

Frank A. Piontek, M.A. Trinity Health Information Systems Decision Support Services

fpiontek@trinity-health.org

Decision Support Services hgroot@trinity-health.org

Hank Groot, B.S.

Trinity Health

Information Systems

<u>Presentation Outline</u>

- ArchitectureModel
- Standards
- Integration
- Integrity
- Items
- Warehouse
- Customers
- Use

Architecture and Model

- · Result of our history and business consolidation
- Limit of technology at time capital/systems were acquired
- · Changing Market and Strategic drivers
- Separate Member Organization and corporate silos
- (Non) Optimized relationships with customers and sponsors
 - ∠ Business domain sponsorship (Finance and Operations)
 - ∠ Corporate Office customers
 - ∠ Member Organization customers

DSS requirements can be stratified into local, shared, and corporate.

Corporate Corporate requirements are focused on monitoring the State of the System' and is a summary of monthly or quarterly local and shared information

Principles

- Mathematically, a unit is an integer, and can not be divided.
- Consequently, the ordered item number has a unit value of one; meaning that each item is a unity of one:
 Changes to or modifications of the meaning, results in the coded number losing integrity.
- Thus divide the meaning (e.g., dosage), the item can no longer be counted, you can only sum and extrapolate.
- (Another example, you will not find a family with 2.3 children, only Solomon was willing to do that).

Standards Applied

Usability vs. Maintainability

- · Creation of summary tables
- · Need for decode tables
- Prevention of meaningless joins
- Application of business logic
- Amount of training required

Decision Support Integration

- · The following slides represent the integration of financial and administrative decision support:
 - Integration of the data, measures, and results of the two DSS domains provide a consistent presentation of information for measure, analysis, and management
 - Integration of the domains leave the source of data at the source without duplication. For example, do not duplicate the GL in another DSS reporting environment
 - Integration of the data using a single or standard workload statistic computes a consistent outcome for all management measures; e.g.,
 - GL stats
 - Item level unit Costs
 - · Departmental work load unit cost · Departmental productivity units
 - Departmental volume adjusted earned and budget costs
 - · Provider, product, payor, performance

Administrative Decision Support Financial Decision Support (Departmental Performance) (Product, Pavor, and Provider Performance) Standard Providers Statistics **Re-class** Overhead All Markets Products Flex Budget Payors Productivity - IN Benchmarks Budg RVL

Summary of Key Points

- Streamline the summarization and aggregation of information. Summarized and shared information should be a by-product of the operational process, not an added step.
- The new information model needs to provide efficient methods to: Integrate ERP and patient administrative data with clinical data Integrate within a Member Organization and across the system

 - Provide access to customized information in one location Provide proactive and actionable information at the time of decision-
- Data, business process, and core function standards are necessary to provide integrated information and to aggregate information across the system: Guidelines and standards need to determine what is core and what is optional to each member organization.
- Plan for some component of variability in implementing standards across the system; secondary systems will be necessary to map non-standard data to standards for shared and summarized reporting.

Options

Use of Item Type in the code - (maybe

making.

- Procedure Supply Panel
 - Drug - Statistic
- Other CPT code with the modifier - (no)
- Straight number sequence (no)
- Use 'Consultant best practice' as standard (won't fit)
- Combine department and item as item (conflicting or limited value, what department?) One to one relationship Order, ancillary, supply and CDM - (geometric item
- Change warehouse (DSS) to capture Order and Ancillary Detail (maybe)

To the Warehouse

- · Order the clinical item code
 - Clinical item (CBC)
 - The type: lab, image, pharmacy, etc
 - The sub-type: pathology, chemistry... for lab, or drug type, etc.
 - The status: complete, cancel, expired, resulted
 - The result: code and value
 - Clinical order item utilization (Location)
 - Clinician
- Charge The financial item code
 - Revenue Department GL
 - Expense Department where the expense was incurred - Site - GL
 - Item Utilization (Location)
 - Financial Class

DSS Performance Measures

- · Audit Results (accuracy, timeliness, relevance)
- ROI
 - Clinical Outcomes
 - Consumption
 - Cost
 - Quality
 - Competitive position
 - Satisfaction
 - Variances

Purpose of Severity Measurement

- Primarily used for equitable measurement and reimbursement
- · Improving resource utilization
 - Reduce variation
 - Benchmarking
 - Target improvements
- Physicians to see other physician practice patterns
- Comparing outcomes across practitioners, providers
- · Negotiations with Third-party Payors
- Improving Competitive Positioning

<u>Underlying Causes of Clinical Quality</u> <u>Problems (After Chassin)</u>

- <u>Overuse</u> [inappropriate or unnecessary services or where providing a service when its risk of harm exceeds its potential benefit].
- <u>Underuse</u> [failure to provide a service when it would have produced favorable outcomes].
- <u>Misuse</u> [avoidable complications of appropriate care].

<u>Identification of Undesired Variation</u>

- Multiple successive sieve drilldown
- Descriptive statistics for identification of baseline
- Drills and data mining for patterns
- Misuse identification
- Opportunities, performance and change management

Multiple Successiv	e Sieve Methodology 1.2 :
Identify Patterns of Patient Outcomes	[Mortality, Morbidity, Disability, Cost]
By Constructing Analytic Files	[Comprised initially of administrative data]
In Reference to an Indexed Event	[Hospitalization, Outpatient or primary care
For a Specific Condition	[Identified by DRGs or ICD-9 or CPT code
Classified in a Certain Manner	[Severity Adjustments]
With Concomitant Characteristics	[Comorbidities and Complications]
Which are Medically Served	[Procedures, Treatments and LOS]
In Various Populations	[Age, sex, other demographics, payers]
By Distinct Providers	[Physicians and their subspecialties]
Using Specific Resources	[Pharmacy, Supplies. ICU/CCU, etc.]
Which can be further stratified	[by SIM: ACE inhibitors, re-intubation, etc.]
For Desired Outcomes/Variation	[Rates, Profiles and Patterns]
Using a Myriad of Tools	[Biostatistics, Multivariate Methods & SQC
¹ Developed in part, National Science Foundation 1992. Piontek F.A., principal investigator.	Grant, National Center for SuperComputing Applications,
	anOsdol T., Groot H.J. Applications of a Decision Support nerican Medical Informatics Association, 1997, Supplement,

Department Drill Hip Rep	Overus	costdiff		
DEPART#	SIM_TYPE	qtypt hi Sum	Sum	Sum
BLOOD SERVICES	PACKED CELLS, PREP	0.85	0.43	-\$59,741
LABORATORY	PROTHROMBIN TIME PROTIME	2.85	0.05	-\$59,270
OPERATING RM SUPPLY	FEM STEM 9825-XX-XX-SPECIAL-A	0.52	0.03	-\$163,095
OPERATING RM SUPPLY	5410-05 DEPUY LAMINAR FLOW HOOD	3.03	0.1	-\$275,928
ORTHOPEDIC SURGERY	ADDITIONAL 1 MINUTE INCREMENTS	37.21	0.05	-\$630,189
ORTHOPEDIC SURGERY	CLASS 5 SURGERY 1ST HOUR	0.97	0.05	-\$757,089
	APAP/HYDROCODONE 5/500MG (VICODIN		0.1	-\$281,715
PHARMACY	CEFAZOLIN 10G VIAL (ANCEF)	5.7	1.57	-\$154,323
PHARMACY	MULTI VIT W IRON (STRESS W/IRON)	4.36	0.29	-\$37,580
	ACETAMINOPHEN 325MG TAB (TYLENOL)			-\$26,179
PHARMACY	NITROGLYCERIN 0.4MG SL TAB #25	2.33	1.48	-\$19,035
PHARMACY	POTASSIUM CL 20MEQ TAB (K-DUR)	3.36	0.19	-\$18,432
PHARMACY	PROPOXY/APAP N-100(DARVOCET N-100	2.97	0.05	-\$17,755
PHARMACY	DOCUSATE CA 240MG CAP (SURFAK)	2.58	0.05	-\$11,213
PHARMACY	NITROGLYCERIN 25mg/5ML VIAL	0.03	8.67	\$10,081
PHARMACY	CEPHALEXIN 500MG CAP (KEFLEX)	0.18	10.14	\$31,844
RADIOLOGY	HIP PORTABLE CHARGE	1.75	0.24	-\$66,987
	ONE VIEW CHEST (PORTABLE)	0.42		-\$11,453
	OXYGEN DAILY (12 HRS OR MORE)	3.27	0.05	-\$163,816
RESPIRATORY THERAPY	NEBULIZED MED SUBSEQUENT TREAT	2.39	0.24	-\$103,732
	INCENTIVE SPIROMETRY-TREATMENT	1.73		-\$46,055
	INIT INCENTIVE SPIROMETER TREAT	0.85	0.05	-\$16,044
RESPIRATORY THERAPY	OXIMETER DAILY	0.42	0.05	-\$10,627
	AGENCY CARE ATTENDANT 1 HR	2.3	0.05	-\$83,431
	SPECIAL CARE ATTENDANT PER HR	1.64	0.1	-\$50,061
SITTER SERVICE	NURSING CARE-CNA (PER HOUR)	6.06	0.1	-\$935,128

Misuse 1a													
										сомр		Exp Cost Mean	Tot Cost Mean
none	22950	4180	4126	3.4	3.2	520.2951	316	0.61	1.4%	2637.98	1808	35.80%	39.10%
1	1725	9216	9699	7.2	7.7	203.0364	203	1.00	11.8%	312.52	217	38.30%	42.90%
2	409	14753	19364	9.9	11.9	102.7984	123	1.20	30.1%	72.86	59	52.60%	51.30%
3	122	21808	31866	13.1	17.9	44.9092	49	1.09	40.2%	20.31	11	62.30%	60.70%
4	39	22509	40366	13.4	23	19.8505	15	0.76	38.5%	8.14	10	79.50%	74.40%
5	i 13	20339	64163	12.3	28.6	6.5149	8	1.23	61.5%	1.10	0	76.90%	76.90%
6	3	22260	57848	11.2	29.3	1.0382	2	1 93	66.7%	0.00		100.00%	100.00%

- Berwick D.M. Controlling Variation in Health Care: A Consultation from Walter Shewart. Medical Care, December 1991, Vol. 29, (12) pp. 1212-1225.
- [2] Hand R., Piontek F. A., Walden L., Inczauskis D. Use of Statistical Control Charts to Assess Outcomes of Medical Care: Pneumonia in Medicare Patients. Am J Med Sci, May 1994, 307 (5), pp. 329-334.
- [3] Kahn M.G., Bailey T.C., Steib S.A., Fraser V.J., Dunagen W.C. Statistical Process Control Methods for Expert System Performance Monitoring. JAMIA, July/Aug 1996, Vol. 3, (4), pp. 258-269.
- [4] Chassin, M.R. Is Health Care Ready for Six Sigma Quality? The Milbank Quarterly, 1998, Vol. 76, (4), pp. 565-591.
- [5] Zarling, E.J., Piontek F.A. and Kohli R. The Utility of Hospital Administrative Data for Generating a Screening Program to Predict Adverse Outcomes. *American Journal of Medical Quality*, 1999, Vol. 14, (6), pp. 242-247.
- [6] Iezzoni, L.I. The Risks of Risk Adjustment. JAMA, November 19, 1997-Vol 278, (19), pp. 1600-1607.
- (7) Kohli R., Piontek F.A., Ellington T., VanOsdol T., Shepard M., Brazel G. Managing customer relationships through E-business decision support applications: a case of hospital-physician collaboration. *Decision Support Systems*, 2001, (32), pp. 171-187.
- [8] Kohli R., Tan J.K., Piontek F.A., Ziege D.E., Groot H. Integrating Cost Information wi Health Management Support Systems: An Enhanced Methodology to Assess Health Care Quality Drivers Topics in *Healthcare Information Management*, 1999, Vol. 20, (1), August, pp. 80-95.

