

A MODEL OF DATA CURRENCY IN MULTI-CHANNEL
FINANCIAL ARCHITECTURES

(Research Paper)

Cinzia Cappiello
Chiara Francalanci

Barbara Pernici
Politecnico di Milano, Milano, Italy

{cappiell, francala, pernici}@elet.polimi.it

Abstract: Data quality is a critical factor for financial institutions where information is a primary
and critical resource. Financial services are offered through multiple channels, such as branches,
ATMs, telephone, and Internet channels, and may be supported by multi-functional software
systems, to provide services such as, for instance, customer management, account management,
credit management, which are characterized by complex software architectures. Different
functional modules share data, which are stored in multiple source databases. Functional modules
are usually not integrated across channels, as channels are implemented at different times, since they
are realized in independent software projects, and are subject to stringent requirements of
availability and performance. This lack of channel and functional integration raises quality
problems in information products. In particular, in complex systems in which data are managed in
multiple databases, timeliness is critical. In the paper, we focus on currency and we present a
mathematical model to evaluate currency of data in software architectures with different degrees of
integration across channels and functionalities.

Key Words: Data quality, Financial information systems, Multi-channel architectures, Timeliness, Currency,
Volatility.

1. INTRODUCTION
The quality of information products is influenced by a number of factors. Enterprises providing both
window-based and on-line services are faced with a variety of contrasting requirements. Services are
provided through a variety of different channels, such as branches, ATMs, call centers, web, cellular
phones (through GSM and WAP technologies), and other technology based channels. In general, an
enterprise provides a variety of services to its customers, and the customers can access all or most of
services through all channels. Information management should guarantee that data are accurate and up to
date independent of the access channel. In addition, contrary to traditional window-based services, office
hours tend to be extended to a 24x7 service availability requirement, so that customers are able to access
the services at any time. Therefore, traditional modes of operations typical of service enterprises have
been changed. For example, it is not possible anymore, to perform backups and checks on data outside
office hours, assuming that no operation is being performed on the system. In addition, for on line
services, performance is also an important requirement.
The primary aim is create products and services, which are in line with the market expectations, not only
in terms of time but also of good quality. The impacts of poor data quality on enterprise are various.
They include customer dissatisfactions, increased operational cost, less effective decision-making, and
reduced ability to make and execute strategy [10]. The guarantee of correctness of processing activities is
one of the main issues of the organizations [2].

 106

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

For a technical point of view, the contrasting requirements illustrated above have originated a variety of
different architectural solutions offered by vendors, ranging from completely centralized systems, to
completely distributed systems, where each system is dedicated to a single channel and a single
functionality. In fact, while a centralized system integrates all data and helps guaranteeing data that are
accurate and up to date, a distributed system is easier and faster to implement, and provides better
availability and performance in most cases. Therefore, usually information services are provided on
separate systems first, and data are fully or partially integrated at a latter stage. Integration technologies
include the use of datawarehouses for integrating data from different database [9]. Methodologies for
partitioning and replication of data to providing more efficient services have also been studied in the in
distributed database systems area [13].
The goal of this paper is to study implications on data quality of the different software architectures. We
will focus in particular of measuring timeliness of data, based on its currency. In particular, we study data
quality in multi-channel financial services, and we provide results of simulations obtained comparing
different architectures with different characteristics of provided services, and different patterns of
behaviour of customers.
Based on this analysis, it is possible to define criteria for design choices in the integration process: based
on the characteristics of services and customers it is analyze which architecture provides better data in
terms of timeliness. Physical and virtual institutions are compared, and channel and functional integration
analysed.
Different definitions of timeliness and currency have been provided in the literature. In [11] currency and
related dimensions are discussed. Up to date and outdated data are defined, and currency refers to the
degree to which a datum in question is up-to-date. Currency is measured in terms of time from which the
data are not anymore up-to-date.
In [2] currency is measured in terms of age, delivery time, and input time of data in the system. Input time
is the time at which the data unit is obtained, delivery time is when the information product is delivered to
the customer, and age states how old is the data when it is received. Currency is a characteristic of capture
of data, while volatility is defined in terms of how long the data item remains valid, Timeliness is defined
as a function of currency and volatility.
In the present paper, we elaborate the concept of currency, and we define a method to measure currency
given the characteristics of the architecture of the system, refresh times for data in databases when
multiple databases are realigned periodically, and the patterns of use of the system in terms of access to
services through different channels.
In Section 2, we discuss more in detail the characteristics of multi-channel financial institutions and
provide a definition of currency, volatility, and timeliness in this context. In Section 3, we present the
different types of architectures for multi-channel services and we compare their characteristics. In Section
4, we define a method to measure currency based on the specific characteristics of this type of systems. In
Section 5, we provide simulation results and analyze how the currency measures can be used to define
strategies for systems integration.

2. DATA QUALITY ISSUES IN MULTI-CHANNEL FINANCIAL
INFORMATION SYSTEMS
Financial institutions offer an increasing number of services to their customers. Traditionally, services
could be exclusively delivered to customers through branches. The development of the Internet and the
convergence between computing and communication technologies have opened opportunities to reach
customers through a variety of technology-based channels, such as personal computers, mobile phones,
televisions, kiosks, advanced ATMs and so on. Financial information systems of multi-channel
institutions are comprised of complex and heterogeneous applications. This research focuses on the
software components of a multi-channel architecture that are responsible for data quality. At a high level,

 107

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

a multi-channel software platform can be viewed as a black box that receives elementary data extracted
from multiple sources and provides integrated information for different financial services and distribution
channels. Data constitute a critical resource in financial information systems and data quality issues are
particularly relevant for the following reasons:
1. Financial information is inherently critical and errors are consequential.
2. The quality of financial data has a strong economic impact.
3. Customers perceive the quality of financial data as an essential component of the quality of service.
4. Multi-channel software platforms extract data from a high number of databases and, thus, are more

liable to inconsistencies.
Data quality has been defined in the literature as “the measure of the agreement between the data views
presented by an information system and that same data in the real world” [6]. Data quality can be
measured along the following dimensions:
• Relevance, granularity and level of detail, which are associated with data views.
• Accuracy, consistency, currency and completeness, which are associated with data values.
• Format and ease of interpretation, which are associated with the presentation of data.
• Privacy, security, and ownership, which are general dimensions.
This paper focuses on quality dimensions associated with data values and, in particular, on currency. As
discussed in the following, the ability to distribute services through multiple channels raises data currency
issues that are specifically related to software design choices.
We define currency as a property of data values that are not out of date with respect to their actual value
in the real world. It also represents a factor of accuracy, which is a more general property of data values
that are consistent with their actual value.
Currency can be measured as the time interval between the latest update and the time at which data are
accessed by users. With respect the definition given in [2], we assume that in on-line systems the age of
data is always zero, i.e., that the data are immediately available to be stored in the system, as soon as they
are provided. For instance, if a withdrawal of money is performed from an ATM machine, the relevant
information is stored in the system before the money is actually delivered to the customer.
Data are also associated with a time interval measuring their volatility, that is the average time length for
which data remain valid [2]. Volatility is considered a static property that is independent of architectural
design choices. For example, the quotation of a stock remains valid for only a few seconds irrespective of
architectural choices.
Currency should always be smaller than volatility in order for users to access timely (or up-to-date) data,
that is:

0>− CurrencyVolatility (1)

t tu tr ta

Service time

Currency

td

Volatility

Figure 1 – Relationship between volatility and currency.

 108

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

Figure 1 shows a graphical representation of the relationship between volatility and currency. In Figure 1,
a user is supposed to request access to data at time tr and to be provided data at time ta after a service
delay Τs. The time of the latest update is referred to as tu and, therefore, currency Τc can be measured as
(ta-tu). Given a measure of data volatility Tv=(td-tu), condition (1) can be expressed as:

Tv –Tc= td - ta>0 (2)

While volatility is a static property of data, software design choices at an architectural level can change
data currency, and therefore satisfy condition (2) to a different degree. As shown in Figure 1 currency
includes service time, which is not considered in isolation in this paper.
We define currency level as the percentage of up-to-date information products delivered to customers,
and, in turn, the next sections discuss four different types of software architectures and provide an
operational measure of currency level that supports their comparison.

3. MODELS OF INFORMATION SYSTEMS ARCHITECTURES IN THE
FINANCIAL INDUSTRY
As noted before, financial services are offered through multiple channels and are supported by multi-
functional software systems. As discussed in the introduction, functional modules are seldom integrated
across channels; therefore, they operate on operational databases that are not shared with other modules
and need to be periodically realigned with databases of other modules.
From a data standpoint, this lack of integration across channels and functionalities raises currency issues.
Users can access financial services from different channels within the same refresh period. For example,
a user may withdraw money from an ATM and soon afterwards check his or her account’s balance from
the Internet. As money has been withdrawn from a channel different from the Internet, the user may be
returned obsolete account information. This type of data currency problems has been found to constitute
a significant limit to the overall quality of service. To obviate currency problems, financial institutions
should increase the degree of integration of their information system architecture. However, full
integration is usually considered too expensive and they tend to implement incremental integration
strategies [5].

Refresh

Source
database

Operational
database

Query

Update USER

Figure 2 – General data interaction for a user of a specific functional area and channel (front-end).

The following sections discuss a classification of integration strategies. Strategies are classified by
assuming that users both read and update data from operational databases and do not access source
databases directly, that is they cannot follow the dashed path in Figure 2. This assumption is a
simplification with respect to practice, since also sources can be updated directly, but can be removed
without affecting the model of currency proposed in Section 4, where updates of all operational databases
are considered. This paper focuses on currency problems due to a lack of integration among operational

 109

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

databases. Data misalignments between operational and source databases will be considered in future
work.

3.1 Goal of integration strategies: Fully integrated multi-channel architecture
Let c1, c2,…,cN be a set of N channels and f1, f2,…,fM be a set of M functionalities. Figure 3 shows the
blueprint of a fully integrated architecture where all channels share the same set of functionalities and all
functionalities access the same operational database od.

c1, c2,…cN Operational
database (od)

f1, f2…fM

Figure 3 – Fully integrated architecture.

This architecture represents the goal of incremental integration strategies, as it has no currency problems,
since data which is provided is always up-to-date at request time. Users accessing any functionality from
any channel will certainly read and update the same information retrieved from a common operational
database.

3.2 Starting point of integration strategies: Multi-channel architecture with the
lowest degree of integration
The architecture with the lowest degree of integration is an architecture where each channel-functionality
combination has access to a separate operational database odij. As noted before, this is a likely scenario as
financial institutions typically implement new channels with dedicated functionalities. As new services
are added over time, corresponding functionalities will be designed ad hoc for different channels and may
not be integrated with existing functionalities.
Data are periodically realigned with a given refresh period. The number of operational databases to be
periodically aligned is potentially high. Thus, refresh is a costly activity and the affordable refresh
interval may be long. Although less expensive, this architecture presents data currency problems. In fact,
within the same refresh period users may be returned obsolete data if they use different functionalities
through the same channel or access the same functionality from different channels.
In the following, this architecture will be considered as the starting point to discuss integration strategies.

Figure 4 - Architecture with the lowest degree of integration

…

cM1

c1N

c11

fM1

f1N

f11

odM1

…

.

cMNfMN odMN

…

.

od1N

od11

 110

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

3.3 Channel integration strategy
The degree of integration of the starting-point architecture discussed in Section 3.2 can be increased by
integrating all functionalities managing the same channel or by integrating corresponding functional areas
across channels. Both strategies are followed in practice. The first strategy will be referred to as channel
integration strategy, the latter as functional integration strategy. Figure 5 shows the blueprint of the
architecture that is obtained by implementing the channel integration strategy on the starting-point
architecture. Note that the architecture in Figure 5 is fully channel integrated, since the channel
integration strategy has been implemented for all channels. Intermediate degrees of integration are also
possible.
Users of a fully channel integrated architecture may be returned obsolete data only if they change
channel, while if they access different functionalities through the same channel are provided up-to-date
data. The number of operational databases to be periodically aligned is lower that in the starting-point
architecture and, accordingly, refresh will be less costly.

…
…

.

…
..

cN

c2

c1

f1N, f2N…fMN

f12, f22…fM2

f11, f21…fM1

odN

od2

od1

Figure 5 – Channel integrated architecture.

3.4 Functional integration strategy
Figure 6 shows the blueprint of the architecture that is obtained by implementing the functional
integration strategy on the starting-point architecture. The architecture in Figure 6 is fully functionally
integrated, since the functional integration strategy has been implemented for all corresponding
functionalities of all channels. Similar to the channel integration strategy, this strategy also allows
intermediate degrees of integration.
Users of a fully functionally integrated architecture may be returned obsolete data only if they access
different functional areas, irrespective of the channel that is selected to interact with their financial
institution. As in the channel-integrated architecture, operational databases have to be periodically
realigned.

od1

od2

odM

f1

 f2

fM

…
…

..

…
..

CM1 ,cM2,…cMN

C21 ,c22,…c2N

c11 ,c12,…c1N

Figure 6 – Functionally integrated architecture.

 111

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

The next section presents a formal model of currency level for the architectural blueprints presented in
this section. In Section 5, simulations will compare levels of currency across architectural blueprints with
different patterns of users’ access to channels and functionalities.

4. TIME QUALITY MEASURES
The goal of this section is to present a model of currency quality attributes, defined in the following as
model variables (Table 1). The model provides a mathematical definition of currency that can be
compared across the architectures discussed in Section 3. Architectural choices result in changes of
currency quality attribute values and therefore variations of currency levels. Consequently, the model
supports the comparison of different architectures and the evaluation of corresponding currency levels in
different application contexts that involve varying values of model variables.
The model is defined on the basis of the characteristics of the architecture with the lowest degree of
functional and channel integration, which represents the most complex case (see Section 3). The
definition of currency levels for architectures with a higher degree of integration is then derived from
these initial definitions.

Variable Symbol Description
Operational database odij Set of data supporting the i-th set of functionalities on the j-th

channel.
Refresh time rtij,mn Time interval between alignments of operational databases odij and

odmn (rtij,mn= rtmn,ij)
Operational frequency ofij Average frequency with which users of the ith functionality of the jth

channel change one data unit of operational database odij.
Combined frequency cfij,mn Average frequency with which users of the ith functionality of the jth

channel change one data unit in odij∩odmn.
Volatility vij Average volatility of data in odij.

Table 1 – Model variables.

Let us consider an architecture with M functionalities fi and N channels cj. As discussed in Section 3,
this architecture has operational databases, referred to as odNM × ij, where i and j indicate the ith
functionality and the jth channel, respectively. Operational databases are defined as sets of data. Each
operational database, as shown in Figure 2, is either directly updated by the user through a service, or
periodically refreshed from the sources (or other operational databases as discussed in previous section).
The refresh module in Figure 2 is implemented through extraction, aggregation and transformation
operations. Two operational databases odij and odnm may overlap, that is:

∅≠= I mnijmnij ododod ,
As shown above, data sharing across operational databases raises a need for periodic data alignment. To
be as general as possible, we consider realignment parameters for each pair of databases: each pair of
operational databases odij and odmn is aligned with a refresh period rtij,mn, which can be seen as the time
interval before the data used by the mth functionality of the nth channel is updated with data created or
modified by the ith functionality of the jth channel. Refresh periods rtij,mn can be represented in a matrix
RT. An element of RT is not null if corresponding odij,mn≠∅ and if a data unit, which belongs to odij,mn is
changed in odij.

 112

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

0......
............
............

......0

11,

,11

MN

MN

rt

rt

RT = 0:,,, , =⇒=∧=∀ mnijrnjminmji

As discussed in Section 2, data quality also depends on data volatility. Data has to be timely when users
receive it. In this paper, refresh periods rtij,mn are assumed to satisfy the following condition:

[]mnijmnij vvrtnmji ,min:,,, , <∀

Intuitively, to guarantee given levels of currency, refresh periods should decrease as data change
frequency increases. To tie refresh periods with the frequency of data changes, operational databases odij
are associated with two parameters:
• The operational frequency ofij, defined as the average frequency with which users of the ith

functionality of the jth channel changes one data unit of operational database odij in a time unit.
• The combined frequency cfij,mn, defined as the average frequency with which users of the ith

functionality of the jth channel changes one data unit in odij∩odmn in a time unit.
The average number of data units that are modified by users of operational database odij and need to be
aligned with odmn after the refresh period rtij,mn evaluates to:

mnijmnijmnij rtcfdu ,,, ×=

If , alignments occur, on average, after each change in a data unit and users always access
current data. Otherwise, users may retrieve data from an operational database that have already been
changed within another operational database and are therefore obsolete. In the following, we use average
values for our computations. The implication is that data currency is not guaranteed 100%, but occasional
out-of-date values can be generated even if the condition above is valid.

1, <mnijdu

It is hypothesized that frequencies of data changes and frequencies of data accesses coincide. In fact, in
financial systems all operations are registered and therefore correspond to updates. Under this hypothesis,
from combined frequencies cfij,mn it is possible to calculate the frequency ef(t)ij,mn with which at time t a
user of the ith functionality changes one data unit in odij∩odmn that has already been changed in odmn.
If t0 is the time of the most recent refresh, the portion of odij∩odmn that is modified by a user of the mth

functionality of the nth channel between t0 and t is:

mnij

ijmn

mnij

t

t ijmn

od

ttcf

od

dtcf

,

0,

,

,)(
0

−×
=

∫ t mnijrttt ,00 +≤≤ ,

where mnijod , indicates the cardinality of od , that is the total number of data units in odmnij , ij∩odmn.

The frequency ef(t)ij,mn with which a user of the ith functionality of the jth channel changes one data unit in
odij∩odmn that has already been changed in odmn can be estimated as follows:
















=

∫
mnij

mnij

t

t ijmn

mnijmnij cf
od

dtcf
cftef ,

,

,

,, ;*min)(0 ,

where ef(t)ij,mn evaluates to cfij,mn whenever the combined frequency of users of odmn are such that data in
odij∩odmn are modified multiple times within the refresh period rtij,mn.
Note that a user of the ith functionality of the jth channel reading or modifying an obsolete data unit does
not necessarily generate an error. When odij and odmn are refreshed, alignment operations can restore data

 113

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

correctness in most cases. However, users accessing obsolete data are offered a lower-quality service
and, in financial systems, they typically experience functional restrictions [Redman 1996]. A measure of
the average number of obsolete data accessed within a refresh period by all users of the ith functionality of
the jth channel is:

() 




= ∫

+

mnij

rtt

t mnijmnij oddttefn mnij

,,, ;min ,0

0

If every odij,mn was independent from the other, the fraction of out-of-date data units in odij could be
obtained as the summation of mnijn , for all odmn that share data with odij divided by the cardinality of odij,
that is:

ij

Nn

n

Mm

m
mnij

ij od

n
outofdate

∑ ∑
=

=

=

== 1 1
,

The measure of currency currency_level ij of the ith functionality of the jth channel can then be obtained as:

ijij outofdatelevelcurrency −= 1_
Commonly, in real cases intersections between operational databases odij,mn are not null. In these cases it
is necessary to consider data as belonging to the intersections. For these data items, the frequencies have
to be added because data has a change frequency that is the sum of all the frequencies deriving from other
operational databases. However, in out-of-date data units calculation these data must not be considered
twice, so the formula is:

ij

Nn

n

Mm

m

N

my
nk

N

hy
kz

z

yv
nv

yvij
yzij

yzij
hkijmnij

hkij

hkij
M

nk
mh

M

kz
hy

y

zv
mv

vzij
yzij

yzij
hkijmnij

hkij

hkij
mnij

ij od

od
od
nodod

od
nod

od
nodod

od
nn

outofdate

∑ ∑ ∑ ∑∑ ∑
=

=

=

=
=
>

=
>

≠
=

=
>

=
>

≠
= 















































−+
















−−

=
1 1

,
,

,
,,

,

,
,

,

,
,,

,

,
, **** IIII

Other architectural models discussed in Section 3 have a higher degree of functional and channel
integration. Operational databases of architectural models with a higher degree of integration can be
obtained as the union of a subset of operational databases odij. For example, if the ith and mth

functionalities of the jth channel are integrated, the new operational database is odij∪odmj. Due to these
relationships among operational databases, estimates of currency for architectural models with a higher
degree of integration can be derived from the values of currency_levelij.
In Section 3, two integration strategies have been distinguished, referred to as functional and channel
integration, respectively. Operational databases odj of the functionally integrated architecture (Section
3.4) can be obtained from odij as:

U
N

j
iji odod

1

=

=

Conversely, operational databases odi of the channel integrated architecture (Section 3.3) can be obtained
from odij as:

U
M

i
ijj odod

1

=

=

In general, the intersection between two operational databases odj storing data of the same set of
functionalities for different channels will be greater than the intersection between two operational
databases odi managing data for different functionalities. For example, let od11, od12 , od21, od22 be four
operational databases corresponding to two functionalities and two channels. The following relationships
hold if channel (a) and functional (b) integration are implemented:

 114

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

(a)
U 21111 ododod = od U 22122 odod=

U I UI)odod)od(ododod 2212211121
(= = () () U IU IU II)()(2221122122111211 odododododododod

(b)
U 12111 ododod = od U 22212 odod=

U I UI)()(2221121121
odododododod = = () () U IU IU II)()(2212211222112111 odododododododod

The intersections between operational databases will coincide in cases (a) and (b) if the following
condition is satisfied:

()U II)(22211211 odododod = ()U II)(22122111 odododod .

Typically, the condition above is not satisfied, while functional integration increases the cardinality of
overlaps, that is:

() ()U IIU II)()(2212211122211211 odododododododod > .

However, operational and combined frequencies and refreshment periods also affect the level of data
currency achieved with different integration strategies. As a consequence, the choice between functional
and channel integration as well as the degree of integration in both cases should be based on users’
behaviour. Simulations will compare different architectures in different application contexts
characterized by different operational and combined frequencies and will try to infer the architectural
integration strategy that maximizes data currency and minimizes refresh periods. Future work will collect
empirical data to describe real application contexts.

5. SIMULATION RESULTS
Simulations compare currency levels of different architectures in different application contexts. Different
types of financial institutions are considered:
− Global, national and regional institutions, depending on their size and geographical presence.
− Physical or virtual institutions; the latter exclusively operate through technology-based channels,

while the former also operate through physical branches.
Note that virtual institutions typically operate at a global or national level. Accordingly, regional virtual
institutions are not considered. Users are classified into three categories depending on the average
number of transactions that they complete over time [7]:
− Active users, executing more than 200 transactions per year.
− Moderate users, executing more than 20, but less than 200 transactions per year.
− Sleepy users, executing less than 20 transactions per year.

Different types of financial institutions have a different mix of active, moderate and sleepy customers,
with different patterns of access to services across channels. Table 2 reports the composition of
customers for different types of financial institutions used for simulations [4].
 active moderate sleepy %online user
Regional Physical Bank 25% 40% 35% 10%
Global Physical bank 68% 18% 14% 10%
Global Virtual bank 50% 30% 20% 100%
National physical bank 50% 25% 25% 10%
National virtual bank 50% 30% 20% 100%
Table 2- Composition of customers for different types of financial institutions

 115

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

Four categories of financial services are considered: home banking, trading, credit card and insurance.
Each category of services can be offered through four types of channels: Branch, Internet, Call Center and
GSM (SMSs). Table 3 and Table 4 specify the distribution of customers’ transactions across services and
channels for 7 types of institutions (cases 1-7) listed as rows. Values in Table 3 and Table 4 are
consistent with empirical benchmarks in the financial literature, but will be verified and refined in future
work.
 Home

banking
Trading Insurance Credit card

CASE 1- Regional Physical Bank 55% 30% 6% 9%
CASE 2- Regional Physical bank 40% 50% 4% 6%
CASE 3- Regional Physical bank 55% 30% 6% 9%
CASE 4 - Global Physical bank 50% 33% 7% 10%
CASE 5 - Global Virtual bank 50% 33% 7% 10%
CASE 6 - National Physical bank 53% 32% 6% 9%
CASE 7 - National Virtual bank 53% 32% 6% 9%
Table 3 - Distribution of operational frequencies across services

 Branch Technology-

based
channels

Internet Call
center

GSM
SMSs

CASE 1- Regional Physical Bank 90% 10% 60% 25% 15%
CASE 2- Regional Physical bank 90% 10% 60% 25% 15%
CASE 3- Regional Physical bank 50% 50% 60% 25% 15%
CASE 4 - Global Physical bank 90% 10% 60% 25% 15%
CASE 5- Global Virtual bank 0% 100% 60% 25% 15%
CASE 6 - National Physical bank 90% 10% 60% 25% 15%
CASE 7 - National Virtual bank 0% 100% 60% 25% 15%
Table 4 - Distribution of operational frequencies across channels

Figure 7 – Currency levels in cases 1 and 2.

Simulations compare the channel and functional integration strategies in cases 1-7 with varying refresh
periods. Refresh periods are considered identical for all pairs of local databases. Figure 7 compares
currency values in cases 1 and 2. In both cases, the channel integration strategy shows higher values of
currency as refresh period increases. These results are consistent with the distribution of users’
transactions across channels, as in cases 1 and 2 only 10% of all transactions is hypothesized to be

 116

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

executed through technology-based channels. As this percentage increases to 50% (case 3, Figure 8) the
difference of currency between the channel and the functional integration strategies significantly
decreases.

Figure 8 – Currency levels in case 3

Figure 9- Currency levels in cases 4 and 5

Figure 9 compares currency levels in cases 4 and 5. Cases 4 and 5 represent a physical and a virtual
global institution, respectively. The virtual institution shows a threshold value of refresh period above
which the channel integration strategy becomes less efficient than the functional integration strategy.
Similar trends are obtained in cases 6 and 7, representing physical and virtual national institutions.

Figure 10- Currency levels in case 5 as a function of the percentage of online customers

 117

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

Figure 10 shows a trade-off between functional and channel integration that occurs as the percentage of
online customers increases. When customers are evenly distributed across channels, the functional
integration strategy shows higher currency levels.

6. CONCLUSIONS
The purpose of this paper is to define a mathematical model to evaluate data currency levels that accounts
for the characteristics of updates in distributed databases in the context of multi-channel and multi-service
applications. The currency level indicator is a measure of the portion of data stored in a database that is
out-of-date after a given time period from the latest update. Simulations compare different real cases of
financial institutions characterized by different customers’ behaviour, size, service and channels. Results
show how data integration across channels increases currency levels more than integration across
functionalities in the majority of cases. However, a functional integration strategy is more efficient when
users’ accesses are distributed evenly across channels.
Future work will examine volatility requirements and will present a model to obtain consistent values of
refresh periods based on currency levels. Besides, future research will conduct a survey to collect real
data on customer behaviour. Real data could be used to select the correct mix of channel and functional
integration strategies depending for different patterns of customer behaviour and, possibly, provide
methodological design guidelines.

REFERENCES
[1] Ballou D. P., Pazer H.L., Modelling Data and Process Quality in Multi-input, Multi-output Information

Systems. Management Science, vol. 31, No. 2, February 1985.
[2] Ballou D. P., Wang R., Pazer H.L., Tayi G.K., Modelling Information Manufacturing Systems to Determine

Information Product Quality. Management Science, vol. 44, No. 4, April 1998.
[3] Ballou D. P., Pazer H.L., Designing Data Information Systems to Optimize the Accuracy-timeliness Tradeoff.

Information Systems Research, 1995.
[4] Bracchi G., Francalanci C., Bognetti A., La Banca multicanale in Europa, Edibank 2002 (in italian).
[5] Escalate, Inc., Multi-channel Integration, a Retailer’s Perspective. Available on line at:

www.escalate.com/whitepaper3.htm, 2001.
[6] Kaplan D., Krishnan R., Padman R., Peters J., Assessing Data Quality Accounting Information Systems.

Communications of the ACM, vol.41, no.2, February 1998.
[7] KPMG Consulting, Read Your eFuture, Autumn 2000.
[8] Orr K., Data Quality and Systems Theory. Communications of the ACM, vol.41, no.2, February 1998
[9] Orr K., Data Warehousing Technology. The Ken Orr Institute 2000.
[10] Redman T.C., The Impact of Poor Data Quality on the Typical Enterprise. Communications of the ACM, vol.

41, no. 2, February 1998.
[11] Redman T.C., Data Quality for the Information Age. Artech House, 1996.
[12] Wang R.Y., A Product Perspective on Total Data Quality Management. Communications of the ACM, vol. 41,

no.2, February 1998.
[13] Wiederhold, G., Ceri, S. Pernici, B., Distributed database design. IEEE Proceedings, 1987.

118

Proceedings of the Seventh International Conference on Information Quality (ICIQ-02)

http://www.escalate.com/whitepaper3.htm

