
Proceedings of the 2000 Conference on Information Quality

 190

Hunting Data Glitches in Massive Time Ser ies Data
Tamraparni Dasu, (tamr@research.att.com)

Theodore Johnson, (johnsont@research.att.com)

Eleftherios Koutsofios, (ek@research.att.com)

AT&T Labs - Research

Abstract
In a previous paper [5] presented at IQ’99, we had proposed a method for isolating data glitches
in massive data sets using a data mining method called DataSpheres. The technique runs in
linear time, isolating sections of data that contain corrupted or abnormal data. In this paper, we
propose using the DataSphere technique to isolate problems in time series data. We define two
types of multivariate deviations, relative and within, in time and space for each data point. We
discretize the attribute space into states and construct a one-step Markov chain model to
summarize movement between the states. The relative deviation is based on low likelihood
transitions and is used to flag suspicious movements. The within deviation is specific to a data
point and helps us separate legitimate movements (e.g. bursty traffic) from data glitches (e.g.
missing data). The methods we propose are distribution free, making them widely applicable.
Furthermore, they are simple and can be computed from summaries, thus requiring very little
storage. We demonstrate the method on real network data, isolating “abnormal” data movements
over time. We conclude with a proposal for a set of general actions to take based upon the
glitches detected by our algorithm.

1. Introduction

Data quality monitoring is critical in ensuring that corporate and scientific inferences are based
on genuine phenomena observed in the data rather than artifacts induced by data aberrations.
Detection of data problems becomes difficult when the data sets are massive, with many
variables. In our previous work (IQ’99 [5]), we proposed a fast, automated method of screening
snapshot data sets. In this paper, we propose a method for the rapid screening of longitudinal
data for abnormal patterns. Our focus is on developing a method that is:

• Fast, runs in linear time,
• Widely applicable, (nonparametric, makes no distributional assumptions) and
• Requires very little storage

Based on the glitches that are detected, we propose a broad set of actions that need to be taken,
such as:

Proceedings of the 2000 Conference on Information Quality

 191

• Raise awareness regarding data quality issues so that analysts and decision makers can
incorporate this knowledge while interpreting results, especially exceptional results,
• Provide motivation and direction for data quality improvement programs and
• Specify techniques for cleaning glitches that can be incorporated into the overall data
quality program.

A significant portion of data quality research is focused on managing and implementing data
quality processes as in [13], [15] and [16]. Recently there has been an emphasis on building data
warehouses and monitoring and measuring the information that resides in them. See [2] for
details. Most commercial and academic efforts in the database community are focused on
merging/purging/deletion of duplicates (see [8]) and issues related to name and address
matching. In the statistical community the focus is on quality control methods borrowed from
process control charts. See [14], [6] and [7]. Extensions of control charts to multivariate settings
have been proposed by [1] and [12]. Multivariate methods that scale well for massive high
dimensional data were proposed in IQ’99 in [5].

In this paper, we propose a general framework for detecting glitches in large databases of
multivariate time series. The approach entails discretizing the attribute space using a space
partitioning strategy. We use the DataSpheres partitioning technique since it scales linearly to a
large number of attributes as well as a large number of data points. We treat each class of this
partition as a state that a data point can be at any point in time. A given time series can then be
expressed as a trajectory of the states. The trajectories can be characterized using transition
probabilities that are estimated from the data. At any point in time, transitions can be ranked by
their likelihood. We propose flagging “low-likelihood” transitions as data alerts. The data alerts
can be further analyzed to separate abnormal but legitimate behavior (bursty traffic) from data
glitches (missing data). Since the data alerts constitute a small subset of the original data,
statistical methods intended for smaller data sets could be used to separate the truly bad data. The
rest of the paper is organized as follows. In Section 2, we give a brief description of the
DataSpheres technique. In Section 3, we give a general overview of the method we propose for
finding glitches in large time series data. In Section 4, we apply the method to network data from
an AT&T data warehouse. In Section 5, we outline methods for dealing with data glitches
isolated by the technique proposed in this paper. Finally, in Sections 6 and 7, we present future
work and conclusions. The figures that are referred to in the text of the paper are included in a
separate section just before the bibliography.

2. DataSphere Par titioning

We present below a brief description of the DataSphere partitioning technique and refer the
reader to [3], [10] and [9] for details. The fundamental idea is to partition the data into
homogeneous sections and use representative summaries to analyze the data. Such an approach
scales classical statistical methods for use on massive data. The DataSphere method partitions
the attribute space based on two criteria, that of distance and direction. The DataSphere class
summaries, which have special properties to be described later, are used as a basis for further
analysis, including visualization. A DataSphere representation in two dimensions is included in
Figure 1, included at the end of the paper.

Proceedings of the 2000 Conference on Information Quality

 192

2.1 Distance Layers
The first step in creating a DataSphere partition is defining distance layers using an appropriate
subset of the numeric attributes. The choice of the subset depends on the user. If nothing is
known about the data set, all the numeric attributes should be used. The attributes that are used
to compute the distance are called depth attributes. The categorical attributes are used to stratify
the data (if needed) subsequently. Such variables are called cohort attributes. The distance layers
can be computed as follows:

• Compute a center for the data cloud using the depth attributes. Practical choices include
multivariate mean, multivariate trimmed mean and componentwise median.

• Center and rescale the depth attributes using the center computed above and an
appropriate measure of dispersion such as the standard deviation or interquartile range.
Therefore, a data point X i = (x i1, x i2, …, x id) will now be

Y i = (y i1, y i2, …, y id)=((x i1 - x 1)/σ 1, (x i2- x 2)/ σ 2, …, (x id - x d)/σ d)

where x j andσ j are the mean and standard deviation respectively of the jth component.
We can replace the mean and standard deviation with other choices, such the
dimensionwise median and the interquartile range. Standardizing the data makes
attributes free of measurement units and scales, making them comparable.

• For each Y i compute the distance d i from the center.

()∑ −
=

=
d

j
jjjii xxd

1

2

/)(σ

We have used the Euclidean distance, but other choices such the Manhattan distance can
be used too.

• Sort the data points by distance and define the layer boundaries to be distance quantiles.
(Quantiles divide the data set into regions of equal mass, e.g. quartiles divide the data into
quarters and so on.) Using the distance quantiles as layer boundaries ensures that there is
roughly the same number of data points in each layer. All data points whose distance lies
between two consecutive quantiles constitute a layer.

The central layers represent “typical” observations since they are close to the measure of location
we have chosen as the center. As we move to layers farther away from the center the
observations become more “atypical” , representing outliers. Note that the center and distance
layer boundaries uniquely determine a DataSphere representation of a data set, hence they are
known as the parameters of the DataSphere.

2.2 Directional Pyramids

Directional information is superimposed on the distance layers using the concept of pyramids.
Briefly, a d-dimensional set can be partitioned into 2d pyramids P i , i = 1, …, d whose tops
meet at the center of the data cloud. That is, for a data point p:

Proceedings of the 2000 Conference on Information Quality

 193

p ∈ P i
+ , if | y i |>| y j | and y i > 0, where j = 1, …, d , j ≠ i

p ∈ P i

- , if | y i |>| y j | and y i < 0, where j = 1, …, d , j ≠ i

In Figure 1, we show a two dimensional illustration of sectioning with data pyramids. The
circles represent the layer (section) boundaries. The dotted diagonal lines represent the pyramid
boundaries. The black and white dots might correspond to two different values of a cohort
variable (e.g. gender), such as male and female.

2.3 Profiles of Summaries
Every layer-pyramid combination represents a class of the DataSphere partition. The data points
in each class are summarized by a profile. A profile is a set of statistics, both scalars and vectors
that summarizes the data points in a layer. Examples are counts, sums, sums of squares and
cross products, special types of histograms and others. In order to be a member of the profile, a
statistic should be easy to compute, be easy to combine across sections, and have the same
interpretation when combined across sections or data sets.

3. Character izing Glitches using Two Types of Deviations

We propose two measures of abnormality, which we call deviation, keeping with statistical
terminology. A time series (such as a customer record with different types of communications
usage like long distance, local, Internet) is characterized at any point in time by these two
measures of deviation. Therefore, we effectively reduce a multivariate time series to a time series
of two deviation attributes. We then define conditions under which the deviations are flagged as
abnormal. The first measure of deviation is the Relative Deviation, which represents the
movement of a data point relative to other data points over time. For example, an online
customer might be purchasing merchandise at a faster rate than others. Another customer might
continue at the same rate at which she started. The trajectories of purchases of these customers
will be different. To capture this idea and to identify anomalies, we use the Markov chain
approach proposed in our earlier work [4]. We employ the three following steps:

• Discretize the attribute space using the DataSphere partitioning technique. Each class
(layer-pyramid combination) in the DataSphere (DS) partition is said to be a state in
which the customer can be. The customers move from state to state over time. For
example, a customer can start in the central layer with typical usage patterns and drop off
to hardly any usage over time. Figure 2 at the end of the paper illustrates some sample
movements over time.

• We observe the movements of customers over time among these states and summarize
them using transition matrices. That is, the (i,j)th element of a transition matrix gives
the probability that a customer will transition from state i to state j at time t . Note that
there is an implicit assumption of a one-step Markov process here, but this assumption
can be compensated for by using hazard regression to customize the transition
probabilities to individual customers. A full discussion is outside the scope of this paper,
but please see [4] for details and further references.

Proceedings of the 2000 Conference on Information Quality

 194

• We predict the likely states of a customer in the next time period using the transition
matrices. Any observed low likelihood transitions are flagged as alerts.

The second measure of deviation is the Within Deviation that measures how different a data
point is at any given time t with respect to its own expected behavior. The latter can be defined
in several ways depending on the resource constraints. A simple strategy would be to fit a linear
model to the time series of a given record using summaries and identify departures from the
model.

Note that the relative deviation is more robust, since it is difficult to change state (i.e. position in
the attribute space relative to others) without a significant change in the attributes. The relative
deviation serves an additional purpose of identifying the data point as typical (states that are in
the inner distance layers) or atypical (in the outer layers). Furthermore, the pyramid in which the
attribute lies identifies the attribute that is causing the abnormality. In contrast, the within
deviation is very sensitive to minor changes and is better for capturing long-term trends of the
individual data point. Due to this property, we can use the within deviation to differentiate
between legitimate changes and data glitches, to be discussed in a later section.

4. Example - Network Data

We used a data set that measured four attributes for every “connection” , namely Bytes Received,
Bytes Transmitted, Frames Received and Frames Transmitted, over the 31 day period March 1 -
March 31, 2000. There were 15,596 connections observed daily. The data consisted of the daily
totals of the four attributes during the 31-day period. We computed the within deviation of a
point at timet simply to be the sum of the standardized deviations of the individual attributes,

idev (t) = ∑ −
=






d

i
ijijij sxtx

1

2

)/))(((

where x ij(t) is the value of the jth attribute of the ith data point (in this case the connection) at

time t , ij x is the 31-day average of the jth attribute for the ith data point and s ij is the standard
deviation of the jth attribute for the ith individual over the 31-day period.

We used the connection average for 31 days to create a data partition with 4 layers and 8
pyramids, 2 pyramids for every attribute. For the purpose of simplification, we collapsed all the
negative pyramids into a single “negative” orthant and all the positive pyramids into a single
“positive” orthant within each of the four layers. Note that since the summaries in the profiles are
aggregable, combining the classes of the partition to create a coarser partition is almost trivial
(no need to revert to the raw data and recreate the partition anew).

Next, we computed the transition matrix elements using the sample proportion -

P (i, j , t) = n ij(t)/ n i(t)

Proceedings of the 2000 Conference on Information Quality

 195

where P (i, j , t) is the probability of changing from state i to state j at time t , (P denotes an
estimate), n i(t) is the number of points in state i at time t and n ij(t) is the number of points
that move from state i at time t to state j at time t + 1.

We noticed that the estimated probability of changing states at any point in time was greater than
0.75, usually more than 0.8. Therefore, we extracted the entire multivariate time series for every
data point that changed its state at least once in the 31-day period. That is, we used “change in
state” to flag data alerts. The change in state happens when a data point crosses a class boundary,
which in turn is a function of all four attributes. Note that if data points changed states more
frequently we could have defined the most likely transition state(s) whose transition probabilities
add up to some threshold (say, of 0.80) and flag all other states as abnormal. This is yet another
way to define the relative deviation.

We also noticed that there was one distinctive feature that set the data problems apart from the
changes caused by abnormal but genuine events. The characteristic feature was a successive
flip-flop in states as in the sequence i-to-j -to-i over three consecutive time steps. The cause
behind the flip-flop is usually missing data or a short-term outage that causes the traffic to drop.

To illustrate, we plotted four representative types of “abnormal patterns” , included at the end of
the paper. In Figure 3, the flip-flopping of states corresponding to the relative deviation (RLTV)
indicates a data glitch. (For the purpose of plotting alone, we have used a suitable transformation
of the change in state variable to denote relative deviation.) Note that the within deviation
(WTHN) is much more volatile. The fact that the within deviation drops to the same level at each
of the flagged events indicates that the values are being set to some default (like zero) due to
missing data. In Figure 4, there is significant volatility indicating occasional bursts of activity.
However, note that the within deviation at time 21 is in the opposite direction (dropping to a
default value), indicative of missing data. In Figure 5, the behavior is quite different. The drop in
the two deviations is indicative of migration of usage to other services or carriers, with
occasional dribbles of traffic. Note that the flip-flop at times 15 and 30 correspond to within
deviations of different amounts indicating that they are genuine bursts of traffic rather than data
problems. Finally, Figure 6 seems to indicate a genuinely volatile customer. The flip-flop at time
17 is probably legitimate and not a data problem. Such a flip-flop could happen when a data
point is close to the partition class boundary.

Thus, we have used a very simple technique to achieve very powerful results. The within and
relative deviations isolate a handful (20%) of the data as potentially “dirty” . The smaller subset
of data can be investigated closely using methods suitable for small data sets. Note that
automatic detection techniques such as logistic regression or machine learning or clustering can
not be used for identifying glitches in large data sets since they are expensive and not effective
on noisy data.

5. Dealing with Glitches

Once the glitches are identified, there are two major issues we need to address. First, we need to
distinguish between real data problems and genuine but atypical changes in the data. Second, we
need to define the action to be taken with respect to the data glitches.

Proceedings of the 2000 Conference on Information Quality

 196

5.1 Data Glitches or Genuine Changes?

How can we tell the difference between a genuine problem and a legitimate change in the data?
We propose below broad guidelines:

• Genuine changes are usually persistent over time, whereas data problems appear and
disappear quickly.

• Data glitches tend to appear randomly without any structure while genuine changes can
be “rationalized” . For example, a geographical proximity in the glitches would suggest a
systemic cause such as a drought resulting in lower crop yields in that region. Similarly, a
drop in revenues at a single point in time is more likely to be a data problem (missing
data) than a sustained downward trend.

• We can use the within deviation of a data point to separate out differences with
“structure” (systemic changes in the process that generates the data, resulting in shifts in
the distribution) as opposed to random aberrations. Using departure from linear
autoregressive models as measures of within deviation is a potential way of detecting
structure.

5.2 Dealing with Data Glitches

There are several approaches to dealing with data glitches, depending on the type of glitch as
well as the purpose of the analysis.

• If the original data set is sufficiently large, we can exclude or set aside the error prone
data. However, we have to be careful that excluding parts of the data in this manner does
not introduce any bias in the analysis, such as excluding data specific to a particular
location or time.

• Another variation is to not include the glitch-ed record in analyses that require the
corrupted attributes. For example, if only the March revenue is in question while the
revenue for other months is accurate, the record should be included in all summaries and
analyses except those that require the revenue for March. While this might seem
obvious, many established ways of dealing with data problems would simply ignore the
entire record, wasting large amounts of usable data.

• Yet another option would be to “clean” the glitched data through manual or automated
methods and return it to the data set before any analysis is done. While manual methods
will probably result in better quality, they are impractical due to the expense involved.
Furthermore, they could introduce other unanticipated errors. Automated methods are
preferred for this reason.

A frequently used automated approach entails substituting missing or suspicious values with a
summary statistic such as a mean or median. Such a method clearly introduces a circular bias by
increasing the data mass at the value used to fill in the missing values. Under this scheme all
imputed values for a given attribute are the same.

A more sophisticated approach is based on regression. That is, the portion of data where the
attribute is clean is used to develop a regression model and the resulting model is used to
estimate (predict) the glitched value in the remaining data using the other attributes. Note that the

Proceedings of the 2000 Conference on Information Quality

 197

there are many possible models depending on the combination of attributes that are missing.
Such an approach might be expensive. For a related discussion of the statistical treatment of
missing data, see [11].

6. Future Work

Further research includes using outlier detection methods to find glitches and using learning
techniques to characterize glitches (i.e. find “rules” for glitch detection) that are isolated by the
automated technique proposed in this paper. Longitudinal data are particularly challenging since
most extant methods do not generalize easily to nonstandard time series data due to strong
assumptions made by techniques that employ, e.g. linear models.

7. Conclusion

We have used the DataSphere representation as a foundation to construct a Markov process that
summarizes multivariate time series using transition probabilities. The low-likelihood transitions
are sifted out using the relative deviation metric (deviation of a data point with respect to other
data points) and further analyzed for structure using the within deviation metric (deviation of a
data point with respect to its own expected behavior over time). If the within deviation exhibits
no structure over time, it is most likely a data glitch. The above technique is fast, widely
applicable and extremely effective.

FIGURES

Figure 1: Data Sectioning with Pyramids. Figure 2: Movements over time.

Proceedings of the 2000 Conference on Information Quality

 198

Fig 3: Flip-flop of states indicating a data glitch. Fig 4: Bursty traffic with a data problem.

Figure 5: Big shifts in behavior. Figure 6: Legitimate volatile behavior

Proceedings of the 2000 Conference on Information Quality

 199

References

[1] Alt, F. and Smith, N. (1988). Multivariate Process Control. Handbook of Statistics, 7 (1988)
333- 351.

[2] Ballou, D. P. and Tayi G. K. (1999). Enhancing Data Quality in Data Warehouse
Environments. Communications of the ACM, 42, (1999) 73-78.

[3] Dasu, T. and Johnson, T. (1997). An Efficient Method for Representing, Analyzing and
Visualizing Massive High Dimensional Data Sets. Computing Sciences and Statistics. 29,
(1997).

[4] Dasu, T. and Johnson, T. (1998). Efficient Modeling of Massive Longitudinal Data Using
Transition Arrays. Computing Sciences and Statistics. 30, (1998).

[5] Dasu, T. and Johnson, T. (1999). Hunting of the Snark: Finding Data Glitches Using Data
Mining Methods. Proceedings of the 1999 Conference on Information Quality, (pp 89-98),
Cambridge MA.

[6] Deming, W. E. (1943). Statistical Adjustment of Data. John Wiley, New York.

[7] Duncan, A. J. (1986). Quality Control and Industrial Statistics. Fifth Edition, Irwin.

[8] Hernandez, M.A. and Stolfo S.J. (1995). The Merge/Purge Problem for Large Databases.
Proc ACM SIGMOD Conference, (1995) 127-138.

[9] Johnson, T. and Dasu, T. (1998). Comparing Massive High Dimensional Data sets. The
Fourth Int’ l Conf. on Knowledge Discovery and Data Mining, 229-233.

[10] Johnson, T. and Dasu, T. (1999). Scalable Data Space Partitioning in High Dimensions.
JSM99.

[11] Little, R.J.A. and Rubin, D.B. (1987). Statistical Analysis with Missing Data. John Wiley.

[12] Liu, R. Y. (1995). Control Charts for Multivariate Processes. Journal of the American
Statistical Association, 90 (1995) 1380-1387.

[13] Redman, T. (1992). Data Quality: Management and Technology. Bantam Books.

[14] Shewhart, W. A. (1938). Application of Statistical Method in Mass Production.
Proceedings of the Industrial Statistics Conference Held at Massachusetts Institute of
Technology, September 8-9, 1938. New York: Pitman Publishing, 1939.

[15] Strong, D., Lee, Y. and Wang, R. (1997). Data Quality in Context. Communications of the
ACM, 40, (1997) 103-110.

[16] Wand, Y. and Wang, R. (1996). Anchoring Data Quality Dimensions in Ontological
Foundations. Communications of the ACM, November 1996.

