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Abstract: The economic consequences of data quality are partly determined by the 
relationship between the quality of the input data and the quality of the information that 
an information system outputs. However, the relationship between an information 
system’s data accuracy and its output information accuracy is hard to assess. A popular 
belief on this issue is reflected by the saying “garbage in garbage out”, namely, the 
accuracy of the output of an information system is positively and tightly linked to the 
accuracy of its input. Yet, this belief has not been validated.  

 
The relationship between an information system’s input accuracy and its output 

accuracy is the subject of this paper. A traditional assumption in research of the 
relationship between input accuracy and output accuracy is that errors are independent. 
Motivated by a belief that dependence between errors is, in fact, common, this research 
examines the potential effect of the dependence factor on the relationship between an 
information system’s input accuracy and its output accuracy. The main research questions 
are: (1) How does dependence between errors affect the relationship between input 
accuracy and output accuracy? (2) Is the relationship between input accuracy and output 
accuracy positive? An earlier paper [1] analyzed these questions applying the information 
structure model, rooted in statistical decision theory. The inquiry in [1] was limited, 
however, to an information system that uses a single input for calculating the output. This 
paper extends the scope of the investigation to situations in which an information system 
produces output using multiple rather than a single input. The inquiry applies simulations 
for that purpose.  
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INTRODUCTION 
The economic consequences of data quality are partly determined by the relationship between the quality 
of the input data and the quality of the information that an information system outputs. This is because 
data often undergo various processing before any actual use, such that quality may change. However, the 
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relationship between an information system’s data accuracy and its output information accuracy is hard to 
assess. The popular belief is reflected by the saying “garbage in garbage out”, namely, the accuracy of the 
output of an information system is positively and tightly linked to the accuracy of its input. Yet, this 
belief has not been validated.  

The relationship between an information system’s input accuracy and its output accuracy is the subject of 
this paper. A traditional assumption in research of the relationship between input accuracy and output 
accuracy is that errors are independent. This assumption has the advantage that it greatly simplifies 
statistical-mathematical approaches. However, there is evidence that this assumption may not always be 
true in practice. In fact, there are numerous reasons why errors would not be independent in many cases. 
When the source of information is human, lack of knowledge can cause dependence between errors, 
reflecting the person’s knowledge or skill gaps. People, as well as organizations, may choose strategies 
that would direct the provision of false information on numerous details. Computer input devices may 
suffer from defects that would cause dependence between errors in different data items. Conversion tables 
between information systems may have “bugs” such that when one output is incorrect it would go 
together with errors in many other outputs.  And so on.  

Motivated by a belief that dependence between errors is, in fact, common, my research examines the 
potential effect of the dependence factor on the relationship between an information system’s input 
accuracy and its output accuracy. The main research questions are: (1) How does dependence between 
errors affect the relationship between input accuracy and output accuracy? (2) Is the relationship between 
input accuracy and output accuracy positive? The belief in a positive link will be called next the 
“monotonicity” assumption.  

An earlier paper [1] analyzed these questions applying the statistical decision theory-based information 
structure model [7][12]. The analysis in [1] showed that in situations in which the relationship between 
the input and the output cannot be captured by a deterministic function (e.g., forecasts), dependence 
between errors in the input and “unexplained errors” can have powerful effect on the relationship between 
input accuracy and output accuracy. In particular, the relationship between input accuracy and output 
accuracy is not necessarily positive. That paper [1] also illustrated conditions of dependence between 
errors in the input and unexplained errors through a series of scenarios that referred to practical settings.  

The inquiry in [1] is limited, however, to an information system that uses a single input for calculating the 
output. The current paper illustrates the results in [1], and extends the scope of the inquiry to situations in 
which an information system produces its output using multiple inputs. An additional class of dependence 
between errors that is studied in this context is dependence between errors in different inputs. This paper 
applies simulations for that purpose. The simulations portray simple information systems whose inputs 
are price, sale quantity, and/or cost data. If, for example, due to a general data timeliness issue, an 
occasional human error, or the like, input data are based on older customer orders instead of the most 
current ones, errors in different inputs may not be independent, because price, sale quantities, and cost 
data are often related.  

The following section reviews related literature. Then, I describe the conceptual framework that underlies 
this study. The simulation scenario and method are described next. A subsequent section introduces the 
results. The final section discussed the results and future research directions. 

 

 
LITERATURE REVIEW  
A common understanding of the term accuracy in MIS research views a record as accurate if it is in 
accord with the actual value [2], [14].  

Data quality research has traditionally assumed that errors are random or independent. Ballou and Pazer 
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[1985] propose a model for tracking numeric data errors through a system, to assist with estimates of the 
impact of these errors on the output. Their model takes into account both processing errors and errors due 
to input inaccuracy, though the emphasis is on how processing magnifies or dampens data errors. Ballou 
et al.[1998] present a methodology for estimating various quality dimensions of the output information. 
Output quality is estimated using a model that is similar to that in [Ballou and Pazer, 1985]. Parssian et al. 
[2004] present a methodology to help with assessments of the accuracy and completeness of outputs of 
relational algebra operations—selection, projection, and Cartesian product—given measures of the quality 
of source data. Ballou and Pazer [1990] analyze the impact of errors in estimates of decision criteria on 
decision accuracy. They focus on binary decisions in decision processes that apply a multi-criteria, 
conjunctive, satisficing decision rule. The outcome is a theory that supplies decision-makers with 
understanding as to what features of the decision problem magnify the likelihood of an incorrect decision. 
Mukhopadhyay and Cooper [13] analyze the relationship between data accuracy and decision accuracy in 
an inventory control decision-making problem. Their results confirm the microeconomic production-
theoretic view that such relationship is positive, with diminishing marginal influence. 

A series of studies explored the relationship between input accuracy and output accuracy empirically, 
assuming various prediction problems and model-building paradigms [8][9][10][11][5]. Errors were 
generated such that they were random. Nonetheless, results did not confirm monotonicity consistently, 
apparently due to sub-optimalities of model building paradigms. Klein and Rossin [10] investigated the 
influence of errors on the prediction accuracy of linear regression models in forecasting the net asset 
value of mutual funds. They found significant negative influence of both error rate and error magnitude in 
test data. Surprisingly, a higher error rate and higher error magnitude in training data increased the 
predictive accuracy compared to error-free data. Similar experiments with back-propagation neural 
network models [11] showed that error rate and error magnitude in test data are negatively related to 
prediction accuracy, however, a moderate error rate in training data had positive effect on the predictive 
accuracy compared to error-free data. Bansal et al. [5] compared the effect of errors in test data on the 
accuracy of linear regression and neural network models when forecasting the prepayment rate of 
mortgage-backed security portfolios. Error magnitude had significant negative effect on the predictive 
accuracy of both the linear regression and the neural network models, and on the payoff measure of the 
linear regression model. Error rate had significant negative effect on the predictive accuracy and payoff 
measure of the linear regression, but no effect on those of the neural network model. Hwarng [9] studied 
the effect of noise in training data on the accuracy of a back-propagation neural network model in time-
series forecasts. All three possible relationships were observed: positive relationship, negative 
relationship, and no relationship. A noise level that is consistent with the magnitude of the standard 
deviation of the time series appeared to have positive effect. 

Askira Gelman et al. [1] examined the effect of dependence between errors on the relationship between 
input accuracy and output accuracy based on a general model of information that is often called 
information structure [12]. In this context accuracy and informativeness were defined utilizing 
Blackwell’s sufficiency criterion [6], [7]. This theoretical basis enabled to account for stochastic 
elements, and, in addition, to avoid a difficulty of earlier empirical studies. In those studies the bias, or 
specific properties, of the chosen forecasting methodology (or the information system application in 
general) affected the results. Therefore, the distinct relationship between input accuracy and output 
accuracy could not be clarified. The analysis in [1] concentrated instead on the maximal accuracy that can 
be achieved, independent of the choice of methodology and information processing in general, when 
using a given input data source for predicting the value of some designated output variable. The inquiry in 
[1] was limited, however, to the condition in which an information system uses a single input for 
calculating the output. This paper extends the scope of the inquiry to situations in which an information 
system produces output using multiple rather than a single input. 
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CONCEPTUAL FRAMEWORK  
The question of the relationship between input accuracy and output accuracy is addressed under the 
assumption that information processing amount to a function that maps the values of a random variable 
(one-dimensional or multi-dimensional) to another random variable. Ideally, the input to an information 
system is error-free—such input is denoted Si

j, j=1,..,n, in Figure 1. The output of the information system, 
h(Si

1..  Si
n), is an estimate of the value of a variable of interest So. Our analysis will correspond to such 

h(Si
1..  Si

n) that is the best possible estimate of So based on Si
j, j=1,..,n. This estimate may, nonetheless, 

be inaccurate if the relationship between Si
j, j=1,..,n, and So can not be captured by a deterministic 

function. The error term is viewed as a random variable that is classified in this case as an “unexplained 
error”. Such error term will be denoted by ε.  

In practice, however, Si
j, j=1,..,n,  are often not available. The available inputs, denoted Yj, j=1,..n, are 

estimate of Si
j, j=1,..,n,  respectively, that may not be error-free; Yj, j=1,..n, include an error term, denoted 

uj, j=1,..n, respectively. The output, h(Y1.. Yn), will be defined such that it is, again, the optimal estimate 
of So based on Y1.. Yn.  

 

 

. . . . . 

In practice: Si
1..Si

n, are not available; available inputs are Yi
1..Yi

n  

Ideal case: 

 Soh(Si
1.. Si

n) 

Information 
processing 

 Si
1 

 Si
n 

≅

    Unexplained error  ε 

Error u1 in data 

....
. . . . . h(Y1.. Yn)

  Si
n 
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  Y1 

  Yn 
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1 

≅ 
≅
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 Error un in data   

Figure 1: Conceptual framework  
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SIMULATIONS 
It is common understanding that prices and demands are not independent. Marketing specialists apply this 
understanding on a daily basis—they manipulate demand through variations in price. Similarly, prices 
and costs are not independent in general.  

Suppose, for example, that an application calculates revenues from customers, but a human mistake leads 
to a situation in which this application uses older records instead of basing its calculations on the most 
recent purchases of customers. As a result, when the number of units of a product that a customer bought 
one month ago is input to the system instead of the number of units that he or she bought today, such 
number might be incorrect. Moreover, the link that exists between quantity and price suggests that this 
error could be accompanied by a related error in price per unit data.  

When older records are used in forecasting, e.g., when past sales data are unintentionally used in a 
forecasting task instead of more current data, then, again, it may actually happen that the resulting data 
inaccuracies will not be independent of unexplained errors that would occur when using the “correct” 
data. For example, in a seasonal market an error in the data that reflects the change of seasons might in 
fact be more indicative of a future trend than current data (see time-series).  

The ensuing simulations refer to three simple information systems, one conducting a calculation based on 
price and cost data, and two others involving demand and revenue forecasting. The dependence between 
errors that is examined by the simulations can be assumed to have occurred in conditions like the ones 
just described.  

Simulation Method 
The relationship between input accuracy and output accuracy is approached through 146 simulations 
using quantitative data. The simulations were performed with GAUSS Light, a mathematical and 
statistical programming language.  

Examined factors: The simulations explore the effect of two variables—input accuracy, and dependence 
between errors, on output accuracy. Input accuracy is operationalized through error magnitude; errors 
were generated from normal distributions with mean zero, such that their magnitude is measured by the 
standard deviation of such distributions. Dependence is operationalized by the correlation coefficient.  

 

The dependent variable: Output accuracy is measured using Root Mean Squared Error (RMSE):   

 

RMSE =  [1/n∑i(wi - ŵi)2 ]1/2
 

n is the number of data items, wi denotes the correct value of a variable, ŵi denotes the predicted value of 
such variable, i= 1.. n. RMSE provides information about the magnitude of the error; higher RMSE 
implies lower accuracy.  

 

Simulation design: 56 simulations center on the dependence between the error in the input and an 
unexplained error. These simulations relate to a single-input system, which forecasts costomers’ future 
demand based on past sales. Specifically, the relationship between Si

D and So
D is assumed to be captured 

by the model: 

So
D = Si

D + εD . 

56 additional simulations center on the dependence between errors in different inputs. In these 
simulations the information system is captured by a deterministic function that calculates profit on 
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individual products. Given Si
P, designating the price charged, and Si

C—the overall cost of the product, 
this function outputs the difference: 

So
Π = 0.5*Si

P - Si
C . 

The coefficient (0.5) may be taken to match a situation in which only part of the charge is transferred 
back to the producer—the purpose of this coefficient purpose in these simulations is to provide some 
insight about the role of the information system.  

The remaining 34 simulations examine the combined effect of dependence between errors in different 
inputs and dependence between errors in the input and unexplained errors with a system that predicts 
future revenues. The relationship between current and future revenue is taken to be: 

So
R = 0.5*Si

P * Si
D + εR. 

For each of these three simulation classes, 1000 values of the error-free input sources were generated 
under the assumption that Si

P∼U[300,400], and Si
C,Si

D∼U[100,200].  The same values were used in all 
the simulations in a particular class.  
Values of the unexplained error, ε, were created under the assumption that εR,εD ∼N(0,σε

2); where σεD=6 
(one input system), σεR=800 (stochastic two-input system). Again, the same 1000 values of the 
unexplained error were used in all the simulations in a particular class. The values of So

Π, So
R, So

D, were 
calculated based on the generated values of the inputs and, in the first and third simulation classes, the 
matching unexplained error values. 

Errors in the input were produced from normal distributions, with zero means, according to the following 
rules (see also Table 1). In the simulations of the single input system, error magnitude was manipulated 
through the choice of the respective standard deviation, denoted next σuD, such that five values were tried: 
σuD =3,6,9,12,15. In simulations of a two-input system, the values of an error uP were drawn with a fixed 
standard deviation, σuP=12. Values of uC were created such that five standard deviation values were tried: 
σuC=3,6,9,12,15. In simulations of a two-input stochastic system, the value of uD corresponded to a fixed 
standard deviation, σuD=2. Values of uP were created such that three standard deviation values were tried: 
σuP=2,6,12. 

The simulations targeted diverse dependence levels. In the simulations of the single input system and the 
deterministic two-input system, 11 different dependence levels were created for each error magnitude 
which were distributed evenly, more or less, in the range -1 to +1 of correlation coefficients. In the 
remaining simulations, simulations corresponded to 11 dependence types, as follows:  

- Dependence type 1: uP, uD, are each maximally negatively correlated with εR (i.e., correlation 
coefficients are each equal -1) 

- Dependence type 2: uP  is maximally negatively correlated with εR. 

- Dependence type 3: uP, uD, are maximally positively correlated (correlation coefficient is +1). 

- Dependence type 4: uD  is maximally negatively correlated with εR. 

- Dependence type 5: uP  is maximally negatively correlated with εR. uD  is maximally positively 
correlated with εR. 

- Dependence type 6: uP, uD  and εR are independent. 

- Dependence type 7: uD  is maximally positively correlated with εR. 

- Dependence type 8: uP, uD, are maximally negatively correlated. 
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- Dependence type 9: uP, uD, are each maximally positively correlated with εR. 

- Dependence type 10: uP  is maximally positively correlated with εR. 

- Dependence type 11: uP is maximally positively correlated with εR. uD is maximally negatively 
correlated with εR. 
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Error magnitude: σuP=2,6,12 (σuD=2, σεR=800) 

 

Dependence levels: 11 types 

    3 

 

x 11 

= 33 simulations 

  Total: 146 
simulations 

Table 1: Simulation design 

 

The values of YC , YD , and YP were calculated based on the values of SI
C, SI

D, SI
P, and the matching error 

values that were created. These calculated values were applied to the information system models in place 
of SI

C, SI
D, SI

P, respectively, to derive estimates of SI
P, So

Π, So
R. The optimality of such estimates in 

terms of prediction error bias and variance can be easily proved. These estimates were used in 
conjunction with the “true” values of SI

P, So
Π, So

R for calculating the RMSE values.   
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RESULTS 
The results of the simulations are depicted in Figure 2, Figure 3, and Figure 4, corresponding to the three 
types of information systems that were simulated. Figure 2 represents the simulations of a one-input 

system, Figure 3 represents the simulations of a two-input system in deterministic settings, and Figure 4 
matches the simulations of a two-input system in stochastic settings. Each distinct line depicts the results 
under specific assumptions on error magnitudes. The Y-axis shows RMSE values. The X-axis portrays 
dependence between errors. In Figure 2 and Figure 3 dependence between errors is represented by 
correlation coefficients, while in Figure 4 dependence between errors matches an earlier specification. 
Unlike Figure 2 and Figure 3 that aim to show how prediction accuracy varies with dependence along a 
continuum of dependence levels, Figure 4 provides an outline through focus on extreme points, where one 
or more dependence values are maximal.  

Dependence between errors has a strong effect: The strong influence of dependence between errors on the 
relationship between input accuracy and output accuracy is demonstrated in all the charts. Given any error 
magnitude and system, output accuracy varies widely together with the correlation between the errors.  

Dependence versus independence: Given any system and error magnitude, dependence between errors 
can generate output accuracy values that are far superior to output accuracy when the errors are 
independent. On the other hand, output accuracy can be substantially inferior to that when such system 
applies inputs where errors are independent.  

One Input System: The Effect of Dependence
 (Var [E]=36)
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Figure 2: The effect of dependence between errors in data and unexplained errors in a one-input system 
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Dependence between errors versus error-free data: Dependence between errors can generate output that is 
just as accurate as output that was created by processing error-free data. In the forecasting applications 
(Figure 2 and Figure 4), it is shown that output created through the use of inaccurate data can yield results 
that are superior to results with error-free data (notice that graphs reach below the horizontal lines that 
represent clean data in these two charts).   

Data quality improvements: Dependence between errors is, at least partially, an independent factor, such 
that higher input accuracy can go together with a concurrent change in dependence, either way. Hence, 
the outcome in terms of output accuracy may amount to improvement in some cases, or decline in others. 
For example, consider Figure 3.  Assume that a decrease in error magnitude where error variance drops 
from 81 to 36 is accompanied by a shift from positive dependence 0.4 to independence, i.e., correlation is 
zero. In this case output accuracy would not increase and may even decrease somehow. On the other 
hand, output accuracy will be boosted if the same improvement in input accuracy goes together with 
higher dependence between errors. 

Two Inputs: The Effect of Dependence 
( Var[u2]=36 ) 
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Figure 3 The effect of dependence between input errors in a two-input system 
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The effect of similarity in error magnitudes: Similarity in magnitude generates the most dramatic 
improvements in output accuracy.  In Figure 2 this power is demonstrated in the graph that matches error 
variance 36. This error variance is the same as the error variance of the unexplained error in that 
application. When the dependence between the errors is maximal they cancel each other completely and 
produce perfectly accurate forecasts. A complicating factor is that information processing can dampen, or, 
alternatively, augment error magnitude drastically [Ballou, 1985]. Figure 4 shows a dramatic 
amplification as a result of the multiplication operation that it involves. Consider also Figure 3: the best 
results are achieved when error variance is 36, despite the fact that this value is different from the 
variance of the error in the second input, which is 144 (σuP=12). This result is due to the moderating effect 
of the application, which lowers the magnitude of the error when it multiplies it by 0.5 (which implies 
that error variance is now 36.)  

The effect of direction of correlation: In a similar way, information processing can reverse the direction of 
dependence between errors. Positive correlation can transform to negative correlation and vice versa. The 
model that underlies Figure 3 demonstrates this capacity when cost is subtracted from price in the 
function there.  

In sum, while dependence between errors can have a powerful effect on output accuracy, assessing the 
actual impact can be challenging.  

   

 

Two input system (stochastic): The effect of dependence 
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CONCLUSIONS 
Users of information systems might be familiar with instances of dependence between errors due to 
human lack of knowledge, faulty input devices, “buggy” interfaces between information systems, or other 
causes. The analysis in this paper takes likewise scenarios one step further by assuming that errors 
moderate or, alternatively, supplement, each other, regularly. Furthermore, I assume that such 
relationship between errors is possible not only for errors in different inputs, but also for errors in inputs 
and unexplained errors.  

The simulations in this paper demonstrate the important effect of dependence between errors in 
quantitative data on the relationship between input accuracy and output accuracy. The findings suggest 
that dependence between errors can reinforce an increase in data accuracy or moderate and even outweigh 
it, such that the outcome can vary greatly due to effects of dependence, and, in particular, higher output 
accuracy is not guaranteed.  

While earlier work demonstrated such results for the case of dependence between errors in input data and 
unexplained errors in non-deterministic settings, this paper uncovered another kind of dependence 
between errors that can have influence both when the information system implements a deterministic 
function, and in non-deterministic settings. This is dependence between errors in different inputs of the 
information system.  

From a research viewpoint, the accumulated results highlight the sensitivity of discoveries about the 
relationship between input accuracy and output accuracy to assumptions on the dependence factor. Since 
MIS research has been conducted till now under a narrow set of assumptions that have only been partly 
justified in terms of their validity in real-world settings, the findings imply that future research can gain 
from a more careful examination of the validity of traditional assumptions in practical settings. To the 
extent that dependence between errors is indeed common, it would be useful to develop understanding of 
recurrent dependence patterns and ground future analyses in realistic assumptions.  

From a practical standpoint, the findings suggest that cost benefit analyses of data quality projects may 
benefit from studies of the dependence between errors. Nonetheless, the applicability of the new 
understanding to practical situations is limited at this stage. Translation of such understanding to practical 
approaches requires further study. There is a need to achieve better understanding of recurrent 
circumstances that encourage actual dependence between errors, common error dependence patterns in 
typical applications, and effects of such dependence patterns on output accuracy and economic value. In 
addition, a methodological approach for the identification, assessment, and resolution of dependence 
between errors can be useful for addressing the issue in practical situations. For example, a search for 
factors that have the potential to create actual dependence may be part of such methodology. It might help 
focus on specific applications where dependence is an issue, and provide further insight about the shape 
of such dependence and its effect on output accuracy. Still, more precise assessments of the effect of 
dependence may turn, in the general case, to be a challenging task. 
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