
Bellman : A Data Quality Browser

Theodore Johnson and Tamraparni Dasu
AT&T Labs – Research

johnsont@research.att.com
 tamr@research.att.com

Abstract: When a data analyst starts a new project, she is often presented with one or
more very large databases (containing hundreds or thousands of tables). Extracting useful
information from the databases can be a difficult problem: documentation is usually
minimal, the data is poorly structured and difficult to join, and the quality of the data is
often poor. As an aid in exploratory analysis, we are developing a data quality browser
that allows the analyst to quickly gain an understanding of the contents of the tables and
their relationships. In addition, the browser serves as a platform for issuing data mining
queries targeted towards a further understanding of data quality problems. We illustrate
the utility of the data quality browser with several examples.

Introduction

Starting a new and large data analysis project can be a disheartening prospect, because the

first task is to understand a new data set. Often, the analyst is given access to a large production
database (or a snapshot of it) and asked to produce results. The database can be very large,
containing hundreds or thousands of tables. Documentation is usually minimal. The data is
often of poor quality – missing data, mistyped data entries, square pegs in round holes, and so
on. The task of extracting information from the database is frustrated by both the complexity of
the data and data quality problems in the data.

There are many reasons why production databases become complex and disordered. New
applications are fit into old data models, new functions require new tables for support,
applications are merged, etc. (see [1] for more discussion). While it would be desirable to
prevent the disorder from occurring in the first place, the analyst is (usually) not in a position to
dictate how the production database evolves. Instead the analyst must work with the data as it is
provided (and perhaps make recommendations about database restructuring for data quality
improvement).

We are developing Bellman, a data quality browser to help the analyst explore and
understand a large, complex, and dirty data set. The key idea is to issue data profiling queries,
store the results (inferred metadata), and present them to the user. Data profiling results are
stored in the database itself, allowing the user to issue ad-hoc queries on the inferred metadata.
In this paper, we show how even the availability of simple data profiling queries, stored in the
database and available for ad-hoc analysis, can simplify the task of understanding the structure of
a database and the quality of the data.

Proceedings of the Sixth International Conference on Information Quality

233

Several companies offer a data profiling product (Evoke Software [2], Metagenix Inc [3],
Knowledge Driver [4]), for use in database migration or re-engineering. Another related tool is
the Integrity Analyzer [10]. While these tools can be used to support the data analyst, we are
developing the data quality browser because:

• Our thesis is that a database browser which is enhanced with data profiling and
special purpose data mining features is an effective tool for the data analyst
carrying out exploratory and data quality analyses.

• We need to address special features of AT&T data.
• We plan to use the data quality browser as a test bed for research in data quality

mining.

Data Profiling

Data profiling refers to the process of querying a database to extract information about
the properties of its data. An Evoke Software white paper [5] suggests three kinds of data
profiling:

• Column profiling refers to the analysis of a particular field of a table. For
example, statistics such as the number of NULL values, the number of unique
values, the distribution of values, the length or range of the values in the field.

• Dependency profiling refers to the analysis of the correlation of fields in the same
row of a table. This type of analysis includes the automatic determination of keys
(collections of fields whose values are unique in every tuple) and functional
dependences (relationships in which one collection of fields uniquely determine
the value of another field e.g., a zip code functionally determines a state). See [6,
7, 8] for a discussion of academic research on this topic.

• Redundancy profiling refers to the analysis of the correlation of fields across
tables. For example, this type of analysis can be used to suggest which fields can
be used to join two tables.

It is clear that the column, dependency, and redundancy profiling discussed above is
valuable for understanding the structure of a database, a pre-requisite not only for data migration
but also for data cleaning. However, it is also clear that additional types of profiling are needed
for a data quality browser. For example, additional types of information include summaries of
temporal changes in the database, the structure of the database (i.e., a collection of tables) and
the inter-relationships between databases.

In its current state, Bellman collects only a few types of statistics – the number of rows in
a table, the number of unique values of a field, the number of times a field is NULL, the most
frequent values of a field, dependencies between attributes, and “signatures” of field values.
However, we have found that a browser that incorporates even this limited amount of
information and presents it in an interactive manner greatly improves the database exploration
process.

Proceedings of the Sixth International Conference on Information Quality

234

Data Browser Architecture

The architecture of Bellman is shown in Figure 1. The browser consists of three
components: a GUI, an analysis engine, and a profile repository. The analysis engine issues
queries to the data tables (and perhaps to previously profiled information) and interprets the
results. The browser profile repository stores profile information that the analysis engine has
computed, and also retrieves it for display by the GUI or for use by the analysis engine. The
GUI allows the user to issue commands to the analysis engine and to view results. The data
quality browser is written in Java, and accesses the target database using JDBC. The analysis
engine is written in C++ and accesses the target database using ODBC or OCI.

Database

Data
Tables

Browser
Profile
Tables

GUI

Analysis Engine Browser Profile
Repository

Figure 1 : Architecture of the Data Quality Browser

Example Application

We illustrate the use of Bellman through a series of examples. Figure 2 shows the first
screen displayed to the user after connecting to the database (we have censored tablespace names
in order to protect AT&T data). The number in parentheses to the right of the tablespace name is
the number of tables in the tablespace. Placing this information next to the tablespace name
immediately informs the analyst of some tablespace properties. For example, the DB*
tablespace has not been loaded and the S* tablespace is very large. From this window, the user
can invoke some types of profiling analyses on all tables in a table space (using the “Do Table
Counts” and “Do All Counts” buttons).

Proceedings of the Sixth International Conference on Information Quality

235

Figure 2 Tablespaces in the databases (annotated with the number of tables in the tablespace).

By clicking on the “Load Tables” button, the user can load all of the tables in a
tablespace into the window, as is shown in Figure 3. The number to the right of the table name is
the number of rows in the table. This information is useful when browsing a new database as
one can see which tables are likely to contain detail data (e.g., very large tables) as opposed to
dimensional or special purpose data. We can see that some of the tables are very small or even
empty (i.e., the AUD*X tables).

Proceedings of the Sixth International Conference on Information Quality

236

Figure 3: The tables in the IP*A tablespace. The number of rows in the table is to the right of the table name.

We can examine the format of the CIR*T table by clicking on the “Find Keys” button

when the CIR*T table is highlighted. A new window, shown in Figure 4, displays the fields of
the table along with the field data type, the number of unique values of the field, and the number
of null values of the field. The number of rows in the table is displayed in the upper right hand
corner of the window. The combination of the number of rows in the table and the number of
unique / null values of the field indicates the nature of the information in the field. In this table,
it is clear that the 1st, 10th, and 11th fields are all keys. Several of the other fields are likely to
contain significant amounts of information, but most of the fields are completely null.
Developers often create null fields (and empty tables) as placeholders for the development of
new system functions. However these placeholders are confusing to the analyst, hence the value
of identifying them.

Proceedings of the Sixth International Conference on Information Quality

237

Figure 4: Fields in a table.

An option in the “Field Chooser” window will open a new window (shown in Figure 5)

that displays the most common values of the highlighted field. Although this is a very simple
function, understanding the data in a field is critical for understanding the contents of the
database. Making this information available at the click of a button greatly simplifies
exploratory tasks.

 The chart on the left hand side of the window is a chart of the counts of the most
common values. In this case the chart area is almost empty, indicating the extreme skewness of
this field. Because default values usually occur frequently, examining the most common values
will often expose hidden default values. In this case, the “1995-08-30” date occurs suspiciously
often, and is likely to be a default value. The other dates in the window occur suspiciously close
together, so they might also be hidden default values.

Proceedings of the Sixth International Conference on Information Quality

238

Figure 5: Identifying hidden default values

As Figure 2 shows, the database we set out to analyze is very large and complex. It is

also poorly documented. In the process of understanding the structure of the databases, we need
to know which fields (or collections of fields) are the keys of the table (that is, they are unique in
every row). Because the data is likely to be dirty, we will accept “approximate” keys (i.e., they
have few duplicate values).

A window for finding approximate keys is accessible from the “Field Chooser” window
shown in Figure 4. Fields marked with an ‘X’ in the “Use” column are selected as input to the
key finding algorithm (we might know in advance that certain fields will not be keys and we can
deselect them). Figure 6 shows the key finding widow displaying previously discovered results.
At the top of the window is a collection of filtering parameters for the algorithm (to minimize the
number of expensive queries necessary to search for a key). The algorithm found two 2-field
keys (AS*R and EQ*D, AS*R and PR*E), and four 3-field keys. Note that this table has no
single field key.

The key finding algorithm computes the counts of unique values of pairs, triples, etc. of
the fields of the table. Therefore as a side effect the key finding algorithm finds approximate
dependencies, in which one set of fields determines another. The key finding algorithms will not
find all such dependencies (because it avoids doing all counts), and does not check the quality of
the dependence. These dependencies are marked accordingly when they are entered into the
profile repository.

Proceedings of the Sixth International Conference on Information Quality

239

Figure 6: Finding keys and correlations.

Another important element in understanding the structure of the database is the finding of
the fields which link tables together (i.e., can be joined). We make use of a sketch [9] (a special
type of sampling) to represent the set of values in a field using only a few numbers (in the case of
Bellman, 50 numbers). By comparing the sketches of two fields, we can approximate the size of
their intersection – and therefore whether the tables can be joined using these fields.

In Bellman, we compute a sketch for each field with at least 20 unique values (a tot al of
4700 fields qualified). Figure 7 shows the set of fields found to have a large intersection with the
ES*.SNM*.ROU* field. The resemblance field contains the value which can be estimated
directly from the sketch. Using the resemblance and the number of unique values in the fields,
we can estimate the intersection size (in the (intersection) column. The “compute intersection”
button will compute the actual intersection size, listed in the rightmost column. Some of the

Proceedings of the Sixth International Conference on Information Quality

240

actual intersection sizes are computed to be zero, because the fields contain values with the same
text but of different data types (in this case, fixed-length character strings versus variable-length
character strings). The estimated intersection size is a rough approximation of the actual
intersection size, but it is able to distinguish between small, medium, and large intersections. We
note that the manes of the similar fields are all significantly different; indicating that the use of
field names alone to identify joins paths does not work well.

Figure 7. Finding similar fields (an “actual intersection” of zero occurs when the field values contain the same
text but are of different data types).

Whenever Bellman performs an analysis task, it stores the profile data in the profile
repository. One advantage of storing this data is to make the browser feel interactive – all of the
screen shots in this paper appear within a second of the mouse click which requests it. By
storing the profile data in the database itself provides another advantage – the profile data is
available for ad-hoc queries. In Figure 8, we show a query that asks for fields that might relate
to sites, and a portion of the result (the first three fields are the tablespace, the table, and the
field). By examining the number of unique values of the fields, we obtain a hint about promising
join paths. Other profiled data is also stored in the database and is available for querying –
including the approximate keys.
 Note that one of the fields in the profile repository table is the date at which the profile
data was created. This field allows us to track changes over time.

Proceedings of the Sixth International Conference on Information Quality

241

Figure 8: Querying the profile metadata.

Conclusions

In spite of the simple and limited analysis that the current version of Bellman provides, it
is already a very useful tool for the exploratory analysis of large, complex, poorly documented,
and dirty databases. We have used it to find hidden default values and to explore join paths
between different databases (which appear as different tablespaces in our examples).
Information about table sizes, and counts of unique and null values allowed us to eliminate many
dead ends when searching for join paths. Finding hidden null values is automated by having a

Proceedings of the Sixth International Conference on Information Quality

242

pre-formulated query available at the click of a button. More sophisticated analyses will allow
us to automate our exploration even further.

We are continuing to Bellman, adding profile data and special purpose analyses to
automate the process of exploring new databases and finding data quality problems. Tasks that
we plan to support with automation include analyzing textual similarity fields, visualizing the
structure of a database, and finding potentially corrupted data.

Bibliography
[1] Data Quality Issues in Service Provisioning & Billing, T. Dasu and T. Johnson, submitted to
IQ2001.

[2] Evoke Software http://www.evokesoftware.com/

[3] Metagenix Inc. http://www.metagenix.com/home.asp

[4] Knowledge Driver http://www.knowledgedriver.com/

[5] http://www.evokesoftware.com/pdf/wtpprDPM.pdf

[6] Efficient Discovery of Functional and Approximate Dependencies Using Partitions, Y.
Huhtala, J. Karkkainen, P. Porkka and H. Toivonen, International Conf. On Data Engineering,
1998.

[7] Dependency Inference, H. Mannila and K.J. Raiha, Proc. 13th Intl. Conf. On Very Large Data
Bases, pg. 155-158, 1987.

[8] Bottom-up Induction of Functional Dependencies from Relations, I. Savnik and P. Flach,
AAAI Workshop (KDD ’93), pg. 174-185, 1993.

[9] On the resemblance and containment of documents, A. Z. Broder, Compression and
Complexity of Sequences, pg. 21-19, 1997.

[10] Quality Information and Knowledge, K.-T. Huang, Y. W. Lee, R. Y. Wang, Prentice-Hall
1999.

Proceedings of the Sixth International Conference on Information Quality

243

