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Abstract: One of the most promising concepts being considered for use by the Objective Force of the U.S. Army 
is an automated Sensor-to-Shooter (STS) network.  An STS network is a closed-loop, internal feedback system 
that links various suites of sensors deployed throughout a 3D battle space to a network of weapons platforms 
(shooters) using optimized communications pathways. The system decision to fire or not is based exclusively on 
the information generated by this network.  Hence, the quality of this decision process is directly dependent upon 
the quality of the information used to support it.  In this paper, we introduce a novel sensitivity analysis 
framework capable of assessing the marginal contributions to uncertainty made by the various processes and 
devices of an STS network.  This approach extends earlier work in modeling data and process quality for multi-
input, multi-output information systems that principally focused on reducing error rates. While this study 
represents a work-in-progress, we are optimistic that the results can be directly used to identify an information 
quality critical path defined as an end-to-end pathway through the STS network composed of those devices and 
processes whose marginal rate perturbations most affect the quality of the final information product at the decision 
point.  Moreover, a simple ranking of these marginal rates can identify and prioritize locations in the network 
where effective information quality enhancements should be performed to maintain a high quality final 
information product.  This approach will also provide valuable insights as to whether or not continued efforts to 
improve sensor device precision beyond current levels is warranted. 

 
Key Words: Decision Quality, Information Quality, TDQM, Information Product, Sensor network, Sensitivity 
analysis. 
 
 

INTRODUCTION 
Successfully transforming the U.S. Army into an Objective Force for the 21st Century requires new ways 
of thinking about the resources at the Army’s disposal to create such a force: time, manpower and 
equipment.  These assets must uniquely combine to not only afford future commanders a level of 
battlespace situational awareness far beyond that of adversaries, but to equip commanders with systems 
capable of near instantaneous reaction and response to enemy presence [1].  One of the most promising 
concepts consistent with this design philosophy is an automated Sensor-to-Shooter (STS) network.  An 
STS network is a closed-loop, internal feedback system that links various suites of sensors deployed 
throughout a 3-dimensional battlespace to a network of weapons platforms (shooters) using optimized 
communications pathways. 

A fully-automated STS network is one in which there is no required human interaction in order 
to achieve its principal functionality.  These networks can be decomposed into three major segments: 
target acquisition, a fires commitment decision process, and a weapons engagement process.  Targets are 
detected, classified and identified through the sensor end of the network.  A decision support system then 
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determines if threshold criteria for target identification has been met, and if so, makes the decision to 
commit the appropriate available weapons platform(s) to engage the target.  Once handed this fire 
mission, the weapons platform would engage the target, the sensors would assess the damage, the 
decision support system would again compare target damage to threshold criteria, and re-engage as 
necessary.   

Doing this successfully is both tricky business and admittedly several years away, especially 
when such systems are deployed in general support of operational forces.  Direct support STS networks 
are currently in-use in Afghanistan, where special operations units of the Army use handheld laser target 
designators that are linked directly to U.S. Air Force fighter aircraft (shooter) rather than routing fire 
support requests through alternative communications routes that would be far less responsive.  It is the 
aspect that the sensor, in this case a combination of soldier and lasing device, is pre-assigned directly to 
the weapons platform (shooter) prior to commencing the tactical operation that defines this arrangement 
as direct support.  This pre-assignment of sensor to shooter avoids many of the challenges associated 
successful general support of operations using STS networks such as target handoff, cross-service 
weapons allocation, and commitment of fires within restrictive engagement time windows, among others. 

This general support role for an STS network is the more difficult and vastly more important 
case.  In this scenario, targets are not pre-designated and weapons systems are not pre-assigned to targets.  
These actions along with their associated decision processes unfold as the dynamics of the battlespace 
dictate.  Thus, the general support case naturally subsumes direct support as a special case. It is the 
general support role that has a strong potential to dramatically reduce the cycle time for all engagements 
in a 3-dimensional battlespace.  

Three distinct major processes characterize an STS network in this perspective: information 
input, processing and presentation to the fire/no fire decision point, weapons allocation and assignment 
once the fire decision has been made, and battle damage assessment and recommitment of fires following 
an initial engagement.  Our focus herein is on the first process because it is this segment of the overall 
operational STS network that contains all of the information directly supporting the only decision point in 
an STS network.  It appears to follow that one ought to be concerned with how “good” the information is 
at this point, and whether or not actions could be taken to improve the quality of this information, if such 
a need were present. 

 
Information Quality 
While there exists an abundance of effort focused on the technical aspects of sensor network design (see 
The International Society for Optical Engineering (www.spie.org), and IEEE Sensors Council 
(www.ewh.ieee.org/tc/sensors/) for example), there is a notable absence of effort to-date focused on 
examining issues associated with the quality of the information that is flowing on these networks.  Harney 
[10] was the first to suggest that an information-based analysis applied to sensor functions might be of 
significant merit to both improving individual sensor design and providing insights into more viable 
alternative approaches.  Since the fire/no fire decision in a fully automated STS network is based 
exclusively on this information, we concur with him. 

The focus of his analyses at that time centered on information technology issues such as 
transmission rates and data assurance.  This aspect of his effort aligned with that of Yu and Neter [21], 
Cushing [8], Bodnar [5], and Stratton [17] who all sought to efficiently automate error checking and 
validation in computer-based accounting systems. While all five of these studies employed a somewhat 
different concept of information quality than that of this study, Harney’s results in particular bears a 
certain appeal to several notions underlying our work. These are summarized in the context of the three 
propositions that follow. 

First, he proposed the conjecture that the information gained from a single sensor in a sensor 
cluster has the same quality level as information obtained from another sensor.  By this he meant that in 
terms of detection, classification and identification, all sensors had equivalent potential.  Although it 
appears that the validity of this conjecture necessarily assumes a cluster is composed of the same type of 

4

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)



sensor, we agree with the presumption that within sensor types there should not be a measurable 
difference in the quality level of information generated into a sensor network.  Therefore, if one can 
capture some closed-form measure of the contribution of a single sensor to the decision quality associated 
with an STS network, it is simply a matter of scaling up this contribution to assess the overall impact of a 
sensor cluster of varying sizes. 
 Secondly, he proposed that the information obtained from multiple sensors, presumably of the 
same type, has the same quality level as that obtained from a single sensor in the network.  The thought 
behind this conjecture was that if a single sensor was able to identify an enemy target with a high degree 
of accuracy and pass this information into the network, then having multiple sensors do the same reflects 
a redundancy in the information.  The validity of this conjecture depends upon whether or not one 
considers both the technical sources of error and the error components introduced in the processes used to 
construct information products.  Since he did not consider the costs associated with multiple sensor 
configurations, the notion of designing effectiveness with bang-for-buck considerations was not 
addressed.  We do so here. 
 Lastly, Harney proposed that the information obtained from non-imaging sensors has the same 
quality level as that obtained from imaging sensors despite the attractiveness of imagery as a means of 
communicating information.  We strongly support this conjecture, believing that a high quality 
information product assembled from a host of low-cost independent sensor types is equivalent to a high 
quality information product assembled from a single high cost sensor. 

Accepting this final conjecture directly implies that by identifying such equivalences between the 
information products generated by different sensor types it is possible to quantify thresholds for continued 
investment efforts focused on improving the precision of sensors.  Moreover, such investments should 
experience diminishing marginal returns to decision quality associated with increases in precision simply 
because there is a certain amount of uncertainty contained in a sensor network that cannot be engineered 
out of the system. 

In this study, we propose a different set of three conjectures.  First, the quality of the decision 
process is directly dependent upon the quality of the information used to support this decision process. 
Second, that information quality in this setting is a function of the uncertainty imposed by the various 
devices and processes that make up the STS network.  And third, that understanding the marginal rates of 
contribution made by individual devices and information handling processes throughout this network will 
facilitate developing strategies that will enhance and maintain high quality information.  In the sections 
that follow, we employ a simple information manufacturing framework based on that introduced by 
Ballou et al. [4] to conceptualize an STS network and develop our approach to quantifying this underlying 
uncertainty. 
 
An Information Manufacturing Framework 
In a general support role for the Objective Force units, an STS network is intended to automatically 
detect, classify, and identify targets in a dynamic battlespace that evolves in concert with current 
operations ([11], [9]).  Sensors generate the lowest level of primitive data that begins this process flow.  
This data is then transformed, or manufactured, into various intermediate information products as it flows 
throughout the network, culminating in a final information product that is presented to the fire/no fire 
decision point.  For example, an intermediate information product is formed when primitive sensor data is 
aggregated to accomplish a low level classification in a sensor cluster [12]. 

Viewing an STS network as an information manufacturing network is quite useful because it is 
generally recognized that the quality of information flowing in such networks erodes over time due to 
both internal and external affects when some set of information maintenance activities are not performed 
([13], [2], [3]). 

For most sensor networks in existence today, the need to perform maintenance actions has been 
driven by a concern that the hardware involved in these systems have a high quality information 
technology serving the backbone of the network.  This concern resides principally in the domain of 
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computer scientists and programmers.  However, it does not follow that such actions necessarily insure 
high quality information, but merely guarantee that a high percentage of the information passing on this 
network propagates from point-to-point without interruption or excessive error generation.  A new 
methodology appears to be needed that specifically focuses on information as an entity, and provides a 
means by which the quality of such information entities can be assesses and enhanced as necessary. 

In concert with our conjecture that the quality of information presented to the decision point, 
hence the decision quality of an STS network, is directly dependent upon the level of uncertainty 
contained in the information supporting the decision, it follows that high quality information in this 
setting can be characterized as containing as little uncertainty as possible.  As such, for any particular 
suite, or combination of suites, of sensors comprising the front end to the network, minimizing this 
amount of information uncertainty through deliberate design or post-deployment operational activities 
should be a major objective of any design initiative.  This requires STS network designers to understand 
the levels of uncertainty present at critical locations in an STS network, the upper and lower bounds of 
this uncertainty, what these levels should be in relation to those present in existing equivalent battlefield 
decision processes, and the location and type of maintenance actions that should take place in an STS 
network to reduce the level of uncertainty and thereby maximize the decision quality.  The necessary first 
step in this undertaking is to develop an appropriate framework within which these issues can be clearly 
illuminated and understood. 

The major goal of this study is to develop both a framework and a methodology for assessing the 
decision quality at the fire/no fire decision point in STS general support networks.  The approach we take 
to accomplishing this goal is to characterize the STS network as a stochastic information manufacturing 
network [20] in which the various processes and activities introduce elements of uncertainty that become 
embedded in the information products.  The framework we propose explicitly represents these 
contributions to uncertainty and tracks their individual flow to the decision point.   

This framework enables us to use a recursive method of backtracking to develop closed-form 
expressions for the marginal contribution to uncertainty by activities occurring at specific locations in the 
network, and thereby capture each critical location’s role in contributing to the overall decision quality.  
At the same time, these marginal expressions describe a sensitivity that enables us to assess the impact of 
several optional activities including increased precision at any device in the network, or changes in fusion 
algorithms at information consolidation points, thereby being able to prescribe design guidelines with a 
‘bang-for-the-buck’ motivation in mind.  Moreover, such an approach can identify locations in the 
network where information maintenance operations should be performed in order to maintain a high 
decision quality at the critical locations noted.  Additionally, we hope to be able to prescribe the goals of 
such maintenance activities as well and to capture the specific probability distributions associated with 
each critical location in the STS network, the fire/no fire decision point being one of these. 
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Figure 1. A generic UGS base unit cluster configuration. 
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UNATTENDED GROUND SENSORS 
One family of sensors that can be used as the front end of an STS network is Unattended Ground micro-
Sensors (UGS).  These sensors are capable of delivering mission critical information in both Beyond Line 
of Sight (BLOS) and Non-line of Sight (NLOS) areas of the battlefield.   

UGS come in various sizes and forms.  Each individual sensor may contain one or more types of 
sensing capability (seismic, acoustic, magnetic, image, IR).  UGS are small, relatively low cost to 
manufacture, operationally robust, and capable of performing information gathering missions on the 
battlefield for extended, although limited, periods of time.  This operational time is driven both by the life 
of the on-device battery and the power requirements for various operations the sensor is asked to perform.  
Battery life is currently the principle factor constraining sensor communications as well. 
 Sensor clusters, comprised of three to five individual sensors (nodes) linked through efficient, 
low-range communications, are capable of being deployed by several means (e.g., air, artillery, and hand). 
Figure 1 illustrates a generic base unit cluster and the functions associated with the various system 
components. 
 Positioning several clusters within spatial proximity to each other and linking the 
communications pathways between these clusters together into an integrated sensor network, as shown in 
Figure 2, creates a sensor field.  Networked sensor fields are capable of performing a host of missions 
(e.g., general surveillance, early warning, target acquisition, target tracking, battle damage assessment) 
against a wide range of targets.  

UGS operate in all-weather conditions around the clock.  However, terrain, weather, background 
noise, and time of day all affect their precision.  The level of precision ultimately has an impact on the 
resulting accuracy of the information produced by an UGS sensor cluster.  The performance of an UGS 
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Figure 2.  UGS field depiction. 

sensor cluster is affected by environmental factors such as these, as well as device factors such as number, 
type, orientation, and reliability, among others. 

UGS have the potential to not simply augment current operational capabilities, but to actually 
replace elements and processes in the Objective Force whose battlespace functions can be more 
effectively performed by UGS.  In this manner, sensor technologies can change the way the Army does 
business, potentially change its operational art, and certainly change the way that Army forces are 
configured for battle.  For example, some scout functions in support of target acquisition might be 
performed at higher precision, lower risk, and longer duration by UGS, thereby affording certain 
economies once appropriate tradeoff equivalences between these elements are identified. 

The ultimate purpose of constructing STS networks is to facilitate rapid remote target detection, 
location, tracking, engagement and battle damage assessment in regions of the battlespace well beyond 
those that have been directly exploitable by ground force commanders.  Identifying and engaging enemy 
forces and their resources well before they can do the same to friendly forces provides unit commanders 
with more complete battlespace knowledge, thereby directly enhancing both their decision cycle, by 

7

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

http://www.spie.org/
http://www.ewh.ieee.org/tc/sensors/


shortening it beyond the enemy’s ability to insert disruptive measures into it, and the decision quality by 
reducing elements of uncertainty associated with accurately assessing an evolving enemy situation. 

 

(Smets, 1997)
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Figure 3.  Smets’ taxonomy of uncertainty. 
 

A TAXONOMY OF UNCERTAINTY 
The basis for accepting a partially automated or fully automated STS network goes to an issue beyond the 
technical specifications of the devices comprising the network: the degree of trust one has that an STS 
network will perform to expectation.  This concept of trust is a dimension of subjective uncertainty 
resident in the user [6].  When an STS system fails to meet or exceed these expectations, and here we are 
conceptualizing field commanders as the group of users, this user group poses a serious impediment to 
development and fielding of an STS system.  Even if such trust exists but is tenuous at best, these users 
will cease relying on STS functions at the first occurrence of a serious mishap.  However, because sensor 
networks form the very foundation for achieving the high state of situational awareness envisioned for the 
Objective Force, turning them off will not be an option. 

It appears to us that this subjective notion of trust is also related to the level of uncertainty 
contained in the information provided by the STS network.  What is not known at this time is the level of 
uncertainty in the decision processes that commanders currently employ.  We contend that such 
knowledge is crucial if one is to benchmark the improvement afforded by STS networks.  To understand 
this link between uncertainty and trust, it is useful to understand how such uncertainty enters the network 
information and what one might do to mitigate these levels. 

Several taxonomies concerning uncertainty have been proposed and accepted within the 
information research community ([6], [16]; [7]; [15]).  While all provide a comprehensive representation 
and decomposition of uncertainty into its various components, it is Smets’ taxonomy shown in Figure 3 
that provides the best organization for understanding uncertainty in the context of this study for several 
reasons. 
 Unlike various other taxonomies, Smets’ taxonomy makes a clear distinction between two 
concepts that are frequently and mistakenly mixed together:  imprecision, where the central focus is on 
the resolution of the information, and uncertainty, where the central focus is related to the degree of 
imperfection present in the information. 
 STS network issues associated with imprecision remain an area that attracts the attention of 
computer scientists, sensor design engineers, network modelers.  Sources of imprecision in an STS 
network include, but are not limited to, faulty sensors, input and/or data/information manipulation errors, 
inappropriate choices of representation (e.g., forcing an attribute with a disjunctive value to be single-
valued), and measurement noise.   
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The level of precision has an affect on the accuracy of information as well.  This affect has its 
limitations, however, and past that limit, the resident uncertainty in the information itself fills the 
remaining gap between perfect and imperfect information. 

Uncertainty can either be characterized as an objective property of the observer, or a subjective 
property of the observer [14].  If the uncertainty is objective, it is either random information that is subject 
to change whose stochastic process is known or suspected, or it is likely information that is represented 
by a frequency distribution based on past performance.  One example of an objective uncertainty present 
in an STS network is the detection probabilities associated with individual sensor types. 

In contrast, the degree of subjective uncertainty is based largely in the perceptions held by an 
observer which, for an STS network is the user.  When uncertainty is subjective, it can relate to 
information that is believable but not entirely trustworthy, to information that is unreliable, or to 
information that is irrelevant.  It is this uncertainty that the user faces and must either resolve or come to 
accept as appropriate.  The nature of battle dictates that the latter should be part of the understanding this 
study attempts to communicate.  Both objective and subjective uncertainty should be taken into 
consideration because both make contributions to the uncertainty of the final information product 
presented to the decision point of the STS network. 
 Subjective uncertainty arises when a user of an STS network must construct an opinion about a 
fact of truth of which he does not know for certain, such as enemy target information.  To what extent 
does automating the decision process and increasing the precision of the reporting medium affect the 
accuracy of final information product is important to resolve. 

 

• Sensor cluster
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•Intermediate information 
product formed (fusion)

•Sensor
•First intermediate 
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created (classification).

Decision 
Point

Sensor  Hub
Information 

Product

 

Final 
Information 

Product

Figure 4.  A generic representation of an UGS cluster as an Information Manufacturing Network. 

 
UGS Information Manufacturing Network 
Figure 5 shows the generic framework for conceptualizing an UGS network as an information 
manufacturing system.  It also shows the most basic flow of information from point-of-origin to the 
fire/no fire decision point.  Each individual sensor functions as a generator of primitive data through its 
process of detection.  This primitive data is the most basic construct of information in both content and 
logical organization.  When a sensor attempts low level classification by comparing sensed data vectors to 
classification processes, the result of this effort forms the first intermediate information product of the 
STS network.   

The identification process used at the master node forms a second intermediate information 
product.  This location is also the first point in the network at which information fusion is performed 
when this master node aggregates the collective classification it receives from individual sensors, applies 
an identification process, and constructs and transmits a single cluster report into the network that 
represents the conclusive opinion of the cluster.  
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 Finally, the sensor hub further processes the intermediate information products it receives, 
shaping them into a form that ultimately becomes a part of the common operating picture (COP) that the 
decision maker sees at the decision point of the network. 
 Each of these processes: detection, classification, shaping, identification, voting, and re-shaping 
imposes some amount of uncertainty different from that caused by information technology issues such as 
transmission and bandwidth overflow, for example.  The methodology introduced in what follows 
provides an explicit representation of this uncertainty that enables one to both assess the marginal 
contribution of each process and component of an STS network and to subsequently prioritize on 
locations where information maintenance must occur if the decision quality of an STS network is to 
remain high. 
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Figure 6.  Initial propagation of uncertainty in an STS network. 

 
 
MODELING THE PROPAGATION OF UNCERTAINTY 
Potential targets on the battlefield are classified into types based on specific sets of physical features 
having the power to discriminate between them.  Feature sets enable, for example, a sensor network to 
distinguish between a school bus and a troop transport.  The greater number of features detected by a 
sensor, the stronger, and presumably the more accurate the classification that is possible.  This logic 
supports the assertion that more information improves accuracy by reducing uncertainty.  A point to be 
made in this regard is illustrated in Figure 6: it is the detected feature set information that is flowing on 
the STS network, not the true feature set. The difference between these two sets defines the first objective 
uncertainty propagated into the network. 
 Assuming that some device component is actively seeking to detect some physical feature of a 
potential target, we can let represent a member of the true feature set i, i = 1,…, I, and iw iw a member of 
the detected feature set.  The contribution to uncertainty made by the detection process focused on each 
feature set is given by the differential iwd .  Each sensor aggregates its input from the detection processes 
it houses and attempts a low level classification of the target.  Let ( )iiji wdwf ,  represent this 

classification function.   
Each individual sensor i, cluster j makes classification xi j and passes into the network an 

information product represented by the vector ( )jijiji dfdxx ,, , where xi j is the reported classification 

information from sensor i, cluster j; dxi j is the uncertainty associated with the classification result, and dfi j 
is the uncertainty associated with the process of classification.  We tacitly assume in this framework that 
if a sensor detects a potential target, the sensor will perform a classification and pass the result into the 
network.  This is simply for convenience.  The framework is capable of representing both the case where 
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a lower threshold for acceptability is not met by the data so no classification can be attempted, or the 
sensor switches modes to acquire additional data prior to classification. 
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Figure 7.  Uncertainty associated with the master node of a sensor cluster. 

 
Master Node Uncertainty 
Each sensor passes its classification information ( )jijiji dfdxx ,,  through optimized sensor cluster 

communications pathways using preset routing tables resident in each individual sensor.  The elected 
master node of the cluster then aggregates the individual sensor classification information and applies a 
decision criterion that ultimately results in target identification.  This decision criterion can be, for 
example, a voting process dependent upon a simple majority, or a k-out-of-n voting process.  The result of 
this identification process gets structured into a cluster report that is subsequently passed into the network 
as a second intermediate information product ( )jjj dFdyy ,,  to a hub location.  Here, yj represents the 
cluster identification reported from cluster j, dyj is the uncertainty associated with identification yj, and dFj 
is the uncertainty associated with the identification process itself. 
 One salient difference between our framework and how an analysis of an STS network using an 
information technology focus would view such a network is that the “no-information” state for a sensor 
cluster is explicitly represented within this framework.  There is an information product being passed into 
the network when xij, and hence yj, is null.  When either, or both of these quantities are null, the sensor 
cluster is actively asserting that it does not detect targets in its operational area.  There is uncertainty 
associated with this classification and identification as well. 
 
 
Decision Point Uncertainty 
Finally, at some point in the network beyond or at the hub, the individual cluster reports ( )jjj dFdyy ,, , j 
= 1, 2, …n, are consolidated and re-formatted either for presentation on a common operating picture 
(COP) or for comparison to preset decision thresholds.  These decision thresholds take into account both 
the battlefield operational environment (enemy and friendly states) and prescribed rules of engagement.   
 The information fusion process ( )JJJ dFdyyD ,,  produces a final information product 

 to the decision process.  It is this final information product that forms the basis for the ( dDdzz ,, )

11

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)



Action or No ActionDecision Point
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Figure 8. Uncertainty present at the decision point of an STS network. 

fire/no-fire decision made by the STS network.  The quality of this decision is directly dependent upon 
the quality of this final information product, which in turn, is directly dependent upon the amount of 
uncertainty present via the two components dz and dD.   

The quantity dz represents the accumulated uncertainty propagated throughout the network from 
the sensors and processes preceding it.  The quantity dD represents an additional amount of uncertainty 
present in this final information product due to the fusion process itself.  Reducing either or both of these 
components should be a major design goal of STS designers since both of these quantities affect the 
accuracy of the final information product and hence the quality of the decision made at this point in the 
network. 

 
UGS-based Single Cluster 
As an illustrative example of why the type of analysis proposed in this study is relevant and important to 
the Objective Force design, consider the naïve single sensor target detection scenario presented in Figure 
9.  What is apparent to the decision point is the objective evidence provided by the information product z.  
In terms of information technology, all systems are operable and functioning with no apparent anomalies 
present in any of the communication pathways.  Hence, the information forming the basis for the fire/no 
fire decision appears accurate to the decision maker. 
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Figure 9.  The propagation of uncertainty using a single UGS cluster. 
 

12

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)



Cluster 
Report uncertainty

Sensor 4

w1

w2

w3

dw2 = [ν (w1| w2) , ν (w3| w2) ]

dx4 = f4 (dw2 ) Master node

dx1 = ( no detect | w2)

f4 (dw2 )

dz = D (dy , dF )
w1 = friendly
w2 = enemy
w3 = unknown

Hub Location

dx2 = ( no detect | w2)
dx3 = ( no detect | w2)

( dy , dF )

dD
 

Figure 10.  Uncertainty propagation due to a single sensor detection in an UGS-based STS network. 
 

Figure 10, which represents this exact same scenario in terms of the uncertainty framework 
presented in this study, portrays a different perspective.  When sensor 4 of the 4-sensor cluster detects an 
element of the enemy feature set 2w  (enemy), this detection carries with it both the error associated with 
the likelihood that the true state of the target is w1 (friendly) given that sensor 4 detects feature set 2w  
and the likelihood that the true state of the target is w3 (unknown) given that sensor 4 detects feature set 

2w .  This uncertainty is propagated into the STS network by the classification process f(*).  This level of 
this uncertainty is further compounded by the no-detection information components provided by the other 
three sensors.  

Finally, the cluster reporting process F(*) and the COP information fusion process D(*) each 
contribute to some yet unknown total amount of uncertainty present in the final information product.  
Using this framework, one can realize that the quality of the final information product depends upon the 
relative amount of uncertainty contained in dz and dD. 

 
Measures of Sensitivity 
The framework proposed enables one to quantify the contribution made to ( )dDdzz ,,  by every device 
and process in the STS network. Being able to specify a closed-form expression for how changes in the 
level of uncertainty introduced by, say, a cluster identification report yj affect the amount of uncertainty 
present in the final information product dz allows sensor designers to focus on device improvements that 
will reduce this contribution, and doctrine and force designers to identify and create resource allocations 
and actions that ensure the amount of uncertainty introduced during operations is minimized as well.  
Ultimately, such an analysis enables designers to establish priorities of effort to reduce these individual 
contributions based on their marginal sensitivities.  This latter category is referred to as information 
maintenance ([18], [19]) operations. 

Knowing the individual marginal contributions to uncertainty enables one to prescribe a 
prioritization scheme to existing pathways of the information flow network in an analogous fashion to 
that employed in a PERT chart. Ballou and Pazer [2] recognized the potential applicability of using PERT 
methods to handle judgmental data source items but did not address the connection with information 
pathways proposed here. Further, assuming that such an information quality critical path is possible to 
identify for any STS network, the highest priority of maintenance and protection would be assigned to 
this path under the rationale that the quality of the fire/no fire decision would not degrade by the loss of 
network elements not supporting this critical path. 
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A recursive method due to Ballou and Pazer [2] is currently being used to backtrack through an 
UGS-based STS network to obtain these closed form sensitivity expressions.  Figure 11 illustrates four 
examples of marginal rate expressions concerning uncertainty contributions for various elements of an 
UGS-based STS network.  These expressions yield formulas for calculating marginal contributions by 
using the exact distributions (when available) associated with each of quantities noted.  For example, the 
uncertainty associated with device feature set detection would incorporate the probability distributions 
associated with a specific sensor device.  We recognize that when such distributions are discrete, and 
hence non-differentiable, the discrete analog known as divided differences would be used in place of the 
differential expressions shown. 

 

•Sensitivity measures can be 
expressed for any point in the 
network.

jdF
dz

( )jidfd
dz

( )Swdd
dz

To the Master node cluster j reporting process

To the uncertainty associated with the low-level 
classification process at sensor i, cluster j

To the uncertainty associated with the detection precision

( )jixdd
dz To input uncertainty of sensor i  to Master node j 

 

 

Figure 11. Several marginal contributions to uncertainty in an STS network. 
 

 
CONCLUSIONS 
In this study, we introduce a framework for assessing the decision quality of an UGS-based STS network 
based on the level of uncertainty contained in the information products used to support this decision.  
Ultimately, we contend that each device and information process throughout the network contributes in 
some fashion to this level of uncertainty, and that these contributions can be quantified by identifying the 
marginal rates of contribution associated with each device and process.   
 The magnitude at which these marginal rates respond to perturbations caused by improvements in 
precision or deliberate information maintenance actions leads directly to valuable design guidelines as to 
efficient levels of precision that should be sought for these devices, and whether further improvements in 
precision are warranted.  Moreover, a simple ranking of these marginal rates can identify and prioritize 
locations in the network where effective quality enhancements should be performed to insure the fire/no 
fire decision point in an STS network is supported with a high quality information product.  This 
approach extends earlier work in modeling data and process quality in multi-input, multi-output 
information systems that principally focused on reducing error rates. 
 While this study represents a work-in-progress, we are optimistic that the results of this 
sensitivity analysis can be directly used to identify an information quality critical path defined by an end-
to-end pathway through the STS network composed of those devices and processes whose perturbations 
in level of contribution to uncertainty most affect the quality of the final information product at the 
decision point.  Information maintenance activities designed to enhance the quality of this final 
information product will then be focused on this IQ critical path.  Moreover, since these STS networks 

14

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)



will be used in conflict scenarios involving all armed services of the United States, protecting this critical 
path from disruption or destruction will necessarily become a high priority as well. 
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