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Abstract 
In a previous paper [5] presented at IQ’99, we had proposed a method for isolating data glitches 
in massive data sets using a data mining method called DataSpheres.  The technique runs in 
linear time, isolating sections of data that contain corrupted or abnormal data. In this paper, we 
propose using the DataSphere technique to isolate problems in time series data. We define two 
types of multivariate deviations, relative and within, in time and space for each data point.  We 
discretize the attribute space into states and construct a one-step Markov chain model to 
summarize movement between the states.  The relative deviation is based on low likelihood 
transitions and is used to flag suspicious movements.  The within deviation is specific to a data 
point and helps us separate legitimate movements (e.g. bursty traffic) from data glitches (e.g. 
missing data). The methods we propose are distribution free, making them widely applicable. 
Furthermore, they are simple and can be computed from summaries, thus requiring very little 
storage.  We demonstrate the method on real network data, isolating “abnormal”  data movements 
over time. We conclude with a proposal for a set of general actions to take based upon the 
glitches detected by our algorithm. 

 
 

1. Introduction 
 
Data quality monitoring is critical in ensuring that corporate and scientific inferences are based 
on genuine phenomena observed in the data rather than artifacts induced by data aberrations.   
Detection of data problems becomes difficult when the data sets are massive, with many 
variables. In our previous work (IQ’99 [5]), we proposed a fast, automated method of screening 
snapshot data sets.  In this paper, we propose a method for the rapid screening of longitudinal 
data for abnormal patterns.  Our focus is on developing a method that is: 

• Fast, runs in linear time, 
• Widely applicable, (nonparametric, makes no distributional assumptions) and 
• Requires very little storage 
 
Based on the glitches that are detected, we propose a broad set of actions that need to be taken, 
such as: 
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• Raise awareness regarding data quality issues so that analysts and decision makers can 
incorporate this knowledge while interpreting results, especially exceptional results, 
• Provide motivation and direction for data quality improvement programs and 
• Specify techniques for cleaning glitches that can be incorporated into the overall data 
quality program. 
 
A significant portion of data quality research is focused on managing and implementing data 
quality processes as in [13], [15] and [16]. Recently there has been an emphasis on building data 
warehouses and monitoring and measuring the information that resides in them. See [2] for 
details. Most commercial and academic efforts in the database community are focused on 
merging/purging/deletion of duplicates (see [8]) and issues related to name and address 
matching. In the statistical community the focus is on quality control methods borrowed from 
process control charts.  See [14], [6] and [7].  Extensions of control charts to multivariate settings 
have been proposed by [1] and [12]. Multivariate methods that scale well for massive high 
dimensional data were proposed in IQ’99 in [5].  

In this paper, we propose a general framework for detecting glitches in large databases of 
multivariate time series. The approach entails discretizing the attribute space using a space 
partitioning strategy. We use the DataSpheres partitioning technique since it scales linearly to a 
large number of attributes as well as a large number of data points. We treat each class of this 
partition as a state that a data point can be at any point in time. A given time series can then be 
expressed as a trajectory of the states. The trajectories can be characterized using transition 
probabilities that are estimated from the data.  At any point in time, transitions can be ranked by 
their likelihood. We propose flagging “low-likelihood” transitions as data alerts. The data alerts 
can be further analyzed to separate abnormal but legitimate behavior (bursty traffic) from data 
glitches (missing data).  Since the data alerts constitute a small subset of the original data, 
statistical methods intended for smaller data sets could be used to separate the truly bad data. The 
rest of the paper is organized as follows. In Section 2, we give a brief description of the 
DataSpheres technique.  In Section 3, we give a general overview of the method we propose for 
finding glitches in large time series data. In Section 4, we apply the method to network data from 
an AT&T data warehouse. In Section 5, we outline methods for dealing with data glitches 
isolated by the technique proposed in this paper. Finally, in Sections 6 and 7, we present future 
work and conclusions. The figures that are referred to in the text of the paper are included in a 
separate section just before the bibliography.  

 

2. DataSphere Par titioning 
 
We present below a brief description of the DataSphere partitioning technique and refer the 
reader to [3], [10] and [9] for details.  The fundamental idea is to partition the data into 
homogeneous sections and use representative summaries to analyze the data.  Such an approach 
scales classical statistical methods for use on massive data. The DataSphere method partitions 
the attribute space based on two criteria, that of distance and direction.  The DataSphere class 
summaries, which have special properties to be described later, are used as a basis for further 
analysis, including visualization. A DataSphere representation in two dimensions is included in 
Figure 1, included at the end of the paper. 
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2.1 Distance Layers 
The first step in creating a DataSphere partition is defining distance layers using an appropriate 
subset of the numeric attributes.  The choice of the subset depends on the user.  If nothing is 
known about the data set, all the numeric attributes should be used.  The attributes that are used 
to compute the distance are called depth attributes.  The categorical attributes are used to stratify 
the data (if needed) subsequently. Such variables are called cohort attributes. The distance layers 
can be computed as follows: 

• Compute a center for the data cloud using the depth attributes. Practical choices include 
multivariate mean, multivariate trimmed mean and componentwise median. 

• Center and rescale the depth attributes using the center computed above and an 
appropriate measure of dispersion such as the standard deviation or interquartile range.   
Therefore, a data point X i  = ( x i1, x i2, …, x id) will now be 

 

Y i   =    ( y i1, y i2, …, y id)=( ( x i1 - x 1)/σ 1, ( x i2- x 2)/ σ 2, …, ( x id - x d)/σ d) 
 

where x j andσ j are the mean and standard deviation respectively of the jth  component.  
We can replace the mean and standard deviation with other choices, such the 
dimensionwise median and the interquartile range.  Standardizing the data makes 
attributes free of measurement units and scales, making them comparable. 

 
• For each Y i compute the distance d i from the center. 
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We have used the Euclidean distance, but other choices such the Manhattan distance can 
be used too. 

• Sort the data points by distance and define the layer boundaries to be distance quantiles.  
(Quantiles divide the data set into regions of equal mass, e.g. quartiles divide the data into 
quarters and so on.) Using the distance quantiles as layer boundaries ensures that there is 
roughly the same number of data points in each layer.  All data points whose distance lies 
between two consecutive quantiles constitute a layer. 

 
The central layers represent “typical”  observations since they are close to the measure of location 
we have chosen as the center.  As we move to layers farther away from the center the 
observations become more “atypical” , representing outliers.  Note that the center and distance 
layer boundaries uniquely determine a DataSphere representation of a data set, hence they are 
known as the parameters of the DataSphere. 

2.2 Directional Pyramids 
 
Directional information is superimposed on the distance layers using the concept of pyramids.  
Briefly, a d-dimensional set can be partitioned into 2d  pyramids P i ,  i = 1, …, d  whose tops 
meet at the center of the data cloud. That is, for a data point p: 
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p ∈ P i
+ , if | y i |>| y j | and  y i > 0, where j  = 1, …, d  , j  ≠ i 

 
p ∈ P i

- ,  if | y i |>| y j | and  y i < 0, where j  = 1, …, d , j ≠  i 
 
In Figure 1, we show a two dimensional illustration of sectioning with data pyramids.  The 
circles represent the layer (section) boundaries. The dotted diagonal lines represent the pyramid 
boundaries. The black and white dots might correspond to two different values of a cohort 
variable (e.g. gender), such as male and female. 

2.3 Profiles of Summaries 
Every layer-pyramid combination represents a class of the DataSphere partition.  The data points 
in each class are summarized by a profile.  A profile is a set of statistics, both scalars and vectors 
that summarizes the data points in a layer.  Examples are counts, sums, sums of squares and 
cross products, special types of histograms and others. In order to be a member of the profile, a 
statistic should be easy to compute, be easy to combine across sections, and have the same 
interpretation when combined across sections or data sets. 

 
3. Character izing Glitches using Two Types of Deviations 

We propose two measures of abnormality, which we call deviation, keeping with statistical 
terminology.  A time series (such as a customer record with different types of communications 
usage like long distance, local, Internet) is characterized at any point in time by these two 
measures of deviation. Therefore, we effectively reduce a multivariate time series to a time series 
of two deviation attributes.  We then define conditions under which the deviations are flagged as 
abnormal. The first measure of deviation is the Relative Deviation, which represents the 
movement of a data point relative to other data points over time.  For example, an online 
customer might be purchasing merchandise at a faster rate than others.  Another customer might 
continue at the same rate at which she started.  The trajectories of purchases of these customers 
will be different. To capture this idea and to identify anomalies, we use the Markov chain 
approach proposed in our earlier work [4]. We employ the three following steps: 

• Discretize the attribute space using the DataSphere partitioning technique. Each class 
(layer-pyramid combination) in the DataSphere (DS) partition is said to be a state in 
which the customer can be. The customers move from state to state over time.  For 
example, a customer can start in the central layer with typical usage patterns and drop off 
to hardly any usage over time. Figure 2 at the end of the paper illustrates some sample 
movements over time. 

• We observe the movements of customers over time among these states and summarize 
them using transition matrices.   That is, the (i,j)th  element of  a  transition  matrix gives  
the  probability  that  a customer will transition from state i to state j at time t . Note that 
there is an implicit assumption of a one-step Markov process here, but this assumption 
can be compensated for by using hazard regression to customize the transition 
probabilities to individual customers.  A full discussion is outside the scope of this paper, 
but please see [4] for details and further references. 
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• We predict the likely states of a customer in the next time period using the transition 
matrices.  Any observed low likelihood transitions are flagged as alerts. 

 
The second measure of deviation is the Within Deviation that measures how different a data 
point is at any given time t  with respect to its own expected behavior.  The latter can be defined 
in several ways depending on the resource constraints. A simple strategy would be to fit a linear 
model to the time series of a given record using summaries and identify departures from the 
model. 

Note that the relative deviation is more robust, since it is difficult to change state (i.e. position in 
the attribute space relative to others) without a significant change in the attributes.  The relative 
deviation serves an additional purpose of identifying the data point as typical (states that are in 
the inner distance layers) or atypical (in the outer layers).  Furthermore, the pyramid in which the 
attribute lies identifies the attribute that is causing the abnormality. In contrast, the within 
deviation is very sensitive to minor changes and is better for capturing long-term trends of the 
individual data point.  Due to this property, we can use the within deviation to differentiate 
between legitimate changes and data glitches, to be discussed in a later section. 

 
4. Example  - Network Data 

 
We used a data set that measured four attributes for every “connection” , namely Bytes Received, 
Bytes Transmitted, Frames Received and Frames Transmitted, over the 31 day period March 1 - 
March 31, 2000. There were 15,596 connections observed daily.  The data consisted of the daily 
totals of the four attributes during the 31-day period.  We computed the within deviation of a 
point at timet  simply to be the sum of the standardized deviations of the individual attributes, 
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where x ij( t ) is the value of the jth  attribute of the ith data point (in this case the connection) at 

time t , ij x is the 31-day average of the jth  attribute for the ith  data point and s ij is the standard 
deviation of the jth attribute for the ith individual over the 31-day period. 

We used the connection average for 31 days to create a data partition with 4 layers and 8 
pyramids, 2 pyramids for every attribute.  For the purpose of simplification, we collapsed all the 
negative pyramids into a single “negative”  orthant and all the positive pyramids into a single 
“positive”  orthant within each of the four layers. Note that since the summaries in the profiles are 
aggregable, combining the classes of the partition to create a coarser partition is almost trivial 
(no need to revert to the raw data and recreate the partition anew). 

Next, we computed the transition matrix elements using the sample proportion - 

 
P (i, j , t ) = n ij( t )/ n i( t ) 
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where P  (i, j , t ) is the probability of changing from state i to state j  at time t , ( P   denotes an 
estimate), n i( t ) is the number of points in state i at time t  and n ij( t ) is the number of points 
that move from state i at time t  to state j at time t  + 1. 

We noticed that the estimated probability of changing states at any point in time was greater than 
0.75, usually more than 0.8.  Therefore, we extracted the entire multivariate time series for every 
data point that changed its state at least once in the 31-day period.  That is, we used “change in 
state”  to flag data alerts. The change in state happens when a data point crosses a class boundary, 
which in turn is a function of all four attributes.  Note that if data points changed states more 
frequently we could have defined the most likely transition state(s) whose transition probabilities 
add up to some threshold (say, of 0.80) and flag all other states as abnormal. This is yet another 
way to define the relative deviation. 

We also noticed that there was one distinctive feature that set the data problems apart from the 
changes caused by abnormal but genuine events.  The characteristic feature was a successive 
flip-flop in states as in the sequence i-to-j -to-i over three consecutive time steps.  The cause 
behind the flip-flop is usually missing data or a short-term outage that causes the traffic to drop. 

To illustrate, we plotted four representative types of  “abnormal patterns” , included at the end of 
the paper.  In Figure 3, the flip-flopping of states corresponding to the relative deviation (RLTV) 
indicates a data glitch. (For the purpose of plotting alone, we have used a suitable transformation 
of the change in state variable to denote relative deviation.) Note that the within deviation 
(WTHN) is much more volatile. The fact that the within deviation drops to the same level at each 
of the flagged events indicates that the values are being set to some default (like zero) due to 
missing data. In Figure 4, there is significant volatility indicating occasional bursts of activity.  
However, note that the within deviation at time 21 is in the opposite direction (dropping to a 
default value), indicative of missing data. In Figure 5, the behavior is quite different. The drop in 
the two deviations is indicative of migration of usage to other services or carriers, with 
occasional dribbles of traffic.  Note that the flip-flop at times 15 and 30 correspond to within 
deviations of different amounts indicating that they are genuine bursts of traffic rather than data 
problems. Finally, Figure 6 seems to indicate a genuinely volatile customer. The flip-flop at time 
17 is probably legitimate and not a data problem.  Such a flip-flop could happen when a data 
point is close to the partition class boundary. 

Thus, we have used a very simple technique to achieve very powerful results. The within and 
relative deviations isolate a handful (20%) of the data as potentially “dirty” . The smaller subset 
of data can be investigated closely using methods suitable for small data sets. Note that 
automatic detection techniques such as logistic regression or machine learning or clustering can 
not be used for identifying glitches in large data sets since they are expensive and not effective 
on noisy data. 

 
5. Dealing with Glitches 

 
Once the glitches are identified, there are two major issues we need to address. First, we need to 
distinguish between real data problems and genuine but atypical changes in the data.  Second, we 
need to define the action to be taken with respect to the data glitches. 
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5.1 Data Glitches or Genuine Changes? 
 
How can we tell the difference between a genuine problem and a legitimate change in the data? 
We propose below broad guidelines: 

• Genuine changes are usually persistent over time, whereas data problems appear and 
disappear quickly. 

• Data glitches tend to appear randomly without any structure while genuine changes can 
be “rationalized” . For example, a geographical proximity in the glitches would suggest a 
systemic cause such as a drought resulting in lower crop yields in that region. Similarly, a 
drop in revenues at a single point in time is more likely to be a data problem (missing 
data) than a sustained downward trend. 

• We can use the within deviation of a data point to separate out differences with 
“structure”  (systemic changes in the process that generates the data, resulting in shifts in 
the distribution) as opposed to random aberrations. Using departure from linear 
autoregressive models as measures of within deviation is a potential way of detecting 
structure. 

 
5.2 Dealing with Data Glitches 

 
There are several approaches to dealing with data glitches, depending on the type of glitch as 
well as the purpose of the analysis. 

• If the original data set is sufficiently large, we can exclude or set aside the error prone 
data. However, we have to be careful that excluding parts of the data in this manner does 
not introduce any bias in the analysis, such as excluding data specific to a particular 
location or time. 

• Another variation is to not include the glitch-ed record in analyses that require the 
corrupted attributes. For example, if only the March revenue is in question while the 
revenue for other months is accurate, the record should be included in all summaries and 
analyses except those that require the revenue for March.  While this might seem 
obvious, many established ways of dealing with data problems would simply ignore the 
entire record, wasting large amounts of usable data. 

• Yet another option would be to “clean”  the glitched data through manual or automated 
methods and return it to the data set before any analysis is done.  While manual methods 
will probably result in better quality, they are impractical due to the expense involved.  
Furthermore, they could introduce other unanticipated errors. Automated methods are 
preferred for this reason. 

 

A frequently used automated approach entails substituting missing or suspicious values with a 
summary statistic such as a mean or median.  Such a method clearly introduces a circular bias by 
increasing the data mass at the value used to fill in the missing values. Under this scheme all 
imputed values for a given attribute are the same.  

A more sophisticated approach is based on regression.  That is, the portion of data where the 
attribute is clean is used to develop a regression model and the resulting model is used to 
estimate (predict) the glitched value in the remaining data using the other attributes. Note that the 
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there are many possible models depending on the combination of attributes that are missing.  
Such an approach might be expensive. For a related discussion of the statistical treatment of 
missing data, see [11]. 

6. Future Work 
 

Further research includes using outlier detection methods to find glitches and using learning 
techniques to characterize glitches (i.e. find “rules”  for glitch detection) that are isolated by the 
automated technique proposed in this paper. Longitudinal data are particularly challenging since 
most extant methods do not generalize easily to nonstandard time series data due to strong 
assumptions made by techniques that employ, e.g. linear models. 

 
7. Conclusion 

 
We have used the DataSphere representation as a foundation to construct a Markov process that 
summarizes multivariate time series using transition probabilities. The low-likelihood transitions 
are sifted out using the relative deviation metric (deviation of a data point with respect to other 
data points) and further analyzed for structure using the within deviation metric (deviation of a 
data point with respect to its own expected behavior over time). If the within deviation exhibits 
no structure over time, it is most likely a data glitch. The above technique is fast, widely 
applicable and extremely effective. 

FIGURES 

 

Figure 1: Data Sectioning with Pyramids.       Figure 2: Movements over time. 
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Fig 3: Flip-flop of states indicating a data glitch.  Fig 4: Bursty traffic with a data problem. 
 
 

 
Figure 5: Big shifts in behavior.                     Figure 6: Legitimate volatile behavior 
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