuracy
d5 2.250 $ 0.87 0.7 
d6 3.100 $ 0.92 0.8 

Table 5 – Characteristics of data sets d5 and d6 
 
The new plan is feasible since completeness evaluates to 0.92 and total price is 7.850$. The optimization 
process is started and the TS algorithm terminates by providing the optimum solution xr *=<0,1,1,0,0,1>, 
i.e. d5 is replaced by d2, with a total price equal to $ 7.800. Completeness and accuracy are equal to 0.92 
and 0.83, respectively.  



 

5. RELATED WORK 
Architectures for the data quality management have been designed in order to evaluate and improve data. 
In the particular context of Cooperative Information Systems (CIS), a Data Quality Broker has been 
proposed for the selection of the best data sources satisfying quality requirements [16]. The broker 
receives a user request and sends corresponding data requests to the organizations belonging to the CIS. 
The broker is based on a GAV (Global As View) approach, since it is responsible for data retrieval and 
reconciliation. Reconciliation is performed by choosing the data values characterized by highest quality. 
The paper does not provide a mathematical model for the calculation of overall quality and does not 
consider price. The optimization of the query plan has been addressed in [1], [12], and [13]. Authors in 
[1] have considered a linear formulation of P1) which is obtained by considering a priori all possible 
intersections of overlapping data sets and by pre-computing corresponding quality values. The problem is 
solved by state of the art integer linear solvers and the optimum solution is identified. However, their 
formulation is not appropriate for our objectives. If no feasible solution exists, then the negotiation 
process identifies a new set of candidate solutions with different quality characteristics. In this way, after 
a negotiation process, the number of data sets N increases, the number of overlapping data sets V also 
increases (see Section 2.3) and corresponding quality values have to be re-evaluated. Since the number of 
evaluations (U=2|V|-1-|V|) grows exponentially with the size of the problem, the approach proposed in [1] 
has a limited scalability. Vice versa, our neighborhood exploration considers data overlaps among the 
data sets of the current solution only and, as discussed in Section 3.2.2, the quality value of a new feasible 
solution can be evaluated from the current one. Authors in [12] and [13] consider the maximization of 
data quality with no price constraints. They formulate a non linear problem which is solved by 
implementing a branch and bound algorithm. Since no price constraint is introduced, they can also 
exclude low quality data sets a priori, which leads to sub-optimal solutions. With our price constraint, low 
quality data sets cannot be excluded a priori and the trade off between quality and price must be 
evaluated. Very high quality data sets could lead to unfeasible solutions, while low quality data sets could 
provide useful data. The branch and bound algorithm identifies the optimum solution of the problem, but 
the worst case execution time grows exponentially with the number of nodes of the underlying decision 
tree [20], which is obtained when no feasible solution exists. The approach proposed in [12] and [13] can 
solve problems with up to 25 data sets within reasonable time constraints and, hence, is not suitable for 
our goals. 
We have started the implementation of a TS algorithm. In general, the TS solution is sub-optimal and 
quality cannot be guaranteed. However, if no feasible solution is found within a reasonable time, the TS is 
stopped and the negotiation process is started. Our heuristic algorithm is also more effective than a 
standard branch and bound technique in the search of an initial feasible solution. By interleaving heuristic 
techniques and negotiation, our approach can efficiently identify a feasible sub-optimum solution for 
query Q.   

6. CONCLUSIONS AND FUTURE WORK 
We have proposed a broker architecture which identifies the quasi-optimum query plan to access data 
from multiple syndicated data providers, with price and quality constraints.   
Future work will introduce a more complex data model, in order to manage data characterized by a lower 
granularity, and will consider the analysis of the performance of our approach, both in terms of the quality 
of the heuristic solution and execution time. Furthermore, column generation techniques will be 
implemented in order to identify the global optimum of the problem.  
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