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Abstract: Genome databases store data about molecular biological entities such as genes, 
proteins, diseases, etc. The main purpose of creating and maintaining such databases in 
commercial organizations is their importance in the process of drug discovery. Genome 
data is analyzed and interpreted to gain so-called leads, i.e., promising structures for new 
drugs. Following a lead through the process of drug development, testing, and finally sev-
eral stages of clinical trials is extremely expensive. Thus, an underlying high quality data-
base is of utmost importance. Due to the exploratory nature of genome databases, commer-
cial and public, they are inaccurate, incomplete, outdated and in an overall poor state. 
This paper highlights the important challenges of determining and improving data quality 
for databases storing molecular biological data. We examine the production process for ge-
nome data in detail and show that producing incorrect data is intrinsic to the process at the 
same time highlight common types of data errors. We compare these error classes with ex-
isting solutions for data cleansing and come to the conclusion that traditional and proven 
data cleansing techniques of other application domains do not suffice for the particular 
needs and problem types of genomic databases. 

 
Key Words: Data Cleansing, Molecular Biology, Data Errors  
 
 
 

1 GENOME DATA IS DIRTY  
Increasing interest in genome data has lead to the availability of a multitude of publicly available 
genome databases today1. Genome data includes the actual sequences of the bio-molecules, i.e., 
DNA, RNA, and protein, as they were observed in wet lab experiments, e.g., …actgctgaatc… 
for DNA data, and experimental data, such as the environmental circumstances of the experiment, 
the organism the sample was taken from, the date, etc. In addition to the raw data, genomic data-
bases store the structural and functional classification of sequences and sub-sequences, called an-
notation. The process of assigning meaning to sequence data by identifying regions of interest and 
of determining biological function for those regions is defined as genome annotation [17]. Ge-
nome annotation is performed by biologists and bioinformaticians in universities, in publicly 
funded institutions, and in corporations. The annotation data represents the most important part of 
genomic databases, namely the deeper biological meaning of the raw data. This annotation is ex-

                                                 
1 For a comprehensive listing see http://nar.oupjournals.org/cgi/content/full/31/1/1/DC1 
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pensive and difficult to obtain directly through experiments. Instead very often, this biological 
function is determined by comparing the sequence with those of various other information 
sources. A typical annotation process for, say, a certain human gene gathers existing functional 
annotation for a similar mouse gene. This process gives rise to two of the most daunting problems 
within this process: the integrated access of multiple sources and the quality of the retrieved data. 
The former problem is common to all integrating databases and is regarded elsewhere: Sheth and 
Larson give a systematic overview of such systems [27]. A prominent example of an integrating 
genomic database is IBM’s DiscoveryLink [9]. The second problem of poor quality data has so 
far been studied only marginally in the context of genome data, despite the importance of high 
data quality for ongoing genome research. 
 
Data of poor quality in genomic databases have enormous economic and medical impact on their 
users/customers. For instance, errors in genome data can result in improper target selection for 
biological experiments or pharmaceutical research. To bring a handful of new drugs to the mar-
ket, pharmaceutical companies spend up billions of dollars in research [10]. Of thousands of 
promising leads derived from experimental genomic data only a handful reach clinical trials and 
only a single drug becomes marketable. Obviously, it is of great importance to base these far-
reaching decisions on high quality data. 
 
Research in pharmacogenomics will enable pharmaceutical companies to produce drugs specifi-
cally designed against the genotype of individual patients. For such medications incorrect data 
(about the patient or about the drug compound and the genomic processes it affects) can lead to 
serious consequences regarding the health of the so-treated patient. 
 
On a smaller scale, missing, incomplete, or erroneous information hinders the automatic process-
ing and analysis of data, experiments based on poor quality data yield incorrect results, etc. Such 
annoyances lead to a loss in confidence in the underlying data source or the provider of the data, 
and to a rise in effort and frustration for the biologist on a day-to-day basis. Through careful 
analysis of the experimental and annotation pipeline of genome data, we identify five classes for 
poor data quality: experimental errors, analysis errors, transformation errors, propagated errors, 
and stale data. 
 
To tackle the problem of data errors of the five kinds mentioned earlier, a first step is to identify 
the producers of these errors. We have developed detailed Information Product Maps (IP-Maps, 
[26]) for the genome data production. In general there are four classes of data- (and thus error-) 
producers: Wet-lab experiments, semi-automated experiments, computational transformations, 
and computational analysis. Our analysis pinpoints the employment of each of these producers in 
the data production pipeline and the types of error they produce, thus providing a sound basis for 
quality improvement efforts. 
 
 
1.1 Related work 
While there has been much research in developing a general data cleansing framework 
[7,16,18,23], and while many data cleansing methods and applications have been developed for 
certain domains, such as address data [11,30] and health-care data [15,22], and many other do-
mains, there is yet little research addressing the particular, and novel data cleansing problems as 
they occur in the life sciences domain. See [20] for a detailed classification and comparison of 
state-of-the-art data cleansing methods. 
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Apart from anecdotal evidence and our own experience working on some of the major life sci-
ences databases, there are studies that show the existence of errors in genome databases. In [8] the 
accuracy of several computer programs for the prediction of the structure of protein coding genes 
(structural annotation as explained later) is investigated. None of the programs reaches an accu-
racy of 100% thus yielding errors in databases containing structural annotation. The maximum 
accuracy that can be achieved using currently available prediction programs is believed to be 90% 
for protein coding regions and 70% for gene structure. Several studies [3,5,13] show the existence 
of errors in functional annotation of proteins (explained later). In [3] the error rate is estimated to 
be over 8%. This analysis was performed by comparing analysis results of three independent re-
search groups annotating the proteome of Mycoplasma genitalium and counting the number of 
discrepancies between them. With the increased dependency on automatic annotation methods – 
due to the high data volume – this rate of errors can be expected only to rise. In [5] the authors 
use an approach based on the observation that most of the functional annotations are justified by 
relatively weak sequence similarities and on the considerable number of discrepancies between 
functions annotated for similar sequences. By extrapolating the discrepancies detected at a certain 
level of similarity to the number of proteins, it is possible to estimate the number of discrepancies 
between actual and automatically annotated functions. The expected level of error varies from 
less than 5% to more than 40%, depending on the type of annotated function. Finally, in [13] the 
authors generate a highly reliable set of annotations by carefully using automatic methods and 
experimental evidence. They compare their results with existing annotations and with the results 
of solely automatically performed annotations. For the original annotations only 63% of func-
tional assignments within both datasets are in total agreement, while for the solely automatic an-
notations the precision is estimated to be 74% for the most reliable set of predictions. 
 
 
1.2 Structure of this paper 
In Section 2 the basic concepts of the application domain are defined. A short introduction of the 
underlying biological entities is followed by a list of the types of data stored in genome databases. 
Section 3 highlights the production of genome data using an IP map with four different producers 
of data, each with different characteristics. After a general classification of error types in genome 
databases in Section 4, we focus on interesting parts of the overall production pipeline and iden-
tify, which classes of errors are produced at which stage and suggest domain-specific quality 
checks to reduce these errors. Finally, in Section 5 we show why existing data cleansing tech-
niques fall short for the especially complex domain of genome data.  
 
 
 
2 BASIC CONCEPTS FOR DESCRIBING GENOME DATA 
Similar to the term “gene” itself, ”genome data” is a term without a clear marked-off scope or 
commonly accepted definition. The genome is the entirety of genetic information of an organism. 
Genetic information enables organisms to exist, i.e., to transform energy from the environment, to 
move, to reproduce, to self-assemble (grow), and to repair themselves. Genome information is 
stored in the sequence of the four different building blocks, called bases (adenine, guanine, cyto-
sine, and thymine), of the molecule desoxy ribonucleic acid (DNA). The DNA – a double 
stranded molecule forming the well-known double helix – is divided into transcribed and non-
transcribed parts. The former are called genes and are the parts of main interest in biological, 
medical, and pharmaceutical research. Transcription is the first step of genome information proc-
essing. The resulting molecule, ribonucleic acid (RNA), is the single strand copy of a gene. It is 
used as a template for protein synthesis. The synthesis process, called translation, uses an organ-
ism-specific translation table (genetic code) to translate successive segments of length 3 (codon) 
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each into one amino acid, the building blocks of the resulting protein. The translation always 
starts at a start-codon atg and ends at the first stop-codon, i.e., taa, tag, tga. The codon-
structure defined by the start- and stop-codons is called the reading frame. There are three differ-
ent reading frames for each of the DNA strands. Proteins are the building blocks of living organ-
isms performing a multitude of different functions. This process of biological information proc-
essing within an organism’s cells is called the “central dogma of molecular biology” as described 
by Francis Crick in 1957, and is shown in Figure 1. 
 
In principle, every piece of information about the genome and genome products of living organ-
isms can be termed genome data. By genome data we mean information about the bio-molecules 
DNA, RNA, and protein, such as their sequence (composition of bases or amino acids), their 
structural features, and their function performed within the organism. Here, we disregard data 
from gene expression studies, information about protein interactions during complex biological 
functions as well as the 3D-structure of molecules. The main data for this study are: 
 

• strings representing the sequences of bio-molecules, 
• attributes, describing certain properties using values from a fixed set of domains, and 
• annotations, i.e., functional or structural classification of for regions or collections of re-

gions of the genome or proteins. 
 
 

 
Figure 1: Central Dogma of Molecular Biology 
 
The data is further classified into semantic classes of genome data resulting from the following 
general process: 
 

• Genome sequence data represents the sequence of DNA molecules extracted from the 
cells of different organisms. They are represented by strings over the four-letter alphabet 
{A, C, G, T}. Each string represents either sub-parts of the complete genome or concate-
nated larger parts of the genome. Genome sequence data is mainly the result of sequenc-
ing projects. The most popular sequencing project is the Human Genome Project (HGP) 
by a consortium of research institutions, aiming at generating the human genome se-
quence, which has been completed in 2003. Commercial projects like the ones performed 
by Celera are in competition to the HPG. 

• EST sequence data are also strings over a four letter alphabet representing transcribed 
parts (RNA) of the genome, called expressed sequence tags (ESTs).  

• Structural annotation describes known features that are identified and shown on the ge-
nome sequence data. The features of interest are for example the occurrence of sequence 
patterns, single nucleotide polymorphisms (SNPs), e.g., proven sequence variation be-
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tween individuals, and gene location and gene structure, which is of special interest for 
the pharmaceutical and further biological research. 

• Protein sequence data represents the sequence of amino acid of proteins by a string over 
the alphabet of twenty amino acids. 

• Functional annotation describes in non-standardized textual form the function performed 
by a certain protein within the organism, as well as its participation (or that of its muta-
tions) in the development of a certain disease. Biologists enter free text descriptions at 
will, in different languages, using different abbreviations, etc. 

• Protein motifs represent the conserved characteristic features of a protein family, i.e., 
groups of related proteins within different organisms in various forms. Often, only small 
parts of the protein are responsible for a certain function, and within this part several 
combinations of amino acids are allowed. 

 
A characteristic genome data item is shown in Figure 2 It is a cutout of a data entry in the EMBL 
DNA Sequence Database [28] highlighting the different classes of information and the data 
sources. 
 
 

 
Figure 2: Exemplary genome data entry from the EMBL DNA Sequence Database 
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3 GENOME DATA PRODUCTION 
Genome data production is performed by people with different skills and domain knowledge. The 
process involves 
 

• Biologists working in the wet-lab, 
• Lab assistants who install and operate machines and robots, 
• and Bioinformaticians, i.e., computer users having biological expert knowledge. 

 
Production of genome data is done in collaboration by different workgroups and different institu-
tions from around the world, using their own, often proprietary, techniques, methods, and proto-
cols. This setup alone implies the poor data quality of the end product, as we will argue later. The 
main data-producing techniques for genome data are: 
 

• Wet-lab experiments (performed by biologists, shown in the IP maps as     ): Within the 
wet-lab biologists perform experiments on the living organism and explore interesting 
features, such as organism behavior after manipulation under given conditions. The re-
sults are interpreted and transformed into information stored in digital format within 
usually proprietary data storage system. 

• Semi-automated experiments (performed by lab assistants, shown as     ): Automata 
and robots support biologists in performing those experiments that are dreary and must 
be repeated often. This automation increases the throughput and lowers the error rate, 
because machines are able to perform without fatigue. For example, sequence determina-
tion is a very error prone process when performed by humans. Biologists still have to 
perform the experimental set-up, but the automata generate the information directly in 
digital format. 

• Computational transformation (performed by bioinformaticians or lab assistants, 
shown as      ): Transforms data from one representation into another that is better man-
ageable and interpretable by humans or machines. This involves translation of sequence 
information (e.g., base calling) or concatenation of strings (e.g., sequence assembly). 
Computational transformations do not require additional knowledge-based interpretation 
of the results. 

• Computational analysis (performed by biologists bioinformaticians, shown as      ): The 
results of experiments are interpreted by human experts using computer software to pro-
duce new information. This is termed data analysis, and plays an important role in ge-
nome data production. The role is so important, because of the huge amount of data pro-
duced, mainly by semi-automated experiments, that is to be analyzed. Most of this work 
is sequence analysis, i.e., giving meaning to sequence data produced by sequencing labs. 
Here, digital information is interpreted to generate new digital information. 

 
Often, a genome data product can be derived alternatively by wet-lab experiments or computa-
tional analysis. There is a time/quality trade-off involved, as experiments are more accurate than 
computational analysis, while also being more expensive and time consuming. 
 
From this description it has already become clear that genome data production is an interdepend-
ent process. The information gained in one step is used and further analyzed in the following step, 
generating new knowledge and information. The information gained is eventually re-used as input 
in further data generation and analysis. The overall process is shown in Figure 3. Genome data is 
produced in four (mostly) dependent steps: 
 
 

274

Proceedings of the Eighth International Conference on Information Quality (ICIQ-03)



 
Figure 3: General Genome Data Production Process 
 
Step 1 DNA sequence determination: Starting from the living organism, the sequences of the 

DNA (genome sequence data) and of the transcribed genome regions (EST sequence 
data) are generated. This is performed in a combination of wet-lab experiments, and 
semi-automated experiments, and also includes computational transformation. The re-
sults are strings representing DNA sequences and attributes describing the sequence 
properties, such as the organism it was taken from. 

Step 2 Genome feature annotation: Using the information produced in DNA sequence de-
termination, relevant biological regions and structural features are identified on the ge-
nome sequence data, e.g., the localization and structure of genes. The data is mostly 
generated by computational analysis or it reflects the results of other experiments 
mapped onto the genome sequence using computer programs. The result are structural 
classifications of sequence regions. 

Step 3 Protein sequence determination: The sequence of proteins within an organism is de-
termined either experimentally using extracted proteins from the living organism or 
through computational transformation using the information from the first two sub-
processes. In the first case, the production mainly is performed experimentally, because 
semi-automation is only marginal within this process. In the second case this is per-
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formed by simple translation of the genome sequence of the identified genes. In both 
cases, the result is a string representing the amino acid sequence of a protein. 

Step 4 Protein functional annotation: Using the protein sequences resulting from protein se-
quence determination, the function of the protein performed within the organism is de-
scribed. This is normally done by assigning the protein to different classes of biological 
function based on features of the amino acid sequence. Protein functional annotation 
can be performed either experimentally, which is time consuming, or manually, which 
is fast but error prone. The result is a set of functional classifications for each protein. 

 
In recent years, a multitude of tools and protocols for the production of genome data have been 
developed. The usage and combination of these tools and protocols within the genome data pro-
duction process varies among institutions and workgroups and also changes over time. In most 
cases these changes remain undocumented for the outside world - making it hard to reconstruct 
the production process. A standard procedure for genome data production does not exist. There-
fore, we gave only a general overview of the basic steps involved. The occurring errors, which 
influence the quality of the resulting data in the different sub-processes, are described in the fol-
lowing. 
 
 
 
4 ERRORS IN GENOME DATA PRODUCTION 
From the description of the genome data production process we can define several classes of er-
rors within genome data: 
 

• experimental errors due to unnoticed experimental setup failure or systematical errors, 
• analysis errors due to misinterpretation of information, 
• transformation errors while performing transformations of information from one repre-

sentation into another or one medium to another , e.g., data input, 
• propagated errors, when erroneous data is used for the generation of new data, and 
• stale data, i.e., unnoticed changes to base data on which a data item depends and that fal-

sify it. 
 
For the special case of errors in protein function annotation the TABS standard (Transitive Anno-
tation-Based Scale, [21]), defines classes of errors as (listed in descending order of gravity for 
error propagation): False positive, over-prediction, domain error, false negative, under-prediction, 
undefined source, and typographical error. Their classification is oriented towards the actual data, 
while our classification stems from the analysis of the data production process. 
 
 
4.1 DNA Sequence Determination 
DNA sequence determination starts from individual organisms and comprises the two parts ge-
nome data sequencing and EST data sequencing. We ignore the second part for brevity. 
In DNA sequence determination (Figure 4), after isolating the DNA molecules from the cells, 
they are split into overlapping parts of about 1,000 bases, and then the sequence is determined for 
each of the parts using sequencing automata and software programs (base calling). Afterwards, 
the resulting sequence strings are input into an assembly program, which produces a representa-
tive sequence of the entire genome as a textual string. 
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Errors 
The main types of erroneous information are incor-
rect sequence data and property values. They are 
both caused either by experimental errors or by 
transformation errors. 
 
Experimental errors: The data quality mainly de-
pends on the sequence preparation step and the 
experimental setup, as well as on the base compo-
sition of the DNA to be sequenced. Especially 
DNA regions containing high amounts of bases G 
and C, e.g., …gcgagtgcgacgttcg…, are diffi-
cult to sequence, because of physical constraints. 
In regions of repeating bases, e.g., …gatggtg-
aaaaaaaaa…, there is the possibility of missing a 
base because of overlapping signals. Poor experi-
mental practices or improper usages of chemicals 
cause sample contamination or preparation failure. 
 
Transformation errors: In the beginnings of DNA 
sequencing base calling has been an error-prone 
step. This has been improved with the use of mod-
ern high-throughput sequencing automata, such as 
the ABI 3730xl DNA Analyzer from Applied Bio-
systems. In [25] the error rate in sequences for six 
different sequencing projects is estimated between 
0,23% and 2,58%. In sequence assembly segments 
of DNA with near-identical sequence (segmental 
duplications), accounting for ~5% of the human 
genome, can result in sequence miss-assignment 
and wrong assembly of the sequenced parts. It is 
estimated that ~1.3% of the overall sequence of the 
June 2002 human genome draft sequence are erro-
neous due to assembly errors [4]. 
 
Quality checking 
Reliable quality checks in DNA sequence determi-
nation can be performed only after base detection. 
However, only fatal experimental errors are de-
tected, by searching for abnormal output display 
characteristics. Individual sequence transformation 
errors cannot be detected this way. Particularly, so-
called frame-shifts are a major problem, i.e., a 
missing or inserted base in the sequence string. 
When translating these sequences, the resulting 
protein has a completely different sequence, be-
cause it is translated out of frame. There are tech-
niques for detecting such errors, but they mainly 
rely on the correct protein sequence already be-
ing in a database. To receive error free se-
quences, each part is sequenced multiple times. 

Figure 4: DNA Sequence Determination Process 
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4.2 Genome Feature Annotation 
Genome feature (or structural) annotation results from performing a set of operations on the ge-
nome sequence data, e.g. sequence alignment or pattern search, making use of existing genome 
data and their annotations, e.g. aligning EST sequences against the genome to identify transcribed 
regions. Interpretation and combination of the results is guided by expert knowledge in form of 
annotation rules. These rules form the annotation pipeline, i.e., the description of the information 
production process. Often alternative ways for genome feature annotation are used, depending on 
the expert’s preferences. 
 
Errors 
Errors in genome feature annotation include analysis errors, propagated errors, and stale data. 
They result in incorrect structural annotations. 
 
Analysis errors: Incomplete or uncertain domain knowledge, or careless interpretation of opera-
tion results can lead to misinterpretation and erroneous annotations. For example, predicting 
genes by simply using the occurrences of start/stop-codon pairs results in a high number of 
wrongly predicted genes. 
 
Propagated Errors: Errors in the genome sequence or genome data used within the annotation 
pipeline are propagated through the pipeline and result in misinterpretations and annotation errors 
later on. Sequence errors imply non-existent patterns or miss existing ones. Errors within addi-
tional data, e.g. EST sequences, can lead to operation results that cause erroneous interpretations.  
 
Stale data: Annotation based on outdated data yields results different from annotations based on 
current data, causing inconsistency. The fact that changes to data items for the most part remain 
unnoticed by the depending data items is a major problem within genome data. 
 
The errors in genome feature annotation are further classified as: 
 

• false positives, e.g., parts classified as gene which are not coding for a protein, 
• false negatives, e.g., parts not classified as gene which are coding for proteins, and 
• Incomplete or partially (in-) correct information. This information, e.g., the uncertain 

start codon of a gene, is still included in several databases to avoid information loss. For 
example, in ENSEMBLE (Version 7.29, [12]) 36.77% of the predicted transcripts were 
incomplete. 

 
Quality checking 
Quality checks are performed only marginally within the process. There is the possibility to de-
fine integrity constraints that have to be satisfied by the resulting data. One possible constraint is 
that the start codon of a gene is atg. However, not many helpful constraints are known, many 
have exceptions, and constraints are often not enforced to avoid information loss or because con-
straint checking has to be performed by manual inspection or complex programs using additional 
data sources. Another quality checking method is to mine for errors, i.e., to detect outliers within 
the feature data, e.g., genes that are abnormally short or long. 
 
 
4.3 Protein Sequence Determination 
The process of protein sequence determination is shown in Figure 5. Computational protein se-
quence determination translates the predicted gene sequences using the genetic code of the speci-
fied organism. The protein sequence can also be determined experimentally making it independ-
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ent of the two other steps performed before. Protein sequencing is hard to automate and this is 
why computational sequence translation is the preferred method. Often, a combination is used by 
determining a starting sequence (prefix) of the protein experimentally and then using it to search 
existing protein or translated DNA databases for proteins matching the exact prefix. 
 
 

 
Figure 5: Protein Sequence Determination Process 
 
Errors 
The classes of errors resulting from protein sequence determination are experimental errors for 
experimental sequence determination and transformation errors, propagated errors, and stale data 
for computational sequence determination. 
 
Experimental errors: As for DNA sequence detection, experimental errors result from poor ex-
perimental setup, practices or from failure of chemical reactions within the process. 
 
Transformation errors: Using the wrong genetic code within the translation step, possibly because 
of an erroneous value within the attribute specifying the organism, results in a string incorrectly 
representing the protein sequence. 
 
Propagated errors: Incorrect sequences or frame-shifts result in proteins with sequence representa-
tions different from the actual amino acid sequence of the protein in the cell. Incorrect feature 
annotation again yields false positives, i.e., proteins that are non-existent in the organism. Incom-
plete or partial information results in incomplete protein translations. 
 
Stale data: Changes to the DNA sequence of the translated gene have to be reflected in changes to 
the resulting protein sequence. As those changes often remain unnoticed, the translated protein 
sequences become erroneous. 
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Quality checking 
Quality checks can be performed only on the resulting protein sequence. Here, we can search 
automatically for proteins of uncharacteristic length or by hand for unusual amino acid patterns 
within the protein sequences. This covers only very few errors. Reliable and efficient checking of 
correct sequences would require inexpensive, fast, and automated protein sequencing methods. 
 
 
4.4 Protein Function Annotation 
Protein function annotation is performed experimentally or computationally. Computational func-
tional annotation is based on the fact that the protein sequence determines protein function. There 
are two main techniques for computational annotation of proteins. Often, they are combined to 
form an annotation pipeline. 
The first is based on protein similarity. It is assumed that two proteins with similar sequence very 
likely possess the same function. By searching databases of already annotated proteins for similar 
ones, the annotated function is transferred onto the sequence under consideration. The second 
technique searches for the occurrence of motifs in a protein. Each motif has an annotated function 
that is assigned to the query protein in case of motif occurrence.  
 
Experimental protein function annotation is much more reliable but also much more time con-
suming. A typical method is to generate genetically manipulated organisms not containing the 
gene for the protein under consideration and to observe how the behavior or the phenotype of the 
organism changes. 
 
Errors 
Experimental errors, analysis errors, propagated errors, and stale data are the classes of errors 
within this step, again depending on the method used. 
 
Experimental errors: Due to the numerous experimental techniques for experimental protein func-
tion annotation there are correspondingly oodles of possible errors that yield improper annotation 
of protein function. 
 
Analysis errors: A major problem within protein annotation using sequence similarity is to define 
the degree of similarity between proteins, so they can be considered to have identical function. In 
[6] it is stated that sequence similarity above 25% for proteins having minimum length of 100 
amino acids is sufficient, while a similarity below 15% does not allow annotation transfer. In the 
interval between 15% and 25%, the proteins may very well be related, but additional studies must 
be performed to achieve higher confidence. Furthermore, similarity might not be present in the 
region that is responsible for the actual function of the annotated protein. Unfortunately, the re-
sponsible region is not always explicitly annotated. Thus, transferring function is error-prone. 
Insufficient inspection and careless usage of similarity search results very easily and very often 
lead to erroneous annotations. 
 
Propagated errors: The huge amount of protein data produced by computational translation re-
quires the application of computational annotation. Often, annotations are not marked as putative 
and used carelessly by other biologists. This causes a large degree of propagated erroneous anno-
tations. 
 
Stale Data: As for propagated errors, stale data causes problems because of the high degree of 
data dependency for the results of the annotation process and because of changes to the annota-
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tion of proteins. This happens frequently because computational annotations are reproduced and 
changed due to experimental verification. 
 
Quality checks 
Quality checks involve performing additional studies to collect arguments for or against the cor-
rectness of the annotation. Unfortunately, these checks are often not performed, and thus most 
annotations have low confidence. Verification of protein function annotation requires the tedious 
documentation of the annotation process and the results of the operations performed and decisions 
made, which also is missing in most of the databases managing protein function annotation. 
 
 
 
5 CHALLENGES FOR DATA CLEANSING 
As we have shown, genome data is erroneous by nature – due to its production process. The data 
is produced by experiments that are error prone and by domain experts who analyze the data in a 
subjective manner using uncertain knowledge and in turn invalid, uncertain, or incomplete data. 
Despite syntactic errors, such as format inconsistency, duplicates (synonyms), homonyms and 
syntax errors and vocabulary usage in textual annotation, as reported in [2], these problems lead 
to semantic errors, i.e., the resulting information does not represent the real-world facts correctly. 
Data dependencies inherent to the production process and to the usage of the data make genome 
data predestined for propagated errors. Also, there are frequent changes in the data and knowl-
edge that in many cases remain unnoticed to systems storing derived data. 
 
Two approaches could eliminate many of the data quality issues raised in the previous sections at 
production time. First, to keep pace with the analysis of the huge amounts of data produced, reli-
able methods for genome data production could be employed, i.e., using repeated experimental 
methods and less automation for data analysis. Second, quality checks within the production 
process could be employed. Quality checks are often omitted, because usually they require man-
ual inspection and the huge amount of data makes them time-consuming and expensive. Within 
the domain of genome data there also exist only few reliable constraints and a multitude of excep-
tion hindering effortless verification of data correctness. The multitude of different sources neces-
sary for result comparison and verification poses another problem with genome data. There is no 
standard format for genome data storage and no commonly accepted vocabulary. This hampers 
integrated access and makes data transformations for standardization and normalization neces-
sary. 
 
The afore-mentioned reasons make data cleansing a necessity for genome data after the data is 
produced. Most existing work [1,7,11,14,19,24,29] focuses on data transformation, enforcement 
of simple integrity constraints, and duplicate elimination. Existing cleansing approaches are 
mainly concerned with producing a unified and consistent data set, i.e., addressing primarily syn-
tactical problems and ignoring the semantic problem of verifying the correctness of the repre-
sented information. The problem of duplicates is also existent in genome data, but duplicates are 
less interfering than in other application domains. Duplicates are often accepted and used for 
validation of data correctness. In conclusion, existing data cleansing techniques do not and cannot 
consider the intricacies and semantics of genome data, or they address the wrong problem, 
namely duplicate elimination. We see three concrete and reasonable challenges for genome data 
cleansing in the near future. 
 
Credibility checking and re-annotation: The most reliable way for semantic error correction in 
genome data is to re-perform experiments and computational analysis under careful control by 
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domain experts. As already mentioned, this is time-consuming and expensive and it is also per-
formed for already correct values, yielding a large amount of unnecessary computation and ex-
periments. We therefore perform credibility checking on the data to identify those yielding evi-
dences for being erroneous and re-annotated them. The correction of erroneous data still has to be 
performed by re-computation, unless one is able to choose from a set of alternatives the one that 
is considered as correct. Credibility checking is also a very important technique for genome data 
production if the correctness of data is verified before it is used within other processes.  
 
A first idea is to use the huge amount of additional and redundant data in other sources, assuming 
the possibility of integrated access to them. The information is then clustered into sets of related 
information, i.e., information about the same real-world fact produced by different research 
groups. By detecting and highlighting contradictions or accordance, one collects arguments for or 
against the correctness of data items and makes them usable for further processing and credibility 
checking. The main challenge here is to efficiently and reliably identify the overlapping informa-
tion. 
 
Another way is to perform integrity constraint checking to collect arguments for or against the 
correctness of a certain data value. These arguments are generated by domain dependent evidence 
functions. These are functions that operate on existing data and check or assess known biological 
facts and rules. For example certain amino acid combinations are known to be non-existent in 
proteins or the evidence for a predicted coding region is high if similar regions exists within other 
organisms, i.e., the sequence region is conserved. There is a difference between hard and weak 
constraints, i.e., constraints where violation is a clear indication for an error or only for the possi-
bility of an error. There have to be rules that define when to assume a data item to be erroneous 
and ready for re-processing. The methods used within the constraints are the same as those within 
the annotation pipelines, e.g. sequence alignment, pattern search, statistical methods about se-
quence composition, etc. 
 
Metadata management: One of the main problems in verifying the correctness is the missing 
metadata about how the information was gained and what other information and interpretations it 
is based upon. For derived data the information used within the production process is called the 
data lineage. Data lineage can be used for keeping annotation up-to-date in a changing environ-
ment without a re-annotation every time parts of the base data changes. A data cleansing frame-
work for genome data has to be able to detect and react on changes in the base data without re-
performing the complete and expensive data cleansing process. By using the data lineage the data 
items that depend on the changing data are easily identified for re-annotation. 
 
Alternative solution management: In data cleansing it is often impossible to find the correct 
solution immediately. Instead, there often exists a set of alternative solutions. These solutions 
have to be managed up to a point in time where one is able to decide which is the correct value. 
Until then the alternatives have to be included within the process of further data production. After 
deciding which is the correct solution from a set of possible solutions, one has to be able to undo 
decisions that were based on data that has become obsolete now. For this purpose the data lineage 
collected is used to identify the depending data items. 
 
 
 
6 CONCLUSIONS AND OUTLOOK  
Genome data is dirty and this state is caused by inadequacies of the data production process. We 
presented typical cases and classes of errors and gave reasons why errors cannot be avoided sim-
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ply by changing parts of the production process. Only prohibitively expensive quality checking 
within the process, using quality checking modules, can increase quality during data production. 
This leads to the problem of how to eliminate existing errors through data cleansing methods. We 
have shown that existing methods are not applicable for the major errors found in genome data. 
 
Cleansing of genome data is closely related to genome annotation. Both require domain depend-
ent evidence functions. The definition of a set of general evidence functions for the domain of 
genome annotation will enable us to build a formal model to specify the annotation and cleansing 
process. The intrinsic properties of these individual functions can then be used to detect erroneous 
annotations without the necessity of complete re-annotation. 
 
In those cases where alternative solutions and evidence values for them are managed it is desir-
able to include them within the annotation and cleansing process to receive results of higher qual-
ity. Some of the genome databases are also beginning to manage such evidences for their entries. 
Credible annotations can be derived by excluding invalid or unreliable entries from the process-
ing. The formal model for genome annotation has to take these evidences into account. 
 
Including the management of cleansing lineage within the model further enables efficient detec-
tion and re-annotation of affected annotations when changes in external data sources occur. 
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