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Abstract: In this paper we discuss our research in applying classification methods for computer network intrusion 
detection. Using two different algorithms for classification (decision trees and naive Bayes classifier) we build a 
predictive model capable of distinguishing between “bad” TCP/IP connections, called intrusions or attacks, and 
“good” normal TCP/IP connections. We investigate the effect of training the models using both clean and dirty data. 
Our purpose is to analyze the predictive power of the network intrusion classification models under circumstances 
in which training data quality is at issue. 
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INTRODUCTION  
If data is characterized as recorded facts, then information is the set of patterns or expectations that 
underlie the data [17]. But information is not packaged in a standard easy-to-retrieve format.  It is an 
underlying and usually subtle and misleading concept buried in massive amounts of raw data [7]. Modern 
organizations are overloaded with data, and don’t have the time to look at it. They must find ways to 
automatically analyze it, summarize it, classify it, and provide for the discovery of hidden trends, patterns 
and anomalies. This is the goal of a set of methods, technologies and tools drawn from statistics, 
computer science, artificial intelligence and machine learning, that have come to be known as data mining 
and knowledge discovery. 
 
Data mining has been successfully applied to different activities and scenarios, including scientific 
research (genomic data mining, signal recognition in astronomy, medical diagnosis), and business areas 
such as manufacturing, finance and marketing.  Computerization of business processes leads to 
abundance of raw data, which in turn facilitates the applicability of data mining techniques. Data mining 
is being used in marketing to target customer needs, increase response rate of direct-mail campaigns, and 
improve customer retention. Financial institutions use data mining to analyze and predict market 
fluctuations based on historical times series and real-time data. Credit card issuers and insurance 
companies have pioneered the use of data mining with the purpose of detecting fraud in purchases and 
claims. 
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Recently there has been much interest in applying data mining to computer network intrusion detection. 
An intrusion can be defined as "any set of actions that attempt to compromise the integrity, confidentiality 
or availability of a resource" [5]. A network intrusion attack can compromise the stability or the security 
of the information stored in those computers connected to it. Considering that in today’s world, 
companies depend on their physical networks and on their level of connectivity to survive, it comes at no 
surprise that the role of network intrusion detection has grown so rapidly. While there may still be 
different approaches as to what is the best way to protect a company’s network, it is evident that an 
intrusion detection system is certainly an important asset among the group of tools used to secure the 
network architecture. Added security measures have failed in many cases to stop the wide variety of 
possible attacks. The goal of intrusion detection is to build a system that would automatically scan 
network activity and detect such intrusion attacks, providing the necessary information to the system 
administrator to allow for corrective action [11]. A strong case can be made for the use of data mining 
techniques to improve the current state of intrusion detection. Stolfo and Lee [9] describe several 
approaches to data mining, which are particularly useful in this domain:  
− Association:  determines relations between fields in the database. Finding out the correlations in audit 

data will provide insight for selecting the right set of system features for intrusion detection; 
− Sequence analysis:  models sequential patterns. These algorithms can help us understand what (time-

based) sequence of audit events are frequently encountered together;  
− Classification: mapping a data item into one of several pre-defined categories. An ideal application 

in intrusion detection will be to train a program by using sufficient "normal" and "abnormal" audit 
data, then apply the program to determine (future) audit data as belonging to the normal class or the 
abnormal class. Classification is sometimes called supervised learning, because the learning algorithm 
operates under supervision by being provided with the actual outcome for each of the training 
examples (also known as labeled examples). 

 
Although the data mining techniques may perform quite efficiently on test data, real world applications of 
data mining necessarily involves use of data whose quality varies and hence could be poor on some 
dimensions and excellent on others.  Thus the efficacy and usability of a data mining technique could be 
strongly influenced by the quality of data available to an organization.  It has been well recognized that 
organizational databases and data sources have persistent data quality problems [15]. Data consumers 
view data quality to be a composite of several dimensions such as accuracy, believability, completeness, 
interpretability [14]. So a database that is excellent in terms of completeness may in fact be of poor 
quality because of the presence of erroneous data.  So for any data mining effort to be successful it should 
be preceded by a data quality enhancement activity.  However, determining which dimension of data 
quality should be improved and to what extent in accomplishing a successful data mining application is 
not straightforward.  It requires understanding the interaction between the problem domain, the nature of 
data errors in that domain and the characteristics of the proposed data mining technique.  
 
In this paper, we carryout a comparative study of two classification techniques in the domain of network 
intrusion detection when the audit data could be “dirty” or of poor quality.  As discussed by [8], a high 
statistical accuracy should not be the main goal of an intrusion detection system; rather, the more 
important goal should be the maximum reduction in intrusion damage cost with minimum intrusion 
detection operational cost. Investing in network intrusion detection should help maximize the user 
network security goals, while minimizing the operational costs. Fan et al [2] examine some of the relevant 
factors, models and metrics related to intrusion detection systems.  
 
A very important aspect of research in this area should then focus on the study of automated techniques 
for building intrusion detection systems that are optimized for user-defined cost metrics. Given the fact 
that the time and resources available to deliver clean audit data are limited, the problem can be seen from 
the perspective of implementing data mining techniques robust enough to cope with dirty data, and 
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provide adequate automated intrusion detection mechanisms.  
 
In a typical networking environment, training data used for classification purposes is usually quite 
accurate, as it is being automatically collected from the audit files recorded by the operating system 
software. The weak link is found to be in this case in the process of labeling the training examples. This 
may be given to different factors including errors in label data entry and lack of precision in expert 
judgment. This paper investigates the application of classification to the task of computer network 
intrusion detection, and the extent to which errors in the labeling of the training data records affect the 
classification models. The datasets on which these techniques were applied were extracted from data files 
used for The Third International Knowledge Discovery and Data Mining Tools Competition, which was 
held in conjunction with KDD-99 (The Fifth International Conference on Knowledge Discovery and Data 
Mining).  The competition task was to build a network intrusion detector, a predictive model capable of 
discriminating normal TCP/IP connections from intrusions or attacks, and further classifying those attacks 
into a set of previously identified classes. In this paper we replicated the experiment on a reduced sample 
data set, using two different algorithms for classification: a C4.5 decision tree and a naive Bayes learner. 
As the tool of choice, we used Weka [16], a data mining toolkit developed at the University of Waikato, 
New Zealand. 
 
We start by providing an introduction to the classifying algorithms under consideration, namely decision 
trees and naive Bayes classifiers. Following this, we present the different stages of the experiment and the 
results obtained.  We finish with a discussion of the results and our conclusions. 
 
 
 
DECISION TREES 
A decision tree is a flow-chart like tree structure, where each internal node denotes a test on an attribute, 
each branch represents an outcome of a test, and leaf nodes represent classes [4]. The topmost node in a 
tree is the root node. Consider the example in Table 1 adapted from [10]. We are dealing with records 
reporting on weather conditions for playing tennis. The class attribute specifies whether or not to play.   
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outlook temperature humidity windy play  Attribute Name    Values 
sunny hot high false no  outlook      sunny, overcast, rainy 
sunny hot high true no  temperature  hot, mild cool 

overcast hot high false yes humidity     high, normal 

rainy mild high false yes windy        true, false 

rainy cool normal false yes play (class 
attribute) 

yes, no 

rainy cool normal true no     

overcast cool normal true yes                                 (b) List of Attributes 

sunny mild high false no   

  sunny cool normal false yes                               outlook = sunny 

rainy mild normal false yes                               |       humidity  =  high: no 

sunny mild normal true yes                               |       humidity = normal: yes 

overcast mild high true yes                               outlook = overcast: yes 

overcast hot normal false yes                               outlook =  rainy 

rainy mild high true No                               |        windy: yes 

                              |        windy: no 

                                   (a)  List of Instances   

                                    (c)  Decision Tree  

Table 1: Weather Data Set 

For our example we could obtain a decision tree like the one depicted in (c). This representation is 
equivalent to defining a set of rules. For example, according to the tree, if the outlook is sunny, and the 
humidity is high, we don’t play. With this tree structure we could then predict future decisions, given a 
new instance.  As we saw in (c), a path is traced from the root to a leaf node that holds the class prediction 
for the sample. The basic algorithm for decision tree induction is a greedy algorithm that constructs 
decision trees in a top-down recursive divide-and-conquer manner [4]. The algorithm uses the same 
process recursively to form a decision tree for the samples at each partition. We still need to deal with the 
issue of finding the order of precedence of the attributes. For that purpose we define an impurity function 
that measures the proportion of instances that belong to the different classes. We choose the attribute that 
maximizes the reduction in impurity from the root node to the children.  
 
Since tree size is not limited in the growing process, a tree may be more complex than necessary to 
describe the data. Many of the branches may reflect anomalies due to outliers, missing data, etc. This may 
lead to overfitting the data: the tree learning process adjusts the tree structure to maximize the fit of the 
training data set, but by doing so it can therefore fail to classify novel patterns. It is unlikely that a 
complex decision boundary would provide good generalization- it seems to be tuned to the particular 
features of the training data set, rather than some underlying characteristics of the set of all possible 
instances that need to be classified1. Tree pruning methods address this problem of overfitting the data by 
considering each of the decision nodes in a tree to be candidates for pruning. 
 
ID3, C4.5 and C5.0 are multiway classification tree algorithms introduced by Quinlan [12, 13]. These 
algorithms use an entropy-based impurity function as a heuristic rule for selecting the attribute that will 
best separate the samples into individual classes. ID3 is a rudimentary version limited to handle discrete 

                                                           
1 The philosophical debate regarding this criterion has been going on for centuries. William of Occam  (14th 
century) was one of the first thinkers to discuss the question of whether simpler hypotheses are better than 
complicated ones. For this reason this approach goes by the name of Occam’s razor 
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predictor variables. C4.5 and its newest release, C5.0 introduce a number of extensions, among them: 
providing support for handling continuous predictor attributes, and sophisticated tree pruning.  
 
 
 
NAIVE BAYES CLASSIFICATION 
Bayesian methods make explicit use of probability for quantifying. Bayes theorem provides the means of 
calculating the probability of a hypothesis (posterior probability) based on its prior probability, the 
probability of the observations and the likelihood that the observational data fits the hypothesis. 

 P( | )= P( | ) P( ) P( )H D D H H D⋅  (1)  

Note that  is the probability of a certain hypothesis based on a set of observational data D, given 
a certain context (posterior probability of hypothesis H); 

P( | )H D
P( | )D H  is the likelihood of the observations 

given a certain hypothesis; P( is the intrinsic probability of hypothesis H, before considering the 
evidence D (prior probability); and P

)H
( )D is the probability of the observations, independent of the 

hypothesis, that can be interpreted as a normalizing constant. Bayes rule can then be reformulated as 
, which means that the probability of the hypothesis H is being updated by the 

likelihood of the observed data D . 
P( | ) P( )H D H⋅P( | )D H∝

 
The practical application of this expression is rather straight-forward. Given a set of hypotheses H  and a 
set D of observational data we can estimate the most probable hypothesis H given D, by comparing  
different instances of the above expression for each hypothesis H and choosing the one that holds the 
largest posterior probability (also called maximum a posteriori probability or MAP). 

 [ ]MAPMost probable  arg max P( | ) P( )H H D H H≡ = ⋅  (2) 

Suppose we have a classification problem where the class variable is denoted by C and can take 
values . Consider a data sample D represented by m attributes  A A  of which   the 
observations  have been taken for each instance of D. Suppose that each instance of the data 
sample D is classified as c c . The Bayesian approach to classifying a new instance would then be 
to assign the most probable target value (a class value of type ) by calculating the posterior probability 
for each class given the training data set, and from them choosing the one that holds the maximum value. 

1 2, ,,.. kc c c
( ,

1 2, ,.., mA

1 2 ,,.. )ma a a

1 2, ,,.. kc

ic

 [ ]MAP arg max P( | ) P( )
i

i i
c C

c D c
∈

= c⋅

i

 (3) 

When the dependency relationship among the attributes used by the classifier are unknown, a simplified 
approach, known as the naive Bayesian classifier criterion, is to assume that the attributes are 
conditionally independent given the class. In other words:  

 
1

P( | ) P( | )   ,
m

i j j i
j

D c A a c c
=

C= =∏ ∈  (4) 

The conditional probabilities of each individual attribute can be estimated from the frequency 
distributions of the sample data set D as ij iN N , where ijN  is the number of training examples for which 

attribute j jA a=  and class value is c ; and i iN  is the number of training examples for which the class 

value is c . If the prior probabilities P  are not known, they can also be estimated drawing its 
probabilities from the sample data set frequency distributions. If the attribute values are continuous, they 
need to be discretized first, making some assumptions regarding the probability density functions for each 
of them (for more information regarding discretization procedures, see [6]).  

i ( )ic
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For example, if we take the data sample reporting on weather conditions for playing tennis (presented in 
previous sections), we could estimate the class probabilities P(play=yes) and P(play=no) as follows: 

 P(play=yes) = (# of instances were play=yes) / (total # of instances) = 9/14 

 P(play=no) = (# of instances were play=no) / (total # of instances) = 5/14 

In the case of the conditional probabilities we would compute for example: 

(# of instances were outlook=overcast  and play=yes) 2
P(outlook=overcast |play = yes) = = 

(# of instances were play=yes) 9
 

Although the naive Bayes assumption may seem over simplifying, the fact is that they work quite well in 
certain classification problems. Various empirical studies of this classifier have rendered comparable 
results to those obtained by using state of the art classifiers (see [10] for more details). 
 
 
 

ESTIMATING CLASSIFICATION ERRORS 
Given a single labeled instance for which there are k possible class values, the classifier calculates a 
probability pi for each class , yielding a probability vector (ic 1 2, ,.., )kp p p , the sum of which adds up to 
1. The actual outcome for that instance is one of the classes; and this fact can be expressed by considering 
a vector , where v , the actual class, and the rest  are equal to 0.  As described by Witten 
and Frank [17], we can express the penalty of considering a probability for each class as a loss function 
that depends on both the p vector and the v vector. A common criteria is to calculate a quadratic loss 
function as: 

1 2( , ,.., )kv v v 1=i

 2

1
L (

k

j j
j

)p a
=

= −∑  (5) 

This expression computes the loss function for a single instance. Weka averages this expression over all 
the instances to provide an error measurement of the classifier, reporting the square root of the overall 
average loss function  as the mean squared error. 
 
 
 
EXPERIMENTAL SETUP 
As stated before, we replicated, on a reduced data set, the main task of The Third International 
Knowledge Discovery and Data Mining Tools Competition (in KDD-99): that is, to build a network 
intrusion detector, a predictive model capable of distinguishing between “bad” TCP/IP connections, 
called intrusions or attacks, and “good” normal connections from a data file containing s a wide variety of 
intrusions simulated in a military network environment. We chose in this paper to focus on the single 
dimension of accuracy, considering different levels of quality in the training data set. We use simulation 
to show the effects of erroneous labeling of training data records in a context where the outcome of the 
analysis is a predictive model and interest is focused on the accuracy of the model for detecting network 
intrusions and classifying them.  
 
 
Data Source 
To perform the experiment, we downloaded the corrected.gz file from the KDD-99 web page2, a 45 MB 
                                                           
2 More details can be found at http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
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data file contaning class labels used as the test file for the original competition. From the corrected.gz file 
we extracted 11000 records, 10000 for the training dataset, and 1000 for the test dataset. To avoid biasing 
the extracted dataset (we checked that classes were not evenly distributed in the original file), we 
performed random sampling on the corrected.gz file. The initial data file format is displayed in Table 2 
together with the list of values of the class attribute (connection_type). 
 

Attribute  name Description  Type 
duration  length (number of seconds) of the connection  continuous 
protocol_type  type of the protocol, e.g. tcp, udp, etc.  discrete 
service  network service on the destination, e.g., http, telnet, etc.  discrete 
flag  normal or error status of the connection  discrete  
src_bytes  number of data bytes from source to destination  continuous 
dst_bytes  number of data bytes from destination to source  continuous 
land  1 if connection is from/to the same host/port; 0 otherwise  discrete 
wrong_fragment  number of ``wrong'' fragments  continuous 
urgent  number of urgent packets  continuous 
hot  number of ``hot'' indicators continuous 
num_failed_logins  number of failed login attempts  continuous 
logged_in  1 if successfully logged in; 0 otherwise  discrete 
num_compromised  number of ``compromised'' conditions  continuous 
root_shell  1 if root shell is obtained; 0 otherwise  discrete 
su_attempted  1 if ``su root'' command attempted; 0 otherwise  discrete 
num_root  number of ``root'' accesses  continuous 
num_file_creations  number of file creation operations  continuous 
num_shells  number of shell prompts  continuous 
num_access_files  number of operations on access control files  continuous 
num_outbound_cmds number of outbound commands in an ftp session  continuous 
is_hot_login  1 if the login belongs to the ``hot'' list; 0 otherwise  discrete 
is_guest_login  1 if the login is a ``guest''login; 0 otherwise  discrete 
count  number of connections to the same host as the current connection in the past 2 seconds  continuous 
serror_rate  % of connections that have ``SYN'' errors  continuous 
rerror_rate  % of connections that have ``REJ'' errors  continuous 
same_srv_rate  % of connections to the same service  continuous 
diff_srv_rate  % of connections to different services  continuous 
srv_count  number of connections to the same service as the current connection in the past 2 

seconds  
continuous 

srv_serror_rate  % of connections that have ``SYN'' errors  continuous 
srv_rerror_rate  % of connections that have ``REJ'' errors  continuous 
srv_diff_host_rate  % of connections to different hosts  continuous  
connection_type Type of connection: normal or intrusion  discrete  
connection_type:  apache2., back., buffer_overflow., guess_passwd., httptunnel., ipsweep., mailbomb., mscan., multihop., 
neptune., nmap., normal., pod., portsweep., processtable., rootkit., saint., satan., smurf., snmpgetattack., snmpguess., sqlattack., 
warezmaster., xlock. 

Table 2: Data File Format 

As a first task previous to the classification, we ran a group of summary statistics on the dataset, in order 
to get a feeling on the underlying characteristics of the component attributes of the file. We performed 
this task on all 11000 records, disregarding the fact that some of then would then be used for training, and 
the rest for testing purposes. We made the following findings: 
− The class attribute (connection_type) is strongly concentrated in 3 classes: neptune (2072, 18.8%), 

normal (2264, 20.6%)  and smurf (5674, 51.6%), with the other classes accounting for the remaining 
10%. This suggests that the classifier should tend to choose among these 3 categories to make its 
predictions. 

− The attributes num_outbound_cmd and land contain only 0s and are therefore irrelevant  
 
We also did a graphical exploration on the group of continuous attributes to check their density 
distribution. We could verify that of the 32 attributes checked, 19 of them approximated a gaussian 
distribution, although exhibiting some outliers in their density plots. 
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Finally, the 11000 records data set was divided into two data sets: the training data set (10000 records), 
and the test data set, containing the remaining 1000 records. 
 
 
Dirty Data Simulation 
Quality of the training data is one of the most important factors in achieving good classifier performance. 
Training data quality is a function of the number of examples, how representative the examples are, and 
the attributes used to describe them [1]. In our case none of these factors seem to be a critical issue:  
- A large number of records from different log files may be consolidated into one data file rendering a 

training data set with enough examples to be considered statistically representative 
- Data is automatically logged by the operating system. There are no typos or errors of judgment that 

could bias the training data set in any manner. 
But classification uses labeled training examples to build a model. The labels are provided by human 
experts who manually review cases. This is a typical situation in which errors of judgment given by the 
amount of time dedicated to review each case, the resources at hand, the training and expertise of the 
analysts and the subtlety of the analysis may affect the quality of the training data. The training data set 
could therefore contain clean attributes but dirty labels.  
This has been our rationale in simulating dirty training data sets. Given the initial training data set with a 
length of 10000 records we simulated data errors by perturbing the data in the following manner: 
a. To simulate an error of judgment of the expert labeling the records we  replaced an intrusion with a 

normal connection  (normal. label) and a normal connection with one of two possible intrusions 
(smurf. or neptune.) with a probability given by their distribution in the original training sample. We 
followed this approach given the fact that these two intrusions represent  roughly 89% (65% and 24% 
respectively) of the attacks contained in the training data set, with the remaining 11% distributed 
among 21 classes (the following type of attack in order of relevance holds 3% of the samples). It is 
reasonable to infer that a false positive error would fall into one of these two dominant types of attack 

b. Using this approach we generated 13 dirty data sets with perturbations of 1%, 5%, 10%, 15%, 20%, 
25%, 30%, 35%, 40%, 45%, 50%, 60% and 70% of the cases.  

 
 
Model generation and performance evaluation 
During the learning stage of the experiment a model was built for every combination of classifying 
algorithm and training data set, 2 x 14 = 28 models all in all. We applied naïve Bayes and a C4.5 decision 
tree classification with tree pruning on the clean training data set and on the simulated dirty data sets, 
which had been previously reformatted to accommodate the file requirements of Weka (Weka reads data 
from a text file that contains a header with the list of attributes and its data types, followed by the data 
structured as a comma separated file).  In the case of naive Bayes,  we used Weka  to calculate the prior 
probabilities for each class together with the information used to compute the conditional probabilities, 
including counts of each attribute value for each class of connection (in the case of discrete attributes), 
and mean and standard deviation of the probability distribution of each attribute value given the 
connection type (in the case of continuous attributes). Weka’s implementation of the C4.5 algorithm built 
and displayed a pruned decision tree for each training data set under consideration. The details of the 
experiment together with the probability tables and the decision trees generated in each run are available 
from the authors. 
To predict the performance of the classifiers on new data we applied two different procedures: 
a) We used the test data set that had been randomly extracted from the original sample of 11000 records. 

Records were extracted by applying stratified sampling, to avoid uneven representation of the class 
values in the test data set relative to the clean training data set.  We checked the frequency 
distribution of the class values in the test set and verified that they matched the distribution of the 
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training  data set (see Table 3). Each of the 28 models built were tested, and the predictive 
performance of each model was measured: we computed the accuracy as a mean value and a 95% 
confidence interval; the mean root squared error (the square root of the quadratic loss function); and 
the Kappa coefficient, which represents the proportion of agreement obtained after removing the 
proportion of agreement that could be expected to occur by chance [3]. 

 
Class values  Clean training data set Test data set 
smurf.               51.47 52.70 
normal. 20.54 21.00 
neptune. 18.98 17.40 
Others 9.01 8.90 

Table 3. Class value distribution 

 
b) We performed stratified 10-fold cross-validation (n-fold cross-validation with n = 10) on each of 

training data sets for each of the two classifiers under analysis. As noted by [17],  10-fold cross-
validation has become in practice  the standard way of assessing  the performance of a classifier. In 
this statistical procedure the data is split into a fixed number (n) of partitions (folds) of approximately 
equal size, in each of which the class is represented in approximately the same proportions as in the 
full dataset, and each in turn is used for testing while the remainder is used for training. The 
procedure is repeated n times, to guarantee that every instance participates one time in the testing 
process so that in the end every instance has been used one time for testing purposes. The accuracy 
metrics are computed for each holdout and the estimates are averaged to yield and overall estimate of 
these metrics. As before, the following metrics were calculated: accuracy as a mean value and an 
error bar with a confidence of 95%; the mean root squared error; and the Kappa coefficient. 

 
 
Results  
The results of the classification analysis are presented in Table 4, Figure 1 and Figure 2. Table 4  shows 
the assessment of accuracy performance of both classifiers, using 10-fold cross-validation and the test 
data set, for different percentages of label errors. The accuracy is provided as a point estimate +/- a 95% 
confidence boundary. Figure 1 displays the mean accuracy of the classifiers as a function of the 
percentage of label errors. Figure 2 graphs the mean squared error of the classifiers for each test. 
It can be seen that for clean training data the C4.5 algorithm outperforms the naïve Bayes classifier, 
attaining an accuracy in the interval (0.9653,0.9847) with  the test data set, as compared to 
(0.9021,0.9359)  attained by naïve Bayes. Similarly, in the case of cross-validation, C4.5 attains 
(0.9611,0.9817) accuracy and naïve Bayes (0.9096, 0.9420). 
 
It is interesting to note that both algorithms prove to be quite robust when subjected to training data with 
an increasing amount of label errors. In the case of the test data set, C4.5 maintained a surprisingly high 
level of accuracy (close to   90%) with 45% of errors in the data, dropping abruptly beyond this level. 
Naive Bayes went from an average 91.9% accuracy on clean data down to 78% with 50% of errors in the 
data, but showed a steady 73% of accuracy even with 70% of dirty training data. 
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naive Bayes C4.5

test  data set 10-fold xval test  data set 10-fold xval
% errors 
in labels

sample 
mean +/- (*) Kappa    

sample 
mean +/- (*) Kappa

sample 
mean +/- (*) Kappa

sample 
mean +/- (*) Kappa

0 0.9190 0.0169 0.8771 0.9258 0.0162 0.8886 0.9750 0.0097 0.9613 0.9714 0.0103 0.9564

1 0.9160 0.0172 0.8726 0.9141 0.0174 0.8714 0.9740 0.0099 0.9598 0.9604 0.0121 0.9398

5 0.9110 0.0176 0.8652 0.8751 0.0205 0.8149 0.9740 0.0099 0.9598 0.9231 0.0165 0.8839

10 0.8760 0.0204 0.8087 0.8082 0.0244 0.7162 0.9710 0.0104 0.9550 0.8721 0.0207 0.8070

15 0.8490 0.0222 0.7635 0.7377 0.0273 0.6116 0.9720 0.0102 0.9566 0.8257 0.0235 0.7390

20 0.8330 0.0231 0.7380 0.6836 0.0288 0.5380 0.9710 0.0104 0.9550 0.7786 0.0257 0.6692

25 0.8060 0.0245 0.6900 0.6315 0.0299 0.4696 0.9670 0.0111 0.9486 0.7270 0.0276 0.5953

30 0.7960 0.0250 0.6738 0.5848 0.0305 0.4145 0.9620 0.0119 0.9406 0.6797 0.0289 0.5267

35 0.7750 0.0259 0.6386 0.5394 0.0309 0.3597 0.9380 0.0149 0.9025 0.6263 0.0300 0.4488

40 0.7780 0.0258 0.6442 0.5073 0.0310 0.3240 0.9120 0.0176 0.8595 0.5830 0.0306 0.3861

45 0.7810 0.0256 0.6480 0.4761 0.0310 0.2958 0.8900 0.0194 0.8276 0.5306 0.0309 0.2988

50 0.7830 0.0255 0.6509 0.4340 0.0307 0.2549 0.3280 0.0291 0.1544 0.4854 0.0310 0.1333

60 0.7710 0.0260 0.6301 0.3606 0.0298 0.1922 0.1370 0.0213 0.0000 0.5589 0.0308 0.0751

70 0.7310 0.0275 0.5675 0.2994 0.0284 0.1378 0.0510 0.0136 0.0000 0.6368 0.0298 0.1902

(*) confidence: 95%, test sample size: 1000  
Table 4: Accuracy of naive Bayes and C4.5 decision tree learner 

 
In the case of cross-validation the performance of both classifiers deteriorated much faster, probably due 
to the fact that the label errors affect not only the training of the models but also the testing procedure on 
each of the ten holdouts, during the cross-validation process. The holdouts contain errors themselves on 
their labels as they form part of the training data set which has been perturbed.   This means that there is 
no golden standard that can be used for comparison purposes: a test deemed as erroneous may be 
successful and vice versa, due to the nature of the test data at hand. The cross-validation procedure is 
probably, in this case, a pessimistic measure of the classifier’s robustness when dealing with dirty data. 
The Kappa statistic is consistent with the accuracy results: with higher levels of agreement it remains 
closer to 1, moving towards 0 as the quality of the training data decreases. 
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Figure 1: Mean Accuracy as a function of the percentage  of dirty training  data records 

 
Figure 2 shows that the mean squared error of the probability estimates increases steadily as the quality of 
the training data is deteriorated. For the C.4.5 classifier, the error starts and 0.039 and increases by a 
factor of 4 at a label error level of 50%. In the case of naïve Bayes, the mean square error moves from 
0.08 with clean data to 0.2382 with 70% errors under cross-validation; and to 0.1440 with 70% errors 
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using the test data set. In the case of the C4.5 using cross-validation, the reduction in the mean squared 
error of the probability estimates after reaching a label error level of 50%, which coincides with the 
increase of accuracy in the classifier is somewhat misleading, but can be explained by assuming that with 
such error rate, the training samples that were considered normal connections are now labeled as 
abnormal and vice-versa. As they are also used as testing samples as part of the cross-validation 
procedure, the overall accuracy seems to be improved and the mean squared error seems to decrease. This 
is not really so: it is just the effect of using poor quality data for both training and testing purposes.  
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Figure 2: Mean Squared Error 

 
CONCLUSIONS AND FUTURE AREAS OF RESEARCH 
Data with totally clean labels may not be required to train a classifier that performs at an acceptable level 
as a detector of network intrusions. By analyzing the classifiers’ performance and determining critical 
thresholds in the acceptability of errors, boundaries can be established at which point the derived 
predictions can no longer be trusted. 
Our results suggest that even with substantial percentages of error in the labeling of training data, the 
robustness of classifiers such as C4.5 or naïve Bayes can render high levels of accuracy in network 
intrusion detection. This means that the trade-off between the quality of the training data and the cost of 
attaining such quality may be improved if adequate data mining tools are put in place. 
In future work, we intend to expand our research to include additional data mining techniques applied to 
the task of network intrusion detection. We plan to investigate different quality metrics beyond the 
accuracy dimension considered in this paper and, try to typify different kinds of errors that  may arise in 
different domains.  
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