Record Matching for a Large Master Client Index at the New York City Health Department

Andrew Borthwick
ChoiceMaker Technologies
andrew.borthwick@choicemaker.com

Executive Summary/Abstract: The New York City Department of Health and Mental Hygiene has a pressing need to accurately identify individuals for a variety of public health purposes. This led to the construction of the Master Client Index (MCI). The system offers a department-wide service that provides fast, real-time processing of incoming medical records to determine whether the individual is already present in the database, needs to be added to the database, or requires human intervention to determine whether the person is present. The talk will focus on how ChoiceMaker Technologies customized its machine learning-based ChoiceMaker 2.3 software to provide the MCI’s core matching capability.

Objectives of this presentation

- Describe a major project to provide enterprise-wide person identification on a database of over 2 million persons
- Describe the challenges of accurately matching individuals in this database, which involves matching very problematic incoming data to a high degree of accuracy
- Describe how ChoiceMaker 2.3 was deployed to provide accurate person identification
- Discuss the project’s benefits for the customer

Master Client Index (MCI) Overview

- New York City Department of Health and Mental Hygiene (DOHMH) has many applications requiring accurate record matching
- ChoiceMaker had been successfully deployed to deduplicate the Citywide Immunization Registry (CIR), a children’s vaccination database
- Project goals:
 - Make accurate record matching available department-wide
 - Link corresponding records for each client in previously unlinked medical databases
 - System scheduled to go live around time of this conference

Citywide Immunization Registry (CIR)

- Tracks every vaccination of every child in NYC
- NYC has a birth cohort of 120,000 children/year
- Uses for CIR:
 - Child moves from one doctor to another
 - If child falls behind on vaccinations, city sends a reminder to parents
 - Transmit data to public schools
 - Epidemiology: What is vaccination rate in NYC?
- All of these applications require highly accurate data

Accurate matching is hard at the CIR

- Names often change
 - Nicknames
 - Mother marries
- Data is often missing
 - No first name
 - Key matching fields often blank: Parent names, address
- Data is often inaccurate
 - CIR gets dumplis of data from billing systems where accuracy is not critical
 - Clerically entered from hastily filled forms
- Critical to get it right because of medical consequences
 - But under-vaccination is worse than over-vaccination

Prior Deduplication Efforts at the CIR

- At the start of the project, the CIR was rendered nearly useless by duplicate records
 - Duplication estimated at 3 records for every 2 children
- Baseline matching of incoming records:
 - Requires exact matches of first name, last name, gender, and birthday
 - Generates many duplicates
- Initial in-house CIR deduplication system:
 - Methodology
 - A committee decides on how much weight to assign to key matching fields
 - System combines weights to produce match probabilities
 - No sophistication with regards to name frequencies, misspellings, etc.
 - Generated 260,000 pairs of records for human review
 - 1700 person hours spent reviewing possible matches
 - Missed many true matches
- ChoiceMaker 1.9 removed over 600,000 duplicate records with 99.7% accuracy
 - ChoiceMaker 1.9 had primitive blocking and was only used for deduplication, not to prevent incoming records from entering the database
 - Nevertheless, ChoiceMaker 1.9 made the CIR usable
 - ChoiceMaker 2 is a complete rewrite of 1.9 and includes advanced blocking
MCI Objectives

- Link CIR and Lead Poisoning Prevention Program’s (LPPP) “LeadQuest” system
 - Children with lead poisoning often are under-immunized and vice-versa
 - Want LPPP workers to be able to check if a child needs vaccinations before a home visit
- Provide accurate record matching for LeadQuest
- Provide real-time deduplication
 - All new records are checked by ChoiceMaker before being added to the database, so duplicate records never get in the MCI
- Serve as a department-wide person identification hub
 - CIR and LeadQuest are the pilot systems

MCI Architecture

ChoiceMaker Technologies

- Specialists in record matching and data cleaning
- Patented artificial intelligence approach to the problem of record matching [1]
- $600K in National Science Foundation grants for our research into a “Machine Learning Approach to Approximate Record Matching”
- Other clients include
 - Citigroup
 - U.S. Census Bureau
 - Agency for Toxic Substance and Disease Registry: World Trade Center Registry Project

ChoiceMaker Components

- ChoiceMaker® Server
 - Scalable platform-independent real-time matching engine
- ModelMaker
 - GUI tool for development of probabilistic record-matching models
- ReviewMaker
 - Human review GUI tool, designed to facilitate decision making and correction.
- ClueMaker™
 - While not strictly a software component, this Java language extension supports the development of matching clues [2]

ChoiceMaker Production Matching Overview

First Pass Matching: Blocking

- Detailed matching with all records of database impossible
 - MCI has over 2 million records
- Need fast first-pass matching
 - Find all possible matches for detailed scoring by AI
 - Don’t return too many records
- Frequency-based approach
 - Consider frequency of value in database
 - last_name = ‘Borthwick’
 - last_name = ‘Smith’ & zip = ‘10003’
Clues

- Encode business rules for matching
- Takes a pair of records and suggests that they match or differ
- Written in a Java™-based language, ClueMaker™
- Importance of each clue determined by a machine learning technique called maximum entropy modeling

For Example:

```
// Predicts match if firstName's are identical
clue mFirstName {
  match same (r.firstName);
}

// Predicts differ if the Soundexes of the firstName's are different.
// clues are determined by a machine learning technique called maximum
// entropy modeling.
clue dSoundexFirstName {
  differ different (Soundex.soundex(r.firstName));
}
```

What kinds of clues did we use for the MCI?

- Do first names match?
- Do first names match approximately using techniques such as Soundex, edit-distance, NYSIIS, or Jaro-Winkler?
- Do uncommon first names match?
- Do birthdays match? If digits transposed?
- Do the records have corresponding immunizations?
- Odd clues
 - HMO "XYZ" always submits the birthday as being the first of the month, so predict match if the birthdays differ, but one birthday was submitted by XYZ

ChoiceMaker Deployment Process

Marked Record Pairs

ClueMaker

This iterative development process yields a system fine-tuned to MCI data

ChoiceMaker Accuracy
Hold Percentage vs. Accuracy

- Tradeoff between work and accuracy is critical
- Judge a model by the degree of tradeoff required
- Graph shows hold percentage (work) as a function of required accuracy
- Human review vs. accuracy chart is a critical measure of success
 - ChoiceMaker often judges the quality of a model based on this chart
 - E.g. if Human Review Percentage at 99.5% accuracy goes down, the model is better

Threshold values control false negatives and false positives independently

Ongoing Training and Design Process

- MCI will get more accurate over time
- Records reviewed by DOHMH in production are fed back into ChoiceMaker training process
- ChoiceMaker Technologies retrain the system with the augmented training data and possibly with additional clues

MCI Deployment Process

- Records from CIR are loaded into the MCI one at a time
 - MCI detects duplicates in CIR during this process
- LeadQuest records then loaded one at a time into MCI
 - MCI detects duplicates and links with CIR
- Client systems are synced with MCI by merging records detected as duplicate so that no two records from a single client system have the same MCI ID
- Records marked hold by ChoiceMaker are queued for human review

Problem Resolution Example

- Test load of the system revealed the need for the DOHMH to revise and clarify its definition of a "hold" record
 - Initial concern that ChoiceMaker might erroneously label records "match" that should be "hold" led to thresholds being set too low and too many records sent to human review
- Action plan
 - DOH labels additional records
 - ChoiceMaker deploys new advanced address parser, writes some new clues
 - Model retrained on new data and new clues
 - Final results to be presented at the conference
- Record matching is an iterative process. Tools must be able to diagnose problems and permit speedy problem resolution

MCI Expected Results

- DOHMH will have a strong data integrity hub
 - MCI detects duplicates in CIR during this process
 - LeadQuest records then loaded one at a time into MCI
 - MCI detects duplicates and links with CIR
- Client systems are synced with MCI by merging records detected as duplicate so that no two records from a single client system have the same MCI ID
- Records marked hold by ChoiceMaker are queued for human review

- Improved data integrity will enable better data sharing of immunizations with NYC schools and physicians
Future MCI Work

- Other DOHMH systems planning to join the MCI
 - Communicable Disease Surveillance System (CDSS)
 - HIV/AIDS
- Create a ChoiceMaker record matching model that matches adults
 - The LeadQuest/CIR model is focused on children
 - This project is underway for the CDSS
- Build new record matching models to match
 - Health care facilities (e.g., hospitals)
 - Health care providers (e.g., doctors)
 - These projects are also underway
- Further enhance ChoiceMaker’s accuracy by using training data from human review of production data

"Pilot" CDC Test of ChoiceMaker 2.0

- Benchmark Record Matching Test
 - Lets immunization registries test record matching performance and identify areas for improvement
 - Pilot sites include Alabama, Michigan, San Antonio, and Wisconsin
 - Dataset contained about 250 “correct” records and 250 duplicates
 - Contractor created errors in duplicates similar to error-types reported by registries
 - ChoiceMaker 2.0 received the highest overall score on this data: 98.33% specificity and 91.24% sensitivity

Future Plans for ChoiceMaker 2.x and 3.0

- Further simplify deployment
 - “Point and click” wizard-type interface to ClueMaker to allow non-programmers to write basic clues
 - Import wizard to allow user to simultaneously import a CSV or fixed-width file (for instance) and write an appropriate ChoiceMaker schema
 - Develop completely modular libraries of clues
- Further enhance performance
 - Various ideas to further speed our blocking algorithm
 - Optimize ClueMaker compiler for speed
- Continuously strive for higher accuracy
 - Accuracy is a never-ending battle. Need to continually look for new clues to add to the system

Summary

- Enterprise-wide master indices offer many benefits
 - Master client index
 - Master employee index
 - Master patient index
- Record matching is the hardest part of these projects
 - System needs to balance the following variables
 - Speed
 - Accuracy
 - Human review
- System needs to be carefully tested
- The MCI project has shown that ChoiceMaker 2 can meet all of the above requirements

References