Galaxy’s Data Quality Program
A Case Study

Eric Infeld
Laura Sebastian-Coleman
Ingenix – UnitedHealth Group
Eric_Infeld@uhc.com
Laura_Sebastian-Coleman@uhc.com

Overview: What this presentation will cover

- Introduction to Galaxy
- Galaxy data quality program goals
- Galaxy data quality program current components
 - Maintaining dimension tables and reviewing the integrity of primary and foreign keys
 - Monitoring, measuring and reporting on Galaxy’s data quality
 - Implementing improvements based on data quality findings
- Business environment success factors
- Throughout the presentation, we will focus on lessons learned
Introduction: What is Galaxy?

- UnitedHealth Group’s enterprise data warehouse
- 11 subject areas:
 - Claim aggregation, claim financial and claim statistical, customer, geographic, lab, member, organization, pharmacy, provider and product
 - 2,683 attributes across 14,286 columns in 467 tables
- 28 terabytes of data
- Over 100 source input files from more than 25 internal UnitedHealth Group and external vendor source systems

Introduction: Why is Galaxy?

- Business analytics and health analytics
- Financial reporting within UnitedHealth Group overall, as well as within individual health plans and business units
- Analysis of health issues, options for care, delivery of services
- Ultimately: Improvement of people’s health and therefore quality of life through better health care delivery
- Ingenix: a health information company. Data is the foundation of Ingenix and the basis for our solutions
- UnitedHealth Group is our largest customer
- Other Ingenix customers include more than 3,000 hospitals, 250,000 physicians, 2,000 payers and third-party administrators, 40 pharmaceutical companies and 100 FORTUNE 500 companies
Galaxy DQ program: Goals

- Galaxy’s data meets business-defined quality standards
- Use statistical quality assurance processes to prevent data quality problems from getting into the warehouse (manufacturing model; 4 sigma as standard)
- Monitor Galaxy’s data quality levels and communicate findings/statuses to stakeholders on a scheduled basis
- Recommend and implement changes that improve Galaxy’s overall ability to contribute to UnitedHealthcare’s business goals
- Integrate quality improvement into Galaxy and source system processes

Overview: Galaxy DQ program components

- Maintaining data integrity in Galaxy dimension tables and keys
- Monitoring, measuring and reporting on Galaxy’s data quality
- Recommending and implementing actions based on analyses and data quality findings
Galaxy’s DQ program:
Maintaining data integrity of dimension tables

- Business ownership of Galaxy’s 150 manually updated code and description tables and the application used to update them
- Business ownership of 375 valid value listings in Galaxy’s data dictionary
- Ownership of review and update processes associated with these tables and listings
 - Monthly and quarterly updates
 - Annual review of code and description tables

Galaxy’s DQ program:
Monitoring and measuring Galaxy’s data quality

- Integrity of primary and foreign keys through the annual baseline assessment of gross data quality
- Data quality of business - defined key attributes
 - Member system ID for medical and pharmacy claim data
 - Company code for claim and pharmacy data
 - Current indicator function for medical provider data
- Number of issues reported and being actively resolved, by subject area
Galaxy’s DQ program: Reporting Galaxy’s data quality

- Post-load DQ report: 3 to 4 times per month
- Quarterly DQ report:
 - Summary of baseline and/or code table review results
 - Reports on individual attributes
 - Rolling charts of issues being addressed
- Progress reports/updates on ongoing assessments
 - Annual review of code and description tables: 1st Q
 - Baseline assessment: July – September

Galaxy’s DQ program: Reporting Galaxy’s data quality

![Graph of 0 Member System ID as Percent of UNet Claim Header Data as of 6-16-04.]
Galaxy’s DQ program: Reporting Galaxy’s data quality

Code and Description Annual Review Status

By Galaxy Subject Area, data as of 6-16-2004

- 510 tables and listings were reviewed.
- 206 needed updates
- 166 updates have been made
- 40 are being researched

<table>
<thead>
<tr>
<th>Code and Description</th>
<th>Annual Review Status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In construction</td>
</tr>
<tr>
<td></td>
<td>Outstanding</td>
</tr>
<tr>
<td></td>
<td>Updated</td>
</tr>
<tr>
<td></td>
<td>Needed no updates</td>
</tr>
</tbody>
</table>

- 3 left to update
- 21 updated
- 15 needed no updates
- 110 more issues identified

Number of Issues Outstanding, by Subject Area 6-16-2004

- 33 issues identified
- 21 solutions under construction
- 24 issues outstanding

Number of Issues Outstanding, by Subject Area 3-01-2004

- 25 issues identified
- 4 solutions under construction
- 20 issues outstanding

Number of Issues Outstanding, by Subject Area 3-01-2004

- 1 issue identified
- 2 solutions under construction
- 1 issue outstanding

Graph represents a point-in-time snapshot of data as of 6-16-2004

Graph represents a point-in-time snapshot of data as of 3-01-2004

Year-to-year data not available.
Galaxy’s DQ program: Recommending improvements

- Improved DQ processes
 - Creating mapping tables to improve entry efficiency
 - Increased efficiency of baseline assessment
 - Automated reporting
- Changes to Galaxy processes
 - Change to the member match process
 - Impact on claim data
 - Different approach to source system issues

<table>
<thead>
<tr>
<th>Load Date</th>
<th>0 Member System ID as Percent of UNet Claim Header</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/28/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>6/2/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>6/6/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>6/10/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>6/14/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>6/18/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>6/22/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>6/26/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>6/30/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>7/4/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>7/8/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>7/12/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>7/16/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>7/20/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>7/24/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>7/28/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>8/1/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>8/5/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>8/9/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>8/13/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>8/17/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>8/21/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>8/25/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>8/29/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>9/2/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>9/6/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>9/10/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>9/14/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>9/18/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>9/22/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>9/26/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>10/1/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>10/5/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>10/9/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>10/13/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>10/17/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>10/21/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>10/25/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>10/29/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>11/2/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>11/6/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>11/10/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>11/14/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>11/18/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>11/22/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>11/26/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>12/1/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>12/5/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>12/9/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>12/13/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>12/17/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>12/21/2003</td>
<td>0.13</td>
</tr>
<tr>
<td>12/25/2003</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Data Quality Threshold = 0.12 %
Galaxy's DQ program: Recommending improvements

Overview: Success factors in the business environment

- Management support and team knowledge
- Defining strategy/executing tactics
- Building credibility
Success factors:
Positive environment for DQ through management support

- Recognition of the need for DQ – creation of a DQ position/role when Galaxy was being launched
- Recognition of the benefits of incorporating DQ controls into Galaxy processes
- Understanding of and strong advocacy for data quality principles within data warehouse management team and higher up
- Strong advocacy of statistical process control among upper management
- Recognition of the value and uses of metrics and robust practice of reporting metrics up the chain of command
 - DQ report is one of 4 regularly published reports from data warehouse management. The others focus on database availability, usage patterns and helpdesk service

Success Factors: Defined strategy/executed tactics

- Assessed potential measures based on internal and external processes, impact to the database and ownership of data and processes
- Sought business input on proposed controls
- Prioritized based on business need
- Communicated decisions part of an overall DQ strategy
 - Defined specific, concrete measurements
 - Defined the “whys” behind measurements
Success factors example: Choosing initial metrics

- Known issues with the attributes – frequency and severity
- Importance to Galaxy processes – frequency/multiple subjects
- Importance of uses: i.e., as primary or foreign key and uses in processes
- Knowing what was being measured. Example: Clearly identified process with ownership of the process
 - Member system ID match: Controlled by data warehouse processes and team
 - Company Code: source file issues over which data warehouse team has little control
 - Pharmacy claim match: vendor file, data warehouse matching process

Success factors: Building credibility

- Maturity of the warehouse
- Verifying primary and foreign key integrity
- Verifying code tables are up to date
- Building a common vocabulary/having a way to speak about Galaxy’s overall data quality
 - 2003 baseline assessment results showed 97 percent of our tables were 4 sigma for expected values
- Building credibility by
 - Regularly publishing results
 - Acting when problems are discovered
Future state: Building on, improving and automating what we have

- Additional controls on key or problem attributes
- Follow the same model (e.g., percent of defaults)
- Continue to monitor, publish and act on findings
- Second level DQ monitoring, looking at specific values
 - Example: Customer numbers with high incidence of 0 Member System ID
- Refining & re-scheduling processes associated with code table review
- Automate process of identifying unexpected values on code tables
- Automate processes associated with baseline assessment
 - Reduce amount of labor involved
 - Make more consistently repeatable
- Integrating DQ processes into development process

Future state: Improving stakeholder relations

- Defining, tracking and addressing “source system issues”
- Better managing expectations about data by educating end users and source system owners (consumers and creators)
- Improving the data that comes into the data base by bridging gaps between creators and consumers
Lessons learned: Developing metrics

- Initial metrics turned out to be simple:
 - Control charts to track percentages of defaults over time
 - Bar charts to present a comparison of tables that did and did not meet 4 sigma
- What took work was defining and clarifying which metrics would effectively represent the state of the data in the database
- Created a method for evaluating additional metrics using the same structure
- Developed an approach for defining metrics that use a different structure

Lessons learned: Knowledge sharing

- Having an environment where people know their data and share their insight into data issues is very valuable
- As a data quality take away: The more users know about the data, the better able they will be to use it
- Type of information is more important than the amount of information in managing expectations of data consumers
Lessons learned: Strategy/tactics

- Strategy/tactics relation was a key factor
- Vision → strategy → tactics
- Need concrete results from the tactics
- Ultimately, people fully support and contribute to strategy only when they see results of tactics
- “Show don’t tell” principle

Lessons learned: Creator/custodian/consumer

- Creator/custodian/consumer relations
- At first blush, the data warehouse team = “custodians” of the data
- But we also have an impact on the data – we are “creators.”
- And we use the data – we are “consumers”
- We play a mediating role between creators and consumers – we are data “brokers”
- In practice the line between creators, custodians, and consumers is not as clear as it is in theory
- Individuals and teams play multiple roles within this system and have different relations to the quality of the data
- One value of the model is the insight it provides to these different relations
Lessons learned: Creator/custodian/consumer

- A key element of the program was that we would have our house in order
 - i.e., we would start with elements of data quality that the data warehouse had control over and
 - we would take seriously our responsibility to the data we create
- And that we would be good consumers of the data
 - i.e., we would understand where it came from, why it might be in the condition it was in and what we needed from it in order to use it for our purposes
- Recognizing that the custodial role is an active role
 - Clearly define who had control over what aspects of the data
 - Address issues that are in our control. Define impacts of those that are not
 - An accountability model

Lessons learned: Communications and making an impact

- Consistency and openness are important: publish regularly
- Repeat processes
- Constituents understand approach and rationale
- They will want to help. They will also expect to know the level of data quality
- Communication is not for its own sake
- Stakeholders should know how their data fits into the big picture
- Analysis / insight into processes needs to be part of knowledge sharing
- When DQ processes uncover issues and recommendations are acted upon, share successes