

DECLARATIVE DATA MERGING WITH CONFLICT RESOLUTION
(Research Paper)

Felix Naumann, Matthias Häussler

IBM Almaden Research Center, San Jose, USA
felix@almaden.ibm.com, mhaeussler@de.ibm.com

Abstract: Database integration is a growing and increasingly important field in both research and in-
dustry. Integration requires many steps from initial schema integration and schema mapping, to data
scrubbing and cleansing, and finally to data merging. While much research has concentrated on the
first steps performed at schema level, there are only few publications about actual, practical merging
of the data in an integrated database or in a query against multiple databases. When merging data, es-
pecially data from autonomous sources, there is a large potential for decreasing the quality of the
merged data, even below the level of the original sources. The main reasons for decreased quality are
data conflicts among the sources. To address this problem, we define resolution functions merging
conflicting data. We present several alternatives of merging relational data sources with common que-
ries through grouping & aggregating and through partitioning & joining. The resulting queries use
resolution functions and can be used to migrate data from multiple sources to a target database, or to
define an integrating view on multiple sources. We describe and analyze the advantages of the differ-
ent approaches, and describe our practical solution in the framework of a schema mapping and data
transformation tool.

Key Words: Information Integration, Databases, SQL, Data Consolidation, Data Cleansing

1 INTRODUCTION
Information integration is today one of the most important problems if information technology. This is
caused both by the abundance of available information—inside an organization through ever-improving
network capabilities and from outside organizations through Web services, portals etc—and by the
increasing awareness of added value through information integration. The evidence for the latter reason is
seen in data warehousing activities, installation of intra-organizational Web services etc.
Information integration projects and products have in common that they use some form of mappings from
one or more data source schemata to a target schema [23]. The mappings either describe how source data
is to be transformed to populate the target (e.g., a data warehouse), or the mappings are used for query
translation from a query against the target schema to queries against the source schemata (e.g., a federated
database system). In both cases, data from multiple sources is merged (or integrated) to conform to a tar-
get schema. We address the problem of ensuring important information quality properties for the merged
result: We define a merging as complete if all available data about an object is accommodated in the re-
sult. We define a merging as correct if each real world object is represented as only one tuple.
Completeness of merged data is desirable to ensure that no data or relationship among data is ignored,
when merging it from multiple sources. That is, all data stored about an object in all sources should be
considered in some form in the target, as long as the target schema can store this data.
In particular, we study the problem of merging multiple tuples, identified as being about the same object.
Regarding data about some object, sources can enforce each other, complement each other, or conflict.
Sources enforce each other if they store the same data for the same attribute about an object. For instance,
two sources reporting the same author of a book, identified by its ISBN, enforce that this person is indeed
the author of that book. Sources complement each other if they store data about different attributes of the
same object. For instance, a source storing only the publisher of a book complements a source storing
only the number of pages of the same book. Sources conflict if they store different values for the same
attribute of the same tuple. For instance, a source storing 205 as the number of pages of a book conflicts a

212

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

mailto:felix@almaden.ibm.com
mailto:mhaeussler@de.ibm.com

source storing 150 as the number of pages of the same book. Resolving conflicts is the most challenging,
but dealing with enforcement and complementation are also not trivial, as we shall see.
Ensuring completeness is, in effect, the problem of aggregating attribute values from different tuples into
a final value that appears in the merged tuple.
Correctness of merged data is desirable to ensure that the combined data adheres to (possibly implicit)
primary key constraints in the target database. That is, even though the data sources store multiple tuples
about the same real world object, only one tuple about this object should appear in the target. To this end,
one must recognize multiple tuples about the same real world object and assign a common ID. We call
two tuples with the same ID duplicates, even if they have differing values otherwise. If there is a globally
consistent ID, such as the URL or social security number, that is used and provided by all sources, this
task is simple: Tuples with the same ID represent the same object and can be merged. In the absence of
such an ID, object identification techniques can be employed [13]. These techniques find duplicates
automatically by evaluating the data that is available. Even though no method performs with perfect accu-
racy, satisfying results have been reported [7,14,5].
Ensuring correctness is, in effect, the problem of grouping tuples about the same real world object into a
single tuple in the merged result.
Our approach. In this paper we propose declarative merging of relational data by means of the SQL
query language, so that merging can be performed by any existing database management system (DBMS).
By using SQL queries for merging, our approach is not only practical but also lends itself to applications
and system performing virtual integration. Commercial applications like DiscoveryLink [6], and research
systems like Tukwila [11] and TSIMMIS [15] define views between sources and a global schema. Data is
never materialized at the global level, so data integration and merging must be performed on the fly - us-
ing queries. Further applications of virtual integration include metasearch engines and address finders.
Materialized integration systems, such as data warehouses, also profit from our research, because they can
use merging queries to populate the integrated database.
Note that there are also applications where merging data is not wanted. There, it is important to retain the
information coming from separate sources and to annotate conflicting data with its source. It is then left to
a user to interpret the results. We address the needs of such applications only to a limited extent, by pro-
viding certain annotating resolution functions.
Structure of this Paper. In Section 2 we consider in more detail the problems of ensuring correctness
and completeness. In particular we introduce resolution functions to decide on the result of merging con-
flicting data values. In Section 3 we present a set of useful resolution functions, including well-known
aggregation functions and more sophisticated functions, such as an information quality based choice. Sec-
tion 4 offers several alternatives of performing mergings using common SQL queries, each with advan-
tages and disadvantages. These queries retrieve data from multiple sources, merge duplicates while re-
solving data conflicts using resolution functions, and return a “clean” data set compiled from all partici-
pating sources. Properties of the different translation approaches are examined in Section 5. Related work
is reviewed in Section 6 and Section 7 concludes the paper.

2 Merging Data
Data sources can overlap in two dimensions: extensionally and intensionally. The extensional overlap
between two sources is the set of real world objects that are represented in both sources. For instance,
multiple sources can store information about the same book. The intensional overlap between two sources
is the set of attributes both sources provide. For any given book, different sources can store the same in-
formation, such as title and author, about it.
To accommodate both types of overlap and to integrate data in a meaningful and useful way, we must
recognize identical objects represented in different sources (object identification), and we must be able to
resolve any data conflicts among values (conflict resolution). The following sections discuss both prob-
lems, but this paper concentrates on the latter—performing conflict resolution for integrated databases.

213

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

2.1 Object Identification
Merging data from different sources requires that different representations of the same real world object
be identified as such [13]. This process is called object identification. Object identification is difficult,
because the available knowledge about the objects under consideration may be incomplete, inconsistent,
and sparse. A particular problem occurs if no natural identifiers (IDs) exist. For instance, the URL of a
Web page is a natural ID for the page. A meta-search engine can use the URL of reported hits to find and
integrate duplicates. On the other hand, a used car typically has no natural ID or sources about used cars
do not store an ID. An integrated information system for used cars has no easy way of identifying a spe-
cific car being advertised in different data sources.
Object identification in the absence of IDs, which is essentially the same problem as duplicate detection,
record linkage, or object fusion [19,21], is typically approached by statistical methods, for instance, using
rough set theory [29]. In this paper we assume the task of object identification already performed. I.e.,
either each tuple in a source has a unique ID-attribute, and tuples gathered from different sources are
about the same object if and only if their ID is identical. Or, as an alternative, there can exist a Boolean
function taking two tuples and returning true if they represent the same real world object and false
otherwise. In both cases, we are readily able to determine whether two tuples should be merged into one.

2.2 Conflict Resolution
Once different tuples have been identified as representing the same real world object, the data from them
can be merged. In general, a result that is integrated from tuples of different sources, contains tuples
where

1. the value for some attribute is not provided by any of the sources. Sources may not provide the
value, because they do not store the particular attribute, or because they have stored a null value
for the particular tuple. Because none of the sources provide a value, the tuple in the result has no
value either (null value).

2. the value for some attribute is provided by exactly one source. In this case, there is also no actual
data conflict. When constructing the result, the single attribute value can be used for the result tu-
ple.If a missing value has the meaning “not applicable” instead of “unknown”, the absence of
data can be taken into account as well. For the remainder, we assume the “unknown” semantics
for null values.

3. the value for some attribute is provided by more than one source. This case demands special at-
tention, because several sources compete in filling the result tuple with an attribute value. If all
sources provide the same value, that value can be used in the result. If the values differ, there is a
data conflict and a resolution function must determine what value shall appear in the result table.

Next, we define resolution functions as a way to resolve conflicts. In essence, a resolution function takes
two or more values from a certain domain and returns a single value of the same domain. Additional input
to the resolution function can be values from other domains. For instance, when resolving several differ-
ent prices, the value of a date attribute might be used to choose the most recent price. To merge data
conistently, users assign a resolution function for each attribute of the merged result. This function is then
applied to every conflict among values of that attribute.

Definition 1 (Generic Resolution Function) Let D be an attribute domain and D+ := D ∪ ⊥ ,
where ⊥ represents the null value. Let E+ = Xi ≤ 0(Ei

+) be the Cartesian product of further at-
tribute domains Ei

+. A resolution function f is an (associative) function f:(D+ x E+) x … x (D+ x
E+) → D+.

Domain D+ in Definition 1 represents the domain of the attribute where the conflict occurs. Domains Ei
+

represent domains of further attributes, whose values can be taken into account to resolve the conflict.
While the preceding definition is very general, Definition 2 shows a typical instance of a resolution func-
tion, reflecting the three cases of conflicting data and assuming the “unknown” semantics of null values.
Also it assumes only two input values, the extension to more input values being trivial. In essence, the

214

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

default resolution function takes two values as input and returns a single value. If both values are null
values, the null value is returned. If only one of the values is a null value, the other value is returned. If
both input values are “proper” values a function like MAX or AVG is applied to them to obtain the result.

Definition 2 (Default Resolution function) Let D be an attribute domain and D+ := D ∪ ⊥ ,
where ⊥ represents the null value. A resolution function f is an (associative) function f:(D+ x
D+) → D+ with











≠⊥=⊥
=⊥≠⊥
=⊥=⊥⊥

=

else),(
 and if
 and if
 and if

:),(

yxg
yxy
yxx
yx

yxf

where g: D x D → D. Function g is called an internal (associative) resolution function.
Associativity of functions f and g is optional. If all resolution functions in a mapping are associative, al-
lows iterative merging of data, discussed in Section 4.3.
Internal resolution functions g are various, depending on the type of attribute, the usage of the value, and
many other aspects [12,28]. A simple resolution function for numerical data might return the maximum
value; a simple resolution function for textual data might concatenate the values and annotate them with
the source that provided the value. Section 3 presents and discusses a set of potentially useful resolution
functions, and Section 4 suggests how to put them to use within SQL queries.

2.3 Batch Merging vs. Virtual Merging
We distinguish two modes of merging data. (1) Batch merging retrieves all data from the sources, merges
it, and stores it locally in a database. Typically, these tasks are
performed in a batch process. An example of batch merging is a
data warehouse that uses Extract, Transform, and Load (ETL)
tools to retrieve data from multiple sources, merge it, and materi-
alize the merged result (see Figure 2). (2) Virtual merging pro-
vides an always up-to-date merging view on the source data.
Merging views can be used by integrated information systems,
which provide users with a common interface to multiple sources.
The system distributes ad hoc user queries to the different data-
bases and integrates the results on the fly. Examples include me-
tasearch engines, and research systems like TSIMMIS [15], and
commercial applications like DiscoveryLink [6]. This paper em-
phasizes virtual merging, i.e., defining merging queries (merging
views) on the sources. Our results are also applicable to material-
ized merging, i.e., the merging queries can be used to populate a
database.
ETL tools, such as Vality's Integrity [10] or ETI Extract [4], ad-
dress materialized merging by offering large (and expensive) ap-
plications providing extensive tools for all steps of data merging:
retrieving data from arbitrary sources, transforming data to the
desired format, merging the data, and finally storing it in a database. In this paper we address data merg-
ing with a straightforward, lightweight, and practical solution: extending queries with existing database
technology, gaining several advantages:

Figure 1 Batch merging in a data
warehouse vs. virtual merging in an
integrated information system

• Platform-independence and portability as virtually all DBMS can process SQL queries.
• Optimization by the underlying DBMS.
• Straightforward integration into existing applications, e.g. as views in the DBMS.
• Source independence, assuming relational access to the sources, for instance through wrappers.

215

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

3 Resolution Functions
The tables of this section enumerate potentially useful resolution functions. Some are well-known aggre-
gation functions; others are specialized for the purpose of resolving data conflicts. We distinguish func-
tions that can be applied to any data type (Table 1), functions only for numerical data types (Table 2),
such as integer, and functions only for nonnumeric data types, such as varchar (Table 3). All func-
tions can be used as scalar functions or as aggregate functions. For many functions we give an exemplary,
self-explanatory attribute, for which the resolution function might be used.
COUNT Number of non-null values, i.e., the number of conflicting values. The actual data values are

lost. Exemplary attribute: none, the resulting value is stored in an special-purpose attribute.
MIN Minimum input value. For numerical data this is the smallest value, for nonnumeric data this is

the lexicographically smallest value. Exemplary attribute: price.
MAX Maximum input value. For numerical data this is the largest value, for nonnumeric data this is the

lexicographically largest value. Exemplary attribute: number_of_children.
RANDOM Random non-null input value. This function can be used if the user does not care, from which

source the data is retrieved.
CHOOSE
(source)

Value provided by source. For instance, this resolution function can be used when other
sources are known to return incorrect or untrusted values for the particular attribute. Also, this and
the following function are useful for resolving foreign key attributes, because the functions retain
the original value of a source and do not create a possibly invalid new value.

FAVOR(E(O)) First non-null value, chosen along the complete ordering of all sources E(O).
MAXIQ Value of highest informational quality. Underlying this resolution function is an information qual-

ity model, such as the one suggested by Naumann et al. in [18]. The quality score can refer to a
source in general, or be attribute-specific. For instance, one source might be in general of higher
quality than another, so the values of this source are favored. Or a certain attribute in a source
may have a higher quality than the same attribute in other sources.

GROUP Set of all conflicting values. This resolution function is applicable only for multi-valued attributes.
In effect, this function defers conflict resolution to the user. Confronted with a group of values, it
is up to the user to decide on the true value.

Table 1 Resolution functions for any attribute type
SUM Sum of all input values. Exemplary attribute: income.
MEDIAN Median value, i.e., the value that has as many lower input values as higher input values
AVG Arithmetic mean of all input values. Exemplary attribute: rating.
VAR Variance of the input values. Both VAR and STDDEV (see next item) are not typical resolution functions

because the semantics of input and output are different. Results of these functions are usually stored in
an additional attribute.

STDDEV Standard deviation of the input values.

Table 2 Resolution functions for numerical attributes

SHORTEST Minimum length input value, ignoring trailing spaces. Exemplary attribute: summary.
LONGEST Maximum length input value, ignoring trailing spaces. Exemplary attribute: book_title.
CONCAT Concatenation of all input values. Because the result size of this (and the next) resolution function

grows with the number of input values, special care must be taken, that the result remains within the
limits of the data type. Exemplary attribute: description.

ANNCONCAT Annotated concatenation of the input values. That is, before each part of the result value, its source
is specified. Exemplary attribute: interpretation. As for GROUP, this resolution function de-
fers conflict resolution to the user.

Table 3 Resolution functions for nonnumeric attributes

Commutativity is a prerequisite for resolution functions, because sources and tables in SQL queries are
unordered. All presented resolution functions are commutative. Associativity on the other hand is not re-

216

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

quired but useful. If all resolution functions used in a merging query are associative, merging can be per-
formed iteratively. Thus, if the merging queries are used to populate tables (materialized merging), it is
possible to merge further data into the already merged result. For example, a data warehouse application
can merge daily updates into the data warehouse. If the merging queries are used as integrated views (vir-
tual merging), one can define further merging views on top of those views without compromising the cor-
rectness of the result. It is possible to retain this ability for some non-associative functions, for instance by
storing SUM and COUNT to recalculate AVG.

4 Merge queries
This section provides techniques for perform merging with resolution functions in SQL statements. SQL
is the common query language for all major relational database systems [3,20,25]. In the following sec-
tions we describe three alternatives, each with advantages and disadvantages for the merging query. The
first approach is based on the SQL GROUP BY operator and wraps the union of individual queries to the
sources with conflict resolving grouping. The second approach dismantles the result of a user query into
partitions with differing conflict potential, resolves the conflicts, and reassembles the partitions. The third
approach is a special case of the second approach, assuming associative resolution functions. For simplic-
ity, we assume each source to consist of only one table. If this is not the case, each table of a source can
be viewed as a separate source.

4.1 GROUP Queries
The SQL GROUP BY statement groups a set of tuples according to the values of one or more grouping
attributes. Tuples with the same values for all grouping attributes are merged to a single tuple in the re-
sult. The values of all other attributes are combined
through aggregate functions. For instance, the fol-
lowing query returns a table with books, their long-
est title, and their lowest price listed in the books
table.

SELECT isbn, LONGEST(title), MIN(price)
FROM books
GROUP BY isbn

Books stored in multiple sources have potentially many duplicates and the opportunity to merge data.
Imagine two tables books1 and books2 hav-
ing the same schema. The following query
generates the UNION of data from both
sources and groups the result by the isbn.
The result contains one row for each unique
isbn, with the longest title and the lowest
price. We chose the LONGEST resolution
functions, assuming that a longer title contains
more information about the book, such as its subtitle.

SELECT books.isbn,LONGEST(books.title),
 MIN(books.price)
FROM (
 SELECT * FROM books1
 UNION
 SELECT * FROM books2)
 AS books
GROUP BY books.isbn

This translation can be generalized to any number of sources. If a source does not have the same schema
as the other sources or as the result schema, the inner SELECT statement can be replaced by an appropriate
mapping query that generates data for the desired schema. Missing attributes are padded with null values.
Advantages. Wrapping source queries with GROUP BY statements extends the query length by only a
constant. Given a typical query size limit of 64 Kbytes, this small increase is especially advantageous for
queries against many sources. Also, the only expensive operator added to the queries is the GROUP BY
operator itself, which essentially involves a sorting operation. Thus, we expect good performance when
executing these queries. In Section 5 we add further evidence in form of experimental studies.
When merging data from multiple sources with a single query, duplicates in the result occur for two rea-
sons:

1. The duplicates are already stored in a single source, e.g., if the source has not specified a unique
identifier for tuples. We call such duplicates intra-source duplicates. Often such data in a source

217

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

is undesired and thus constitutes dirty data.
2. The duplicates are stored among multiple sources. Such inter-source duplicates do not constitute

dirty data, as each individual source might be clean. Rather, this is a typical and usually desired
case of integrated information systems. Gathering data about an object from multiple sources, and
merging it meaningfully enhances the overall knowledge about that object.

The only way to merge intra-source duplicates is through a GROUP BY operation as in this approach.
Thus, this approach merges both inter-source duplicates and intra-source duplicates.
Disadvantages. The main disadvantage is the limited practical extensibility of this approach. An SQL
GROUP BY statement demands an aggregate function on all target attributes not in the GROUP BY clause.
The ANSI/ISO SQL99 standard [24] defines five aggregate functions: AVG, MAX, MIN, SUM, and COUNT.
Typical database systems supply two additional built-in aggregate functions: STDDEV and VARIANCE.
Obviously, these seven aggregate functions are not sufficient to resolve all conflicts as suggested in the
previous sections. In particular, most resolution functions suggested in Section 3 cannot be expressed.
Some database systems, such as Informix Dynamic Server [9], allow users to define new aggregate func-
tions, which can then be used in queries. Other systems, such as IBM's DB2 UDB [3], Oracle DB [20], or
Microsoft's SQL Server [25] do not allow such extensions, limiting the practicality of the GROUP ap-
proach. Wang and Zaniolo introduce the AXL system built on top of a DBMS, allowing users to define
aggregate functions in such systems [26]. The authors report only slight performance penalties.

4.2 JOIN Queries
The principle idea of the JOIN-approach is to dismantle a query result that merges multiple sources into
different parts, resolve conflicts within each part, and union them to a final result. Consider the two
sources books1 and books2 of the previous example. We partition the union of the two sources into
three parts: the intersection of the two (the set of tuples that have identical IDs in both sources), the part
of books1 that does not intersect with books2, and the part of books2 that does not intersect with
books1. We apply resolution functions to each part separately. Finally, the union of the three parts con-
stitutes the final, merged result.
The query to extract the intersection is a join query between the two sources. Query 1 generates the join
result of the two tables with isbn as join attribute and applies resolution functions to all other attributes.
Notice that the resolution functions are not aggregate functions as in the previous GROUP-approach, but
scalar functions taking a fixed set of pa-
rameters and producing a scalar output.
Hence, we can use any built-in scalar
function, such as + or || (concatena-
tion), as resolution functions. Also, all
major database systems support user-
defined scalar functions, greatly extend-
ing the range of possible conflict resolution functions.

Query 1
SELECT books1.isbn,
 LONGEST(books1.title, books2.title),
 MIN(books1.price, books2.price)
FROM books1, books2
WHERE books1.isbn = books2.isbn

The query to extract the part of books1 that does not intersect with books2 is a selection of all tuples of
books1 —the minuend—less those tuples that are in the intersection—the subtrahend. The subtraction is
performed through the NOT IN operator on the query producing the intersection. After applying a resolu-
tion function, a tuple in the minuend may have different data than one in the subtrahend with the same ID.
In a sense, this effect is the whole point of subtraction: We remove tuples with identical IDs but differing
data.
There is some freedom in constructing the subtrahend of the preceding query. Query 2a subtracts exactly
those tuples from books1 that are common with books2. Query 2b, on the other hand, subtracts not just
the overlapping part of the two sources, but the entire source books2. The results are the same, but exe-
cution time varies. In the following two sections we explain the different variations and analyze their exe-
cution time in Section 5.

218

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

The queries for books2 are analog. The
results of all queries are combined with the
UNION operator. As more sources are
merged, the queries become more compli-
cated because more combinations of
sources must be considered, and the part to
be subtracted from them grows.
As we have shown in the previous para-
graphs, for two data sources, we must con-
sider the (overlapping) join part between
the two, and the each source individually.
In general, for n sources we must consider
all 2n-1 nonempty combinations of sources,
as each combination might return some
distinct tuples, to which we apply certain
resolution functions. So, for three sources
we must consider the objects represented in all three sources, the objects represented in all combinations
of two sources (and not in the combination of all three), and the objects represented in each of the indi-
vidual sources (and not in any combination).

Query 2a
SELECT isbn, title, price
FROM books1
WHERE books1.isbn NOT IN
 (
 SELECT books1.isbn,
 FROM books1, books2
 WHERE books1.isbn = books2.isbn
)
Query 2b
SELECT isbn, title, price
FROM books1
WHERE books1.isbn NOT IN
 (
 SELECT books2.isbn,
 FROM books2

)

Subtracting overlap
Recall, that to dismantle a query, we generate each combination of participating sources, representing the
minuend tuple set. From each combination we must subtract those parts that are not disjoint from all other
combinations—the subtrahend tuple set. Here, we describe three schemes of subtraction, in turn increas-
ing the complexity of the query but decreasing the number of tuples that are actually subtracted. In prin-
ciple, combinations of all schemes are also possible, but for simplicity we consider only the “pure” vari-
ants.

• A. Subtract combinations of size one. Scheme A subtracts from a combination all sources that
do not appear in therein. E.g., having three sources S1, S2, and S3, from the combination (S1, S2)
we subtract combination (S3), that is, source S3. With this scheme we subtract many tuples need-
lessly, i.e., they do not appear in the minuend. However, the cost of calculating each subtrahend
is low.

• B. Subtract combinations of same size. Scheme B subtracts from a combination of size k all
other combinations of size k. E.g., from the combination of S1 and S2 we subtract combinations
(S1, S3) and (S2, S3).
This scheme lies in the middle in terms of number of needlessly subtracted tuples and complexity
of determining the subtrahends. A further optimization is to subtract only combinations that have
at least one source in common with the sources representing the minuend. Other combinations are
guaranteed to have no tuple in common with the minuend. So for example, having four sources
S1,... , S4 we subtract from the combination (S1,S2) the combinations (S1, S3) and (S2,S3) but not the
combination (S3,S4). We employed this technique in the experiments.

• C. Subtract larger combinations. Scheme C subtracts from a given combination all combina-
tions whose size is one greater. E.g., from all tuples that appear in S1 and S2 we subtract those that
appear in the combination (S1,S2,S3). The result is the set of tuples exclusively in S1 and S2. Again,
we refine this scheme by subtracting only combinations that have at least one source in common
with the sources representing the minuend.
In this scheme we subtract only such tuples that actually appear in the combination from which
they are subtracted. Determining these tuples, however, is a (k+1)-way join for combinations of
size k, and there are


 such combinations for n sources.






 +1k

n

Advantages. The use of scalar functions instead of aggregate functions extends the number and type of

219

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

possible resolution functions greatly. Typical DBMS supply a large number of built-in scalar functions
and additionally allow users to define new external scalar functions, for instance coded in C or Java.
Recall that we assume to be able to identify tuples about same objects across sources, for example
through a globally consistent ID. In absence of such an ID, there is an opportunity for object identifica-
tion in the query itself. An identification function such as a similarity measure could be used for merging.
Whereas the GROUP approach implicitly uses equality to group tuples, this JOIN approach states the predi-
cate that recognizes duplicates explicitly. In the WHERE clause we specify predicates like “books1.isbn
= books2.isbn”. The equality predicate can be replaced with some similarity predicate, such as
“similarity(books1.title,books2.title) > 0.9”, to identify whether or not two tuples should
be merged.
Disadvantages. In this approach intra-source duplicates (duplicates within one source) are not recognized
and merged—only the GROUP BY operator can do this. If the source data is clean—without duplicates—
this is not a problem; otherwise a GROUP query could be applied either to just the source, or to the final
result. However, this solution yields the same disadvantages as stated in Section 4.1.
A much more important disadvantage is the length and complexity of the queries. The number of different
partitions rises exponentially with the number of sources. Accordingly, the number of elements to sub-
tract from each partition grows as well. This affects usability and practicality of the approach. Usability is
affected, because typical DBMS limit the length of queries to 64 Kbytes or so. This limit is reached al-
ready for approximately ten sources. Practicality is affected, because query execution time is already pro-
hibitively high for fewer than six sources (see Section 5 for details). Because these complex queries are
essentially unions of smaller queries, their execution to materialize merged data can be staged, executing
each part separately and inserting the result into a database. However, this approach is not possible for
virtual merging, i.e., when the queries are used to define a view.

4.3 NESTED JOIN Queries
If only associative resolution func-
tions are used in the query, it is not
necessary to treat all combinations
of sources separately. Instead, we
use a nested merging approach: First
we merge only two sources, then
merge this result with the next
source and so on. Associativity
guarantees correctly resolved con-
flicts.
Query construction uses common
table expressions to construct in-
termediate results. Each but the first
common table expression contains
three parts, which are combined
with the UNION operator. Part 1 sub-
tracts from the previous intermedi-
ate results those tuples that overlap
with the current source. Part 2 iden-
tifies and re-merges this resolved
overlap. Part 3 represents the non-
overlapping part of the current
source. The final common table ex-
pression also represents the final merged result.

Part 3

Part 2

Part 1

WITH
A1(isbn, price) AS
(SELECT books1.isbn, books1.price
 FROM books1),
A2(isbn, price) AS
(SELECT isbn, price
 FROM A1
 WHERE isbn NOT IN (
 SELECT A1.sibn
 FROM A1, books2
 WHERE (A1.isbn = books2.isbn))
 UNION
 SELECT A1.isbn, MAX(A1.price,books2.price)
 FROM A1, books2
 WHERE (A1.isbn = books2.isbn)
 UNION
 SELECT isbn, price
 FROM books2
 WHERE isbn NOT IN (
 SELECT A1.isbn
 FROM A1, books2
 WHERE (A1.isbn = books2.isbn))),
A3(isbn, price) AS
(. . .)
SELECT *
FROM AN;

Discussion. The advantages of the NESTED JOIN approach are the same as for the JOIN approach of the

220

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

previous section: The usage of UDFs as resolution functions and the ability to include a similarity-based
merging instead of an ID-based merging. There are two additional advantages: (1) Because merging only
occurs between two tables, UDFs must be implemented for only two parameters. (2) Queries grow only
linearly with the number of sources.
The main disadvantage of this approach is the restriction to associative resolution functions. Nonassocia-
tive resolution functions produce incorrectly merged values in the final result, although there are work-
arounds, e.g., as discussed earlier for AVG. The disadvantage of using many join operations is not as dras-
tic as for the pure JOIN approach, but we expect execution time to be considerably higher than for the
GROUP approach.

5 Evaluation and Comparison
This section summarizes the discussion of the different approaches of Section 4. Table 4 lists the main
features of the approaches. An important distinction of the GROUP queries, the three schemes for subtract-
ing tuples from JOIN queries, and the NESTED JOIN queries is their expected execution time. In general,
the higher the flexibility of an approach in using different resolution functions, the higher the response
times of its queries are expected to be; the advantages gained by using the JOIN approaches are at the
price of long execution times. We performed several tests confirming this trade-off.

 GROUP JOIN A NESTED JOIN
Resolution functions Built-in aggr. func. UDFs Associative UDFs
Intra-source duplicates Yes No No
Inter-source duplicates Yes Yes Yes
Similarity based merging No Yes Yes
Query length (n sources) O(n) O(2n) O(n)

Table 4 Comparison of different translations

To examine the efficiency of the different strategies and not be distracted by complex schemas, we
choose a simplistic setup for the experiments: We created six relations (sources), each with an identical
schema consisting of only one integer-type attribute, and each of the same size. The single attribute was
used as the ID attribute. We did not use resolution functions in the queries of the experiments, as we
wanted to examine the complexity of the queries and not that of various resolution functions. The execu-
tion cost of resolution functions heavily depends on their implementation and whether the DBMS can
optimize their position in an execution plan. Note that each conflicting value is resolved only once in both
approaches. However, JOIN queries make many calls to the scalar functions, while GROUP queries call
each function only once. Thus, we would expect an advantage for the GROUP queries using aggregate
functions.
For different experiments we varied relation cardinality from 100 tuples to 100,000 tuples (randomly
picked integers), we varied the expected cardinality of the join result between any two tables (overlap)
from 0.1 percent to 100 percent, and we varied the number of relations to be merged.
As expected, we can conclude from the experiments that the GROUP and NESTED JOIN approaches outper-
form the JOIN approaches dramatically. Also as expected, we observed for the JOIN queries an exponential
increase of execution time with growing number of sources. Figure 2(a) shows execution times on a log
scale for 1000 tuples in each source.1 We must conclude that the JOIN approach is of little use for more
than three sources, unless all resolution functions are associative, in which case the NESTED JOIN can be
used. GROUP queries and NESTED JOIN queries on the other hand scale well for large numbers of sources.
Interestingly, we observe scheme C to be the most performant variant of the JOIN approach, allowing the
conclusion that it is more efficient to expensively calculate a precise subtrahend than to subtract an un-
necessarily large subtrahend. Figure 2(b) highlights this observation. Low overlap causes small interme-

1 The queries were performed on DB2 v7.2 using a Pentium III processor with 750MHz. Because the ex-
periments compare the performance of different queries, the absolute execution times are irrelevant.

221

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

diate results. This is best taken advantage of scheme C, where joins between sources are used heavily. We
are aware that these experiments must be read with extreme caution, as they heavily depend on many dif-
ferent parameters, such as buffer size, table sizes, and on optimization method, join algorithms etc. Fig-
ure 2 is meant to give only a flavor of the differences. Future work will examine further variations of the
queries to help optimizers find good plans. In particular, there is a large potential of exploiting the numer-
ous common subexpressions in the JOIN queries.

Figure 2 Execution times for all five query types

6 Related Work
The problem of conflicting data values gathered from multiple databases was first described by Dayal [2].
While the work is concerned primarily with query optimization, the author describes the problem of inte-
grating databases as one of generalizing source databases to a target database. The need for resolution
functions (there: aggregate functions) to determine the data value of an attribute in the integrated database
is recognized, and several such functions are enumerated. The optimization techniques of [2] are well ap-
plicable to the type of queries we produce, so a DBMS that employs these techniques is able to execute
these queries efficiently.
Among the suggestions of how to deal with conflicting data, there are several that propose to retain con-
flicting data and annotate the merging results in various ways. For instance, the Polygen model extends
the relational model by tagging each data value with its data source [27]. The authors provide a query
translation mechanism to accommodate the tags and let users select source-specific data and view data
conflicts. However, such approaches must extend the query language, the data model, and query transla-
tion schemes, diminishing their usefulness. Furthermore, these approaches leave conflict resolution to the
user, merely displaying the conflicting values, not solving the problem for very large amounts of data, or
if the resolved data is processed automatically. Addressing one of these problems, The work by Lim and
Chiang stores not only the conflicting values but additionally the resolved value [16]. The authors further
suggest resolving conflicting values only if their “difference” does not exceed a predefined threshold.
Again, users must be aware of the extended data model to make use of the added functionality and
conflict resolution.
Schallehn et al. address the same problem that we discuss in this paper, namely declarative merging of
data from multiple databases [22]. The author's solution is different to ours in that it extends the SQL lan-
guage to solve the problem of identifying duplicates (user defined grouping), and it extends the SQL lan-
guage to solve the problem of resolving conflicts among duplicates (user defined aggregation). Once
these extensions are part of a DBMS and its optimizer, they harmonize with the findings here. Galhardas
et al. present a framework for declarative data cleaning [5], implemented as the Ajax tool [1]. The frame-
work encompasses all steps of data cleaning including operators for object identification and data merg-
ing. The authors suggest a proprietary merge operator grouping tuples over ID attributes and applying
functions to resolve conflicts. Details of the implementation, types of resolution functions, etc. are left
open. In this paper we take a more practical approach by solving these problems with the tools at hand,

222

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

i.e., with the capabilities of current database systems.

7 Conclusions
With the abundance of data sources available on the Web, data integration and data merging is becoming
more and more important. When merging data, especially data from autonomous and independent
sources, data value conflicts are likely to occur. In many situations it is desirable or even necessary to re-
solve conflicts and present a properly merged result. This paper presents two necessary components that
together allow data merging with conflict resolution in current database systems.
(1) We provide a large set of potentially useful conflict resolution functions. For each function we exam-
ined several properties, among them associativity, which allows greater flexibility when constructing que-
ries using these functions. (2) To make practical use of the resolution functions and their implied merging
technique, we provide several schemes for queries that are executable by any database system. The
GROUP approach is efficient, but limits the types of resolution functions that can be used. The JOIN ap-
proaches are less efficient, but allow arbitrary resolution functions.
The ideas presented in this paper have been implemented within Clio [17,8], a semi-automatic tool to
support schema mapping. Our tool aids users in defining resolution functions in several ways: Conflict
Detection determines attributes with a conflict potential, depending on the chosen query approach; Con-
text Sensitivity determines which resolution functions apply to the currently selected attribute, depending
on the attribute type and the chosen query approach; Example Conflicts show conflicting data values and
their resolved values using the actual data sources.
The research presented here is a starting point for two immediate and one long-term research problems.
(1) Conflict resolution: The set of resolution functions is extensible and many domain-specific resolution
functions will need to be specified. An important and complex resolution function is MAXIQ, choosing
the data value of highest quality. The result of such a function could be determined by a simple quality
model based for example on the recency of the data, or based on a more sophisticated model, such as the
one presented in [18]. (2) Optimization: For the JOIN queries of Section 4.2 there are several opportunities
for optimization, for instance the ones suggested in [2]. Also, these queries contain many subexpressions
multiple times, giving an optimizer opportunity to recognize and optimize query execution further. (3)
Data integration: The merging functionality presented here, will be included in a larger data integra-
tion/data cleansing framework, including tools for schema integration, schema mapping, data transforma-
tion, and object identification.

REFERENCES
[1] Helena Galhardas, Daniela Florescu, Dennis Shasha and Eric Simon. AJAX: An Extensible Data Cleaning Tool. In Pro-

ceedings of the ACM International Conference on Management of Data (SIGMOD), page 590, Dallas, TX, 2000, Demon-
stration.

[2] Umeshwar Dayal. Processing Queries Over Generalization Hierarchies in a Multidatabase System. In Proceedings of the
International Conference on Very Large Databases (VLDB), pages 342-353, Florence, Italy, 1983.

[3] IBM DB2 Universal Database version 7. www.ibm.com/software/data/db2/udb/
[4] Evolutionary Technologies International - ETI Extract. www.eti.com
[5] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon and Cristian Saita. Declarative data cleaning: language,

model, and algorithms. In Proceedings of the International Conference on Very Large Databases (VLDB), pages 371-
380, Rome, Italy, 2001.

[6] Laura M. Haas, Peter M. Schwarz, Prasad Kodali, Elon Kotlar, Julia E. Rice and William C. Swope. DiscoveryLink: A
system for integrated access to life sciences data sources. In IBM Systems Journal 40(2), pages 489-511, 2001.

[7] Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is dirty: Data cleansing and the merge/purge problem.
Data Mining and Knowledge Discovery, 2(1):9-37, 1998.

[8] Mauricio A. Hernandez, Renee J. Miller, Laura M. Haas, Lingling Yan, Ching-Tien Ho and Xuqing Tian. Clio: A Semi-
Automatic Tool for Schema Mapping. Proceedings of the ACM International Conference on Management of Data
(SIGMOD), 2001, Demonstration.

[9] Informix Dynamic Server (IDS). www.ibm.com/software/data/informix/ids/
[10] Vality's Integrity family of products. www.vality.com
[11] Zachary G. Ives, Daniela Florescu, Marc Friedman, Alon Y. Levy and Daniel S. Weld. An Adaptive Query Execution

223

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

System for Data Integration. In Proceedings of the ACM International Conference on Management of Data (SIGMOD),
pages 299-310, Philadelphia, PA, 1999.

[12] Won Kim, Injun Choi, Sunit K. Gala, and Mark Scheevel. On resolving schematic heterogeneity in multidatabase sys-
tems. In Won Kim, editor, Modern Database Systems, chapter 26, pages 521-550. ACM Press, New York, NY, 1995.

[13] William Kent. The breakdown of the information model in multi-database systems. SIGMOD Record, 20(4):10-15, 1991.
[14] Mong Li Lee, Tok Wang Ling and Wai Lup Low. IntelliClean: A knowledge-based intelligent data cleaner. In Proceed-

ings of the ACM International Conference on Knowledge discovery and data mining (SIGKDD), pages 290-294, Boston,
MA, 2000.

[15] Chen Li, Ramana Yerneni, Vasilis Vassalos, Hector Garcia-Molina, Yannis Papakonstantinou, Jeffrey D. Ullman and
Murty Valiveti. Capability Based Mediation in TSIMMIS. In Proceedings of the ACM International Conference on Man-
agement of Data (SIGMOD), pages 564-566, Seattle, WA, 1998.

[16] Ee-Peng Lim and Roger H. L. Chiang. A Global Object Model for Accommodating Instance Heterogeneities. In Proceed-
ings of the International Conference on Conceptual Modeling (ER), pages 435-448, Singapore, 1998.

[17] Renee Miller, Mauricico Hernandez, Laura Haas, Lingling Yan, Ching-Tien Ho, Ron Fagin and Luian Popa. The Clio
Project: Managing Heterogeneity. In SIGMOD Record 30(1), pages 78-83, 2001.

[18] Felix Naumann. Quality-driven Query Answering for Integrated Information Systems. Lecture Notes on Computer Sci-
ences LNCS 2261, Springer Verlag , Heidelberg, 2002.

[19] Howard B. Newcombe. Handbook of Record Linkage. Oxford University Press, Oxford, UK, 1988.
[20] Oracle DB. www.oracle.com/ip/deploy/database/oracle9i/
[21] Yannis Papakonstantinou, Serge Abiteboul, and Hector Garcia-Molina. Object fusion in mediator systems. In Proceed-

ings of the International Conference on Very Large Databases (VLDB), pages 413-424, Bombay, India, 1996.
[22] Eike Schallehn, Kai-Uwe Sattler and Gunter Saake. Extensible Grouping and Aggregation for Data Reconciliation. In

Proceedings of the International Workshop on Engineering Federated Information Systems (EFIS), Berlin, Germany,
2001.

[23] Amit P. Sheth and James A. Larson. Federated database systems for managing distributed, heterogeneous, and autono-
mous databases. In ACM Computing Surveys 22(3), pages 183-236, September 1990.

[24] International Standards Organization (ISO). Information Technology-Database Language SQL. Standard No. ISO/IEC
9075:1999.

[25] Microsoft SQL Server 2000. www.microsoft.com/sql/
[26] Haixun Wang and Carlo Zaniolo. Using SQL to Build New Aggregates and Extenders for Object- Relational Systems. In

Proceedings of the International Conference on Very Large Databases (VLDB), pages 166-175, Cairo, Egypt, 2000.
[27] Y. Richard Wang and Stuart E. Madnick. A Polygen Model for Heterogeneous Database Systems: The Source Tagging

Perspective. Proceedings of the International Conference on Very Large Databases (VLDB), pages 519-538, Brisbane,
Australia, 1990.

[28] Clement T. Yu and Weiyi Meng. Principles of database query processing for advanced applications. Morgan Kaufmann,
San Francisco, CA, 1998.

[29] Wojciech Ziarko. Discovery through rough set theory. Communications of the ACM, 42(11):54-57, November 1999.

224

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

