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Abstract

Data quality is critical to data analysis because bad data can lead to incorrect conclusions. Problems
with data are best detected early, before too much time and effort are spent ingesting and analyzing
it. In this paper, we propose the use of data mining techniques for the automatic detection of data
problems commonly encountered in large multivariate data sets. Data mining methods are ideal for this
purpose, since they are designed for finding abnormal patterns in large volumes of data. We discuss
some important types of data integrity issues. We demonstrate the use of a data mining method, the
DataSphere set comparison technique (from our earlier work [6]) to detect glitches that mimic the error
conditions discussed, using artificial data.

1 Introduction

Corporations base important decisions on results derived from data. Which segments of the customer base
are growing? What kinds of products are they buying? What are the correlations between the products
bought? Is the infrastructure performing well? What kind of capacity needs to be added to the infrastructure
to meet the growth in demand? Given the critical role knowledge derived from data plays in corporate
decisions, verifying the accuracy of data is important, if not sufficient (see [13] for a wholistic discussion
on data quality). Furthermore, problem detection should be timely, since backtracking to fix data glitches
and recover accurate analyses could be expensive and time consuming. In fact, if some transactions are
overwritten or retrospective access is expensive, recovery of original data might not be possible at all.

Traditionally, the data sets used by statisticians were collected meticulously either according to a pre-
determined design or for answering specific substantive questions such as “Does drug A have a significant
effect on reducing the symptoms of disease X?”. The data were small, measured carefully and repeatedly, and
the analyst had a fair idea of what the values should be. Anomalies were easy to detect just by going through
the raw data or scatter plots. However the size and complexity of large data sets makes visual scanning an
infeasible screening method. Some analysts adopt ad-hoc methods borrowed from quality control techniques
used in manufacturing. William Edwards Deming [4], pioneered the field of quality control based on the
work of Walter Shewhart [12]. While effective for process control in engineering and manufacturing, these
methods do not translate well to immediate detection of inconsistencies in large complex data sets, especially
for multivariate data.

Recent articles ([14], [2] and others) have highlighted conceptual frameworks for defining and enhancing
data quality, some in the context of data warehouse environments. Complementary to such work, we propose
the use of a previously developed data mining algorithm [3] as an instance of a greatly needed fast, automated
method for the detection and screening of data glitches.

Data mining methods are especially suited to for the automatic detection of glitches in massive data since
the methods are:

o designed to be scalable hence ideal for large data sets,
e aimed at isolating abnormal patterns and

e do not make distributional assumptions (usually).
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Data glitches are abnormal patterns that are either aberrations from historical behavior, inconsistencies in
sections of the data, or departures from acceptable tolerance limits. But, we need to distinguish between
differences due to data problems and differences arising from genuine factors such as growth trends, rare
but legitimate events like changes in pricing plans and change in the mixture of the subpopulations (e.g.
demographic changes such as an increasingly “greying” population). In earlier work [6] we focused on
detecting systematic changes that usually show up as differences that can be attributed to a substantive
reason (“new subscribers have different usage patterns”) and are accentuated over time. Data glitches on
the other hand, tend to be scattered erratically across the data space and are not persistent over time (the
cause usually disappears). Due to space constraints, we focus on the detection of changes in data, not on the
difference between changes in data caused by glitches and those caused by genuine changes in distributions,
which will be treated elsewhere.

The DataSphere technique is based on space partitioning. It is particularly useful for detecting subtle
changes in distributions, small shifts in interactions among variables and other local differences that will be
missed by aggregate based methods and univariate approaches. In addition, the method scales well and is
free of distributional assumptions, making it widely applicable. Above all, the DataSphere method is truly
multivariate as will be seen in the next few sections. Other data mining methods, such as clustering or
classification can also be used to induce partitions on the data space. Summaries from the partitions can
be used for set comparison and glitch detection. However, some of these methods do not scale well and are
hard to interpret as the complexity in the data grows.

The paper is organized as follows. In Section 2, we give a brief description of types of data problems. In
Section 3, we outline methods of quality control used for process management and product quality monitoring
in manufacturing. In Section 4, we motivate the use of data mining techniques for ensuring data quality. In
Section 5, we describe the DataSphere set comparison technique. In Section 6, we detail the experiments
with artificial data sets to demonstrate the method. Finally in Section 7 we present conclusions.

2 Types of Data Glitches

Data quality is measured in terms of accuracy, completeness and timeliness. See [11] and [14] for detailed
formal discussions. Considerable time is spent on ensuring completeness and timeliness of data during the
process of collection, subject to resource constraints. Accuracy is often the last item to get attention and
is sometimes skipped altogether. There are several reasons for this phenomenon. First, the data collection
process is independent of the analysis process. The two steps involve different goals, different individuals and
different time lines. While data accuracy is almost a pre-requisite for analysis, it is a secondary objective
for data gathering. Second, there is no formal definition of data glitches in a general context. Third, there
is no well defined methodology designed specifically for detecting glitches in an automated fashion for large
data sets to ensure an acceptable level of quality.

A data glitch is any change introduced in the data by causes external to the process that generates the
data and is different from the normal level of random noise present in most data sets. Noise is caused by un-
controllable measurement errors such as imprecise instruments, subtle variations in measurement conditions
(normal wear and tear of hardware, software degeneration, climatic conditions) and human factors. Data
glitches on the other hand are systematic changes caused by mega phenomena such as unintended duplicate
records, switched fields and so on. Some inconsistencies are obvious and easy to detect while others are sub-
tle, and are noticed only after they have been compounded several times resulting in significant deviations
from the true values, necessitating expensive backtracking. Localized errors are swamped in aggregates,
and therefore go undetected for quite some time. We present below an anecdotal discussion of a subset of
commonly encountered data glitches.

2.1 Unreported changes in layout

When data processing centers make changes, downstream users are not aware of these changes for a small
interval of time. However, they continue to receive and use the data feeds during this interval. Some of
these changes are obvious, such as a change in layout where the position of a 13 character string variable is
switched with a float. But sometimes the changes are subtle affecting only a few variables that resemble each
other in their univariate behavior but differ in their interaction with other important variables. Univariate
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tests and aggregates will not detect such changes. An example of such a condition could be the switching
of the fields that measure the customer usage of a service with two competing providers. While the overall
patterns might be similar, each provider might be used for a different purpose, affecting its interaction with
other variables such as time of day, application and others.

2.2 Unreported changes in measurement/scale/format

In some situations, a field or variable is sent to the users without being processed completely. This could
be due to a program exiting without completing, yet generating no error message. The processing could be
such that it affects only a small proportion of the records, but would have serious consequences. An example
is the application of volume discounts to generate customer bills. Some discounts are so structured that only
a fraction of percentage of top users qualify. However, failure to process the discounts can create serious
customer satisfaction problems alienating valuable customers. Again, tests based on aggregates often fail to
detect such an error.

2.3 Temporary reversion to defaults

A third kind of frequently encountered glitch is caused by the defaulting of measuring devices to pre-set
limits. For example, the reported length of any telephone call exceeding 100 minutes could be defaulted to
100, due to some temporary condition in the switches. Aggregates do not reveal such glitches unless the
error condition persists for a prolonged period of time. However, the existence of such a condition for even
short periods of time could result in lost revenues. Therefore it is important to detect such errors as close
to real time as possible.

The following types of errors will not be considered in detail in this paper due to space constraints. The
first two types of errors below pertain to completeness while the third one is related to timeliness.

2.4 Missing and default values

Missing values are very frequent in data sets. There are many different ways of dealing with them such as
dropping them from analysis or substituting typical values for them. The approach depends on the amount
of data missing as well as the nature of the application. There is extensive literature on the treatment of
missing values in statistics. For example see [8]. An extra complication occurs when the missing values
are defaulted to a valid value of the variable itself, usually an infrequent one. An example is representing
missing values by zero, even though zero might be a valid but unlikely value of the variable. The implications
can be serious if there is a sudden increase in the valid “zero” values, which will be masked by the missing
“zero” values. While it is obvious that setting such defaults is incorrect, decisions for data collection and
measurement processes are not necessarily made with a view to future analyses. Sometimes the limitations
of the systems that process the data force such ambiguous defaults.

2.5 Gaps in time series records

Discontinuities in historical or transactional records can be detected easily once the need for detection has
been established. For example, in a system that updates the status of a data point, it is simple to verify that
the update applied to the old status results in the new status. Consider the following sequence of updates:

1. current status = 3 cellular phones, 4 phone lines
2. update: drop = 2 cellular phones, add = 1 phone line
3. new status=0 cellular phones, 9 phone lines.

Clearly, some intermediate updates are missing. However, the problem becomes serious when there are many
such missing records and a large portion of the data set is quickly disqualified.
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2.6 Different subpopulations have different recency

When data is collected from different sources to create a composite view, the constituent segments might
have different recency. A company might receive updates from its various branches. But to ensure the
validity of the aggregates and comparative studies, the data should all pertain to roughly the same time.
This might not be possible always, so care should be taken to at least verify the comparability.

2.7 Changes in small subpopulations not reflected in aggregates

The data set is divided into subpopulations, usually based upon the values of categorical variables. For
example, “women scientists in New Jersey in the telecommunications industry” could be a subpopulation
defined by the variables gender, occupation, region and industry. Some subpopulations are so small that
they are clubbed together with others to form the residual subpopulation “Other”. The following types of
errors might not be easily detected or traced :

e typel - small subpopulation data missing
e type2 - small subpopulation data duplicated.

We present below a brief description of some quality control techniques that have been borrowed to
monitor data behavior. We then motivate the use of data mining techniques for quality control.

3 Quality Control Charts

Quality control is a well researched area in industrial production, used extensively since World War II.
Production lots are routinely sampled and tested for conformance to quality control limits with respect to
some attribute such as weight or thickness. Lots for which sample estimates of the attribute (such as the
mean), fall outside these limits are rejected and the production process that produced the defective lot is
tested for anomalies.

Let there be N samples of objects such as bolts, from a big production batch. For each object, an
attribute (e.g. weight, type(round/angular)) is measured. Ideally all samples should be of the same size
but it is not necessary. For each sample, a statistic such as a mean or range (max value - min value) of the
attribute is computed. Sample proportions are used in the case of categorical variables. Control limits for
these sample statistics are computed using the confidence intervals of the sampling distributions. See [10] for
a discussion of sampling distributions. Some of the computations are complex due to the intractability of the
sampling distributions. The statistics for individual samples are plotted to see if they fall within the control
limits. Some famous examples are Shewhart charts, named after W. A. Shewhart who first proposed them in
1938 (X-chart, R-chart). See [12] and [5] for details. Cumulative Sum charts monitor the accumulated sum
of the deviations from an expected value for the samples. It should hover around zero. If there is a trend
or pre-determined thresholds are crossed, a problem is indicated. The thresholds can be target values or
computed from the data such as standard deviations. Cusum charts are more sensitive than Shewhart charts.
There are many variations of the above charts as well as other charts such as the Operating Characteristics
Curve, Average Run Length, p-chart and others, designed for different situations including adjusting for
trends over time. These are presented in great detail in [5].

4 Quality Control for Large Data Sets

The quality control methods described above are the current standard for quality control of large data sets.
The methods are aimed at detecting a process that drifts out of control over time. Typically no action
is taken unless there is a run of abnormal outcomes. Moreover, sampling plays a very critical role in the
implementation of the charts. The method of sampling as well the sample sizes will strongly influence
the conclusions drawn from the charts. The assumption of normality is indirectly required. While the
methods have been used with success in industry, the following issues need to be addressed for the automatic
monitoring of large, high-dimensional data sets.
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e Heterogeneity — Large data sets tend to be heterogeneous.

e Localized changes — Averages tend to be very stable, not easily moved by changes in small subsections
of the data. Therefore charts based on overall aggregates will not detect such glitches.

e Large number of attributes — Multivariate control charts are rare, especially without the normality
assumption. Computing simultaneous confidence intervals is hard and visualizing them even harder.
Bivariate charts for normally distributed data are discussed in [1]. Depth based control charts have
been proposed in [9] for multivariate data using ranks to create the analogs of the traditional quality
control charts.

Furthermore, in the context of automatic screening of data there are two other factors that are important.
These are:

o Immediate detection of glitches rather than over time or a sequence of samples.

o Isolating the areas or sections of the data (such as heavy users, long calls, the variable revenue) that
are corrupt.

We propose the use of DataSphere set comparison technique [6], a data mining method, to address the above
issues in the automatic screening of massive data for data glitches.

5 DataSphere Partitioning

We present below a brief description of the DataSphere partitioning technique and refer the reader to [3],
[7] and [6] for details. The fundamental idea is to partition the data into homogeneous sections and use
representative summaries to analyze the data. Such an approach scales classical statistical methods for use
on massive data.

The DataSphere method partitions the attribute space based on two criteria, that of distance and direc-
tion. The DataSphere class summaries, which have special properties to be described later, are used as a
basis for further analysis, including visualization.

5.1 Layers

The first step in creating a DataSphere partition is defining distance layers using an appropriate subset of
the numeric attributes. The choice of the subset depends on the user. If nothing is known about the data
set, all the numeric attributes should be used. The attributes that are used to compute the distance are
called depth attributes. The categorical attributes are used to stratify the data (if needed) subsequently.
Such variables are called cohort attributes. The distance layers can be computed as follows:

o Compute a center for the data cloud using the depth attributes. Practical choices include multivariate
mean, multivariate trimmed mean and componentwise median.

o Center and rescale the depth attributes using the center computed above and an appropriate measure
of dispersion such as the standard deviation or interquartile range. Therefore, a datapoint X; =
(i1, Zi2, - - ., 2ig) Will now look like

Yi = (i1, %2 -, ¥id)

_ (im — 1 wid—ﬂ)
= e,
Oz, Ozq

where T; and o, are the mean and standard deviation respectively of the jt* component. We can
replace the mean and standard deviation with other choices, such the dimensionwise median and the
interquartile range. Standardizing the data makes attributes free of measurement units and scales,
making them comparable.
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e For each Y; compute the distance d; from the center.

We have used the Euclidean distance, but other choices such the Manhattan distance can be used too.

e Sort the datapoints by distance and define the layer boundaries to be distance quantiles. (Quantiles
divide the data set into regions of equal mass, e.g. quartiles divide the data into quarters and so
on.) Using the distance quantiles as layer boundaries ensures that there are roughly the same number
of data points in each layer. All data points whose distance lies between two consecutive quantiles
constitute a layer.

The central layers represent “typical” observations since they are close to the measure of location we have
chosen as the center. As we move to layers farther away from the center the observations become more
“atypical”, representing outliers. Note that the center and distance layer boundaries uniquely determine a
DataSphere representation of a data set, hence they are known as the parameters of the DataSphere.

5.2 Pyramids

Directional information is superimposed on the distance layers using the concept of pyramids. Briefly, a d
dimensional set can be partitioned into 2d pyramids P;+,7 = 1,...,d whose tops meet at the center of the
data cloud. That is, for a data point p

pEPy |y >y, i>0 j=1,...,dj#i

In Figure 1, we show a two dimensional illustration of sectioning with data pyramids. The circles represent
the layer (section) boundaries. The dotted diagonal lines represent the pyramid boundaries. The black and
white dots might correspond to two different values of a cohort variable (e.g. gender), such as male and
female.
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Figure 1: Data Sectioning with Pyramids.

5.3 Profiles of Summaries

Every layer-pyramid combination represents a class of the DataSphere partition. The data points in each
class are summarized by a profile. A profile is a set of statistics, both scalars and vectors, that summarizes
the data points in a layer. In order to be a member of the profile, a statistic should be easy to compute, be
easy to combine across sections, and have the same interpretation when combined across sections or data
sets. For the purposes of data set comparison, the statistics in the profile are the count of the data points,
the vector of means and the covariance matrix.
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6 Detecting Glitches Through DataSphere Set Comparison

Let Dy be the benchmark data set that is known to be clean. Let 6, be the parameter vector, namely the
center and distance layer boundaries, computed from the clean data set Dgy. Let Py(6y) be the set of profiles
of Dy, using the parameters §, to create the partition. Py(f,) will contain the vector of means, the count
of data points, and the covariance matrix for every layer pyramid combination. Let D; be the test data set
whose accuracy is to be verified.

6.1 Descriptive Profiles

If the two data sets Dy and D, are indeed similar (generated by the same multivariate distribution) and D;
is free of glitches, the center and distance cutoffs of the benchmark data set Dy, can be used to partition
the test data set D;. Therefore, we use 6, to partition D; and compute the profiles P;(6,) of the resulting
partition classes of D;. We verify the hypothesis of similarity of Dy and D;, by comparing their profiles
Pg4(6y) and Py (8,) using the tests below. Due to space constraints, we refer the reader to [10] for a theoretical
discussion of the tests and [6] for implementation in DataSphere partitions. Note that the glitch detection
is done very fast since it is based on the profiles Py(0,) and P;(f,) which are several orders of magnitude
smaller than the original data sets D; and Dj.

e The Multinomial Test for Proportions
A data glitch would cause the distribution of the points in the attribute space to change. Such a glitch
can be detected using the multinomial test for distribution of points among the classes (layer-pyramid
combination) defined by the DataSphere partition. The baseline or expected proportions are based
on the profiles of Dy (or a pre-determined standard) Py(f,y). A multinomial x? test is used to test
the difference in proportions of points in each class of the partition, between Dy and D;. We will
demonstrate this test using an example in the next section.

e Mahalanobis Distance Test for Class Means
The corresponding multivariate means of each class in the DataSphere partitions of Dy and D; are com-
pared using the Mahalanobis distance test. See [6] for details. The results can be displayed graphically
using “bubble charts”, such as Fig 2. The absence of a bead implies that there is no statistically signif-
icant difference between the multivariate means of the class (a particular layer-pyramid combination)
being compared. Problem areas as well as clustering of the problem areas are easily identified.

e Drill Down to Problem Data Sections
The data points in the problem sections identified by the Mahalanobis test can be extracted (“drill
down”) and analyzed further to determine the nature of differences.

e Attribute Analysis
In addition to multivariate tests, we can further analyze the problem sections using univariate control
charts such as the Shewhart charts, to monitor individual attributes and their variability over time.

7 DataSpheres for Screening Data - An Example

We conducted two experiments to illustrate the detection of the first three glitches discussed in Section 2.
The first experiment simulates the switching of two fields that are similar in their marginal behavior but differ
in their interactions with other variables. The second experiment mimics two errors, incomplete processing
of a variable and the truncation of another.

We generated a clean data set of 62,500 observations, each with three variables Wait, Length and Fee.
All three are numeric variables. The first two are negatively correlated but have very similar marginal
distributions. They are uncorrelated to the third variable Fee. The baseline DataSphere parameters which
serve as a benchmark for comparison are computed using this data set.
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7.1 Switched Fields

For the first experiment, we created a corrupted data set by switching fields Wait and Length. There are
43 populated classes of the DataSphere partition of D;. The Chi-square for the Multinomial test is 56.16.
The p-value for the x? at 42=43-1 degrees of freedom is 0.07. The x? from the Multinomial test shows
significant differences at 90% level of confidence. This indicates a possible difference between D; and Dy in
the distribution of points among the partition classes, so we performed the Mahalanobis test for difference
in multivariate means of D; and Dy, each DataSphere partition class. There were 43 such tests, one for
each populated DataSphere class (layer-pyramid combination, also known as section). The Mahalanobis test
identifies many classes where the multivariate means of the corresponding DataSphere classes are significantly
different, see Figure 2. The X-axis represents the distance layers where negative layers correspond to negative
pyramids. The Y-axis represents the pyramid. For example, the tuple (-5,WAIT) represents the class in
the DataSphere partition corresponding to distance layer number 5 (from the center) and the pyramid of
the attribute WAIT, where the deviation from the center is maximum for the attribute WAIT and and the
deviation is below average (negative sign) with respect to WAIT. As mentioned earlier, the presence of a
bead indicates a significant difference in the multivariate mean of the DataSphere class (X,Y’) between the
data sets Dy and D;. There are many differences all across the dataset as a result of switching the fields.

Mahalanobis Test
Switched Fields

Pyramid
Feet— @ — 0000000 —— @0

Length————0—00— 080080

Wait———0—00—0 00080

-0 -5 0 5 10
Layer
Figure 2: Comparison of Dy and D;.

7.2 Improper Processing and Truncation of Variables

In the second experiment, we introduced two glitches. A volume charge that was applied to obtain Fee in
the good data set was not applied. Only very large values of Wait qualify for the penalty. Measurements of
Length were truncated so that any value below 0.05 was set to 0.05 and any value above 20 was set to 20.
In short, the glitches affected a small proportion of data in the tails of the distribution.

The multinomial test came out to be not significant since the corrupted points fall in outlying layers in
both the good and bad data sets. However, the Mahalanobis test of DataSphere section centers identifies the
problem segments. The multivariate means for the corrupted sections of the data are significantly different
and are immediately identifiable on the bubble plot shown in Figure 3.

On the other hand, the univariate tests do not identify any differences in any of the variables, in any of
the sections, even after partitioning the data using DataSpheres.

Once the corrupted segments have been identified, the individual data points that fall into those segments
can be extracted and studied further to determine the cause of the difference. Figure 4 shows the univariate
box plots of data points in the subset identified by the Mahalanobis test in the second experiment of
incomplete processing and truncation. It is clear that the variable Wait is unchanged, while Length is
truncated at the tails and the distribution of Fee is less spread out for the “BAD” data set when compared
to the “OK” data set. Since we could isolate the corrupt sections, we could examine them closely with
methods suitable for small data sets.
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Mahalanobis Test

Truncated/Improperly Processed Fields
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Figure 3: Comparison of D, and D;.
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Figure 4: Comparison of data in segments that are different.

8 Conclusion

Using DataSpheres, we have demonstrated that data mining techniques are effective tools for detecting
faults in data. Data mining techniques scale well and are tailored to handle heterogeneity. The DataSphere
technique in particular detects (at very little expense) subtle shifts in variable interactions and distributions.
Existing techniques such as those based on aggregates, univariate approaches or conventional quality control
methods requiring distributional assumptions cannot detect such small changes.
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