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Sample-Based Quality Estimation of Query
Results in Relational Database Environments

Donald P. Ballou, InduShobha N. Chengalur-Smith, and Richard Y. Wang

Abstract—The quality of data in relational databases is often uncertain, and the relationship between the quality of the underlying base
tables and the set of potential query results, a type of information product (IP), that could be produced from them has not been fully
investigated. This paper provides a basis for the systematic analysis of the quality of such IPs. This research uses the relational
algebra framework to develop estimates for the quality of query results based on the quality estimates of samples taken from the base
tables. Our procedure requires an initial sample from the base tables; these samples are then used for all possible information IPs.
Each specific query governs the quality assessment of the relevant samples. By using the same sample repeatedly, our approach is
relatively cost effective. We introduce the Reference-Table Procedure, which can be used for quality estimation in general. In addition,
for each of the basic algebraic operators, we discuss simpler procedures that may be applicable. Special attention is devoted to the
Join operation. We examine various, relevant statistical issues, including how to deal with the impact on quality of missing rows in base
tables. Finally, we address several implementation issues related to sampling.

Index Terms—Data quality, database sampling, information product, relational algebra, quality control.

1 INTRODUCTION

THE quality of any information product—the output from
an information system that is of value to some user—is
dependent upon the quality of data used to generate it.
Clearly, decision makers who require a certain quality level
for their information products (IPs) would be concerned
about the quality of the underlying data. Oftentimes,
decision makers may desire to go beyond the preset,
standard collection of queries implemented using reporting
and data warehousing tools. However, since one cannot
predict all the ways decision makers will combine informa-
tion from base tables, it is not possible a priori to specify
data quality requirements for the tables when designing the
database.

In this paper, all IPs are the results of queries applied to
relational tables, and we use the term information product in
this sense. In the context of ad hoc IPs generated from
multiple base tables, this work provides managers and
decision makers with guidelines as to whether the quality of
the base tables is sufficient for their needs. The primary
contribution of this paper is the application of sampling
procedures to the systematic study of the quality of IPs
generated from relational databases using combinations of
relational algebra operators. The paper yields insights as to
how quality estimates for the base tables can be used to
provide quality estimates for IPs generated from these base
tables. Thus, it is neither necessary nor useful to inspect
entire base tables.
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Our approach is to take samples from each of the base
tables, determine any deficiencies with the data in these
samples, and use that information in the context of any
given, specific IP, ad hoc or otherwise, to estimate the
quality of that IP. Thus, sampling is carried out only once or
on some predetermined periodic basis. Since there is an
almost unlimited number of potential IPs, a major advan-
tage of our approach is that only the base tables need to be
sampled. The relevance of the deficiencies identified in the
samples from the base tables is context dependent, i.e., the
relevance of a particular deficiency depends upon the IP in
question. Thus, the quality measure used for a given base
table will vary according to its use.

We examine each of the relational algebra operators as
generators of IPs and describe problems that could occur. A
general procedure is introduced to overcome these pro-
blems, and this and other procedures allow practitioners to
estimate the quality of IPs in relational database environ-
ments. These procedures have increasing levels of complex-
ity, the choice of which one to use being dependent upon
the level of analysis desired.

Section 2 develops the basic framework needed to
ascertain the quality of IPs that result from applying the
relational algebra operations to base tables. We present and
discuss the issues that must be addressed in this context.
Section 3 contains material needed to assess the quality
implications of applying the relational algebra operators.
Section 4 considers the special case of Join Operations.
Section 5 presents material regarding sampling that is
needed to apply the concepts developed in Sections 2, 3,
and 4. The final section contains concluding remarks.

1.1 Related Research

Auditing of computer-based systems is a standard account-
ing activity with an extensive literature regarding tradi-
tional auditing of computer-based systems (e.g., O'Reilly
et al. [21], Weber, [30]). But, such work does not tie the
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TABLE 1
The Five Orthogonal, Algebraic Operations

Operation | Purpose

Restriction | Returns a table containing all rows from a specified table that satisfy a

(Selection) | specified condition

Projection | Returns a table containing all unique rows retaining only specified
columns of the original table

(Cartesian) | Returns a table containing all rows formed by every possible combination

Product of rows, one from each of two specified tables

Union Returns a table containing all possible unique rows that appear in either or
both of two specified tables

Difference | Returns a table containing all rows appearing in the first but not the
second of two specified tables

quality of the data to the full set of possible IPs that could be
generated from that data. There are, however, several works
that address problems similar to the ones we consider. A
paper that also addresses Join (aggregation) queries using
statistical methods is the work by Haas and Hellerstein [12].
Their emphasis is on the performance of query join
algorithms in the context of acceptable preciseness of query
results. Work by Naumann et al. [20] examines the problem
of merging data to form IPs and presents practical metrics
to compare sources with respect to completeness. However,
their focus is on comparing and contrasting different
sources that describe the same or similar entities. Our
work, on the other hand, is in the context of multiple tables
for disparate entities. Other related works include that of
Motro and Rakov [19] and Parssian et al. [23], [24], whose
approach tends to be of a more theoretical nature than this
work. More specifically, their work is in the context of fixed,
known error rates. whereas we address the problem of
estimating unknown error rates and dealing with the
resulting uncertainty.

Other relevant work includes that of Scannapieco and
Batini [28], who examine the issue of completeness in the
context of a relational model. In addition, Little and Misra
[17] examine various approaches to ensuring the quality of
data found in databases. They emphasize the need for
effective management controls to prevent the introduction
of errors. By contrast, our aim is to estimate the quality of
the base tables in the database and then use that informa-
tion to examine the implications for the quality of any IPs.
Acharya et al. [1], [2] use an approach analogous to ours to
provide estimates for aggregates (e.g., sums and counts)
generated by using samples from base tables rather than the
base tables themselves. These papers extend a stream of
work aimed at providing estimates for aggregates (e.g.,
Hellerstein et al. [13]). Their work deals more with sampling
issues without addressing the quality of data units in the
base tables, as is the focus of this paper. Sampling is also
used to support result size estimation in query optimization
which involves the use of some of the same statistical
methods used here (cf. Mannino et al. [18]). Orr [22]
discusses why the quality of data degrades in databases and
the difficulty of maintaining quality in databases. In
addition, he examines the role of users and system
developers in maintaining an adequate level of data quality.

There are various studies documenting error rates for
various sets of data. An early paper by Laudon [16]
considers data deficiencies in criminal justice data and the
implications of the errors. A more recent examination of

data quality issues in data warehouse environments is
found in Funk et al. [10]. Data quality problems arising from
the input process are considerably subtler than simple
keying errors and are discussed in Fisher et al. [9]. In
addition, Raman et al. [25] describe the endemic problems
that retailers have with inaccurate inventory records.

2 QUALITY OF INFORMATION PRODUCTS

We anchor our foundation for estimating the quality of IPs
in the relational algebra, which consists of five orthogonal
operations: Restriction, Projection, Cartesian product, Un-
ion, and Difference (Table 1); other operations (Join,
Division, and Intersection) can be defined in terms of these
operations (e.g., Klug [15]). For example, Join is defined as a
Cartesian product followed by Restriction (e.g., Rob and
Coronel [26]).

The focus of this paper is the development of estimates
for the quality of IPs generated from relational base tables.
As used in this paper, an IP is the output produced by some
combination of relational algebraic operations applied to
the base tables, which are assumed to be in BCNF. Thus, in
this context, an IP is a table. In general, IPs may well involve
computations, and the number of ways in which data can
be manipulated is almost limitless. Rather than addressing
some subset of such activities, we focus on the underlying,
fundamental relational database operations, which usually
would be implemented through SQL.

This work assumes that the quality of the base tables is
not known with precision or certainty, a consequence of
the large size and dynamic nature of some of the base
tables found in commercial databases. In addition, we
posit that the desired quality of the base tables cannot be
specified at the design stage due to uncertainty as to how
the database will be used, as would be the case, for
example, with databases used to generate ad hoc IPs that
support decision making.

Our approach to evaluating quality of IPs in a database
environment involves taking samples from base tables. The
quality of these samples is determined, i.e., all deficiencies
(errors) in the sample data are identified. In general,
determining all deficiencies is not a trivial task, but it is
eased by using relatively small samples, what we call pilot
samples below. Information on the quality of the samples is
used to estimate the quality of IPs derived from the base
tables. This methodology uses one sample from each base
table to estimate the quality of any IP. For some IPs, the
deficiencies may be material, for others, not. Hence, from
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the same sample, the error rate as applied to one IP may
differ from that for another IP. Thus, it is important to keep
in mind that although only one sample is used, that sample
may need to be examined separately in the context of each
IP to determine the quality of the data items in the context
of that product.

2.1 Basic Framework and Assumptions

This section contains material that forms the basis for our
approach and justifies the concepts and approach found in
this paper.

Definition. A data unit is the base table level of granularity
used in the analysis.

Thus, for our purpose, a data unit would be either a cell
(data element), a collection of cells, or an entire row (record)
of a relational table. In terms of granularity, the analyst
could operate at any of several levels within the row. Since
the relational algebra is in the context of the relational
model, which requires unique identifiers for each row of the
base tables, any data unit must also possess this property.
This implies that to determine quality at the cell level of
granularity, the appropriate primary key is conceptually
attached to the cell. A consequence is that, in the relational
context, the data unit must be a subset of a row or, of
course, the entire row. Since all the algebraic operations
produce tables, we refer to the primary element of the result
of any of the algebraic operations as a row. The determina-
tion of the appropriate level of granularity (for the base
tables) is context dependent.

For the purposes of this paper, the labels acceptable and
unacceptable are used to capture or represent the quality of
the data units.

Definition. A data unit is deemed to be acceptable for a specific
IP if it is fit for use in that IP. Otherwise, the data unit is
labeled as unacceptable.

The determination of when a data unit should be labeled
as acceptable is context dependent and also depends on the
quality dimension of interest. Regarding context depen-
dency, the same data unit may well be acceptable for some
IPs but unacceptable for others. For example, the stock price
quotes found in today’s Wall Street Journal are perfectly
acceptable for a long-term investor, but are unacceptably
out-of-date for a day trader. As discussed below, when the
samples taken from base tables are examined, all deficien-
cies with a particular data unit are recorded. Whether to
deem this data unit as acceptable or not depends upon the
particular IP in which it will be used.

Regarding quality dimensional dependency, we use
acceptable in a generic sense to cover each of the relevant
data quality dimensions (such as completeness, accuracy,
timeliness, and consistency) or some combination of the
dimensions. With the extant data, most quality dimensions
can be evaluated directly. An exception is completeness
and, in Section 5.2, we examine the issue of missing data. (A
full examination of the dimensions of data quality can be
found in Wang and Strong [29].) In practice, for a given IP, a
data unit could be acceptable on some data quality
dimensions and unacceptable on others. This leads to the
issue of tradeoffs on data quality dimensions (cf., for

example, Ballou and Pazer [4]), an issue not explored here
due to space limitations.

Definition. The measure of the quality of an IP is the number
of acceptable data units found in the IP divided by the total
number of data units.

This measure will always be between 0 and 1. If the IP is
empty and there should not be any rows, then the quality
measure would be 1; if it should have at least one row, the
quality measure would be 0.

Various issues arise with NULL values. If NULL is
simply a placeholder for a value that is not applicable, then
the NULL value does not adversely affect the acceptability
of the data unit. If, on the other hand, NULL signifies a
missing value, then it may impact the data unit’s accept-
ability. Context would help determine which is the case, a
task that, as indicated, could require some effort. It
presumably would be unacceptable for an entire row to
be missing, an issue addressed in Sections 5.2 and 5.3.

Inheritance Assumption. If a data unit is deemed to be
unacceptable for a specified IP, any row containing that data
unit (for the same IP) would also be unacceptable.

An implication of removing a deficient data unit is that if
it is not required for the IP, then the result could be
considered acceptable. Another implication is that when
multiple rows are combined, as is the case with the
Cartesian product, one unacceptable component causes
the entire resulting row to be unacceptable.

Granularity Assumption. The level of granularity used to
evaluate acceptability in the base table needs to be sufficiently
fine so that applying any algebraic operation produces data
units that can be labeled acceptable or not.

If, for example, a row level of granularity is used in the
base table, then any projection other than the entire row
would produce a result whose acceptability or unaccept-
ability could not be determined knowing the values from
the base table.

Error Distribution Assumption. The probability of a data unit
being acceptable is constant across the table, and the
acceptability of a data unit is independent of the acceptability
of any other.

For relationship tables, the situation may be more
complex, and the material found at the end of Section 3.1
would be applicable. This error distribution assumption is
definitely not true for columns. For example, some columns
may be more prone to missing values than others. When
dealing with projection, we limit the evaluation of the
deficiencies found in the samples taken from the base tables
to the columns of interest. Details are given in Section 5.

Note that we are not concerned with the magnitude of
the error, rather, only with whether an error exists that
makes the data unit unacceptable for its intended use in a
specific IP. Thus, this work makes no normality assumption
regarding the errors in the data. We now consider several
issues that arise when considering the quality of IPs.
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Given an IP (table), the distribution of errors and the
level of granularity can impact substantially the measure for
the quality of that IP. For instance, if there is at least
one unacceptable cell in each row, then the quality measure
for the row level of granularity is 0. (By the inheritance
assumption, all rows in this case would be of unacceptable
quality.) However, if all the unacceptable data units happen
to be in the same row, then the quality measure for the row
level of granularity would be close to 1 for large tables. It
should be noted that the distribution of errors is relevant at
the row level but not at the cell level, since, at the cell level,
it is the number of unacceptable cells that is the issue, not
the rows that they are in.

It may be surprising that base tables of very high quality
can yield IPs of very poor quality and vice versa. To see this,
suppose that, for a base table of n rows with large n, the
level of granularity is row level, and that all rows are
acceptable save one. (Hence, the quality of the base table is
close to 1.) Suppose that a SELECT retrieves the unaccep-
table row and no other. The quality of the resulting IP is 0
even though the quality of the base table is arbitrarily close
to 1. Similar reasoning justifies the converse. Thus, IPs
derived from the same base tables can have widely differing
quality measures due to the inherent variability in the
quality of the base tables. Hence, knowing the quality of the
base tables is not sufficient for knowing the quality of the
IPs. This fact motivated our approach for estimating the
quality of IPs.

Since knowledge of the quality of an IP is readily
obtained, provided we have certain knowledge of the
quality of the base tables, it would seem desirable to insist
that the quality of the data units in the base tables be
determined without uncertainty. However, since many base
tables are very large and dynamic, determining with
certainty the quality of all the data units in practice is
difficult at best. This does not imply that we exclude
statements regarding the overall quality of a base table.
(Statements such as “the data in base table A are 99 percent
correct” can be perfectly valid.) Rather, we acknowledge the
impossibility of knowing a priori with certainty whether a
randomly chosen data unit is acceptable or unacceptable.
This indicates that it is impossible to make definitive statements
about the quality of IPs.

Sample Quality Assumption. It is possible to determine the
quality of each data unit of a sample taken from a base table.

In practice, it is not always possible to determine the
quality of a data unit with certainty. The level of resources
the organization commits to data quality assessment
essentially determines the effectiveness of the evaluation.
We treat the results of that evaluation as correct. If there is a
concern that data units may have problems that have not
been identified, one can always do sensitivity-type analysis
to determine what impact unidentified but suspected
deficiencies might have. The resulting information can then
be passed on to decision makers.

In theory, the same assumption could apply to entire
base tables. Should the base tables be large and dynamic, by
the time all the data units had been checked to determine
their quality (acceptable or unacceptable), the base table
would be different enough so that information regarding
quality would be outdated. For stable base tables, this
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TABLE 2
Key Notations (in Order of Appearance in the Paper)
T; i™ base table in the database
N Number of base tables in the database
I ™ IP
M Number of IPs
T i™ base table involved in producing |;
N(j) Number of base tables involved in producing |;
n; Size of sample from the i base table
I True proportion of acceptable data units in Tj;
11(j) True proportion of acceptable rows in |; (created via Cartesian
product)
Pij Estimate for IT;;
P(j) Estimate for I1(j)
Lij (Uiz) Lower (upper) limit for P;;
Si Sample from i base table
Sic Corrected sample from i" base table
Ax Pre-specified, desired quality level for information product I

would not be the case. Probably more important, the cost of
checking the entire base table could be prohibitive. But, the
Sample Quality Assumption implies that these issues do not
apply for samples. In Section 5, we discuss issues regarding
sampling in a database context, including how large the
samples should be.

Under the Sample Quality Assumption, determining a
data unit’s quality does not result in any classification
errors such as an acceptable item being labeled as
unacceptable or, conversely, an unacceptable item being
labeled as acceptable. This work assumes that, for a given IP
the proportion of acceptable data units in the sample is
known with certainty, and we then control for variation in
the sample. If there are classification errors, the measure of
the quality of the sample from the base table is uncertain
due to uncertainty in the numerator of the proportion,
which would lead to inefficient estimates. Given the small
relative magnitude of inspection-induced errors and the fact
that this work would be complicated substantially should
fallible inspection be incorporated, we limit our work to the
case of perfect inspection. Issues related to imperfect
inspection can be found in Ballou and Pazer [3] and Klein
and Goodhue [14].

As indicated earlier, the same base table can produce IPs
of substantially different quality. Since the only quality
measure we have is that of the sample, we cannot know
with certainty the quality of all IPs. Thus, determining the
quality of IPs on the basis of the quality of samples taken
from the base tables can be done only in a statistical sense.

3 A RELATIONAL AUDITING FRAMEWORK

In this section, we introduce the Reference-Table Procedure,
a general approach for estimating the quality of IPs. Next,
we examine the five orthogonal operations and, in the
following section, we present an in-depth examination of
the quality implications of the Join operation.

For this work, let T, Ts,...,Tx represent the N base
tables in the database. (See Table 2 for notation.) In general,
there are multiple IPs, each of which can depend upon
multiple base tables. To capture this, let the IPs be
designated by I, Iy, ..., In. Let Ty j, Ty, . .., T(j),j represent
the base tables that are involved in producing the IPI;,
where N(j) is the number of tables required for I;. Thus, the
first subscript of T;; identifies a particular table and the
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second that that table is one of the tables used to form the
jth IP. (Note that T;; may or may not be the same as T.)

Let II;; represent the true (in general unknown) rate or
proportion of acceptable data units in table Tj;. The first
task is to determine Pjj, an estimate for IIj;. This is
accomplished using a sample of size n; from the appropriate
base table Tj. Recall that this sample is taken independent of
any particular information product. As discussed, each
member of the sample would have to be examined to
determine its quality (acceptability or unacceptability) in
the context of information product ;. Issues related to
implementation in general and sampling, including sample
size, in particular will be discussed in Section 5.

User requirements guide determination of the appro-
priate level of granularity and the acceptability of the data
units. After completion of the evaluation for acceptability of
the members of the sample S; for information product Ij, the
ratio of the number of acceptable items to the size of the
sample would be formed, which yields a number P;; that is
used as the estimate for II;;. (Note that P;; would be the
minimum variance unbiased estimator for Il;;.) As indi-
cated, it is important to keep in mind that the value for II;;
is a function of the intended IP. For one IP, the value of II;;
might be high, and for another, low. The same sample S;
would be re-evaluated to estimate the II;; value for each IP.

The standard way of capturing the error in the estimate
P is via a 100(1 — )% confidence interval, which, for this
context, can be represented by

Lij = Pij — 2q/281j < Iy < Pij + zq 0815 = Uiy (1)

Here, s;ij = (P * (1 —Pyj) /ni)l/ 2 represents the standard
error of the proportion P;;. This uses the normal approx-
imation to the binomial for sufficiently large samples, an
issue discussed in Section 5. For (1) to be valid, the only
assumption needed is the Error Distribution Assumption.
An excellent source for the statistical background required
for our work is Haas and Hellerstein [12, pp. 292-293] and
Mannino et al. [18, pp. 200-202].

In reality, II;; incorporates information not only on
acceptable values but also on missing rows. If all data in a
given table should be totally acceptable but only 80 percent
of the records relevant for the IP in question that should be
in the table actually are present, then II;; = 0.8 should hold.
Issues such as how to account for missing rows are deferred
to Section 5.2.

3.1 Reference-Table Procedure

Before addressing each of the five orthogonal algebraic
operations, we begin by introducing the Reference-Table
Procedure, which can be applied to all IPs. We then
examine each of the orthogonal algebraic operations in
turn. For some of these, under certain conditions, simpler
approaches are available, although realistically, for any
complex IP, the Reference-Table procedure would be used.

The Reference-Table Procedure relies upon reference tables
to compute quality measures. Essentially, this procedure
compares an IP without error to an IP that may well contain
unacceptable data and which is used as a surrogate for the
“correct” IP. The question arises: How can one measure
how well the surrogate IP approximates the “correct” IP?

For this, we measure how well the surrogate IP attains the
ideal of containing acceptable data units, and only
acceptable data units, when viewed from the perspective
of the “correct” IP.

To describe the Reference-Table Procedure, let S, Ss, ...
denote the samples from each of the base tables that are
involved in creating the IP in question. Let Sic,Sac, ...
denote the corrected version of Si,Ss,..., respectively,
where all deficiencies in the context of the IP have been
removed. (Although this may be impossible to do for entire
base tables, we believe that this is manageable for samples
taken from the base tables.) Apply to Si,Ss,... the steps
required to generate the desired IP. Call the result Table 1.
Table 1 is a subset of the IP that would be produced should
the steps be applied to the appropriate base tables. Now
apply the same steps to Sic, Sac, ... . Let Table 2 represent
the result. Table 2 would be a subset of the desired IP
should all deficiencies in the relevant base tables be
eliminated. In other words, Table 2 is a sample from the
correct (without error) IP. We refer to Table 2 as the
reference table. Note that Table 2 could be larger or smaller
than Table 1.

Definition. The appropriate quality measure for Table 1 in the
context of Reference Table 2 is

Q(Table 1) =|Table 1 N Table 2|/max{|Table 1|,

|Table 2}. @
Here, the vertical lines represent the cardinality (number of
data units) of the indicated set. We use Q (Table 1) as the
measure of the quality of the IP that has Table 1 as a subset.

The expression for Q(Table 1) satisfies the minimum
requirement of being a number between 0 and 1. Also, as
required by our definition (see Section 2) for the quality of
an IP, the numerator is the number of acceptable data units
in Table 1 in the context of the reference table. For the
denominator, we now proceed from specific cases to the
general expression.

First, suppose that Table 1 C Table 2. In this case, each
data unit of Table 1 is acceptable, but Table 2, the reference
table, contains data units not found in Table 1. Thus,
|Table 1|/|Table 2| is the appropriate measure of the quality
of Table 1, which is (2) for this case. Next, suppose that
Table 2 C Table 1. Thus, Table 1 contains all the acceptable
data units, but other, unacceptable ones as well. For this
case, the quality of Table 1 is given by |Table 2|/|Table 1|,
which captures the fact that even though Table 1 contains
all the acceptable data units, its quality cannot be 1, as it
also contains unacceptable data units. Again, this is (2) for
this case. Next, suppose Table 1 = Table 2. Then, the
numerator and denominator of (2) are the same, yielding
the value 1, as expected. Last, consider the case that Table 1
N Table 2 # () and that neither is a proper subset of the
other. As mentioned, the numerator of (2) yields the
number of acceptable data units in Table 1. The first two
cases given above required that the denominator be the
larger of |Table 1| and |Table 2|. Since, for this case, the
situation could be arbitrarily close to one or the other of the
first two cases, continuity considerations require that the
max be used for this situation as well. For example, suppose
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that Table 1 would be a subset of Table 2 should exactly one
element of Table 1 be corrected. (Without that correction,
Table 1 N Table 2 # () holds, as the incorrect data unit would
not be in Table 2.) As was just discussed, with the unit
corrected, expression (2) applies. With the data unit not
corrected, one would expect that the value for the quality of
Table 1 in reference to Table 2 would be close to that of the
corrected case, especially if Table 1 is large. Since, with the
data unit corrected, the max function needs to be used,
continuity of quality values would require the use of the
max function in the case with the data unit not corrected. A
mathematical induction-type argument can be applied
when there are n data units (n> 1) that need to be
corrected.

We can build a confidence interval for Q(Table 1) by
resampling the samples already drawn from the base tables.
Since Q(Table 1) does not have a known distribution, a
bootstrapping procedure, which involves sampling with
replacement from the original samples, would be appropriate
(Efron and Tibshirani, [7]). Q(Table 1) could be calculated for
each resample and the set of resulting values could be used to
build a confidence interval. By using the initial samples
drawn from the base tables as our universe, we can create
confidence intervals with little additional effort.

It should be noted that the Reference-Table Procedure is
robust and can be applied when various assumptions break
down. For example, the Error Distribution Assumption may
fail due to lack of independence in the rows of relationship
tables and, hence, (1) may not be applicable. However, we
can still estimate the quality of the table using the
Reference-Table Procedure.

In practice, obtaining a sample is easily implemented, as
commercial DBMS packages do this. The chief impediment
to applying the Reference-Table Procedure is in determin-
ing what precisely the contents of the Reference Table
should be, as detecting and correcting errors in data are
notoriously difficult. However, this is an issue that has been
addressed by the information systems and accounting
profession for decades; see Klein and Goodhue [14], Little
and Mishra [17], and the references given in them.

3.2 Basic Relational Algebraic Operations

We now consider special cases, some of which provide a
more intuitive way to obtain estimates for the quality of the
IP by examining, in turn, each of the fundamental algebraic
operations applied to base tables. It should be kept in mind
that, if multiple algebraic operations are involved in
producing an IP, then, in all likelihood, the Reference-Table
Procedure would need to be used.

3.2.1 Restriction

Should the Restriction operation be applied to a single table
Ty, we use the sample taken from Ty to determine the
acceptability (fitness for use) of each data unit of the sample
for the IP in question. The fraction of acceptable data units
is the estimate for IIi. A confidence interval for Il is
Ly < IIx < Uy, where Ly and Uy are defined in (1). The more
general case where the Restriction operation follows the
Join of several tables would require the use of the analogous
interval given by (6) in Section 3.2.5.
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3.2.2 Projection

Should an IP be formed using the Projection operation, then
we would use the appropriate subset of the sample taken
from table Ty. Again, each data unit of the sample would be
examined for acceptability, and the fraction of acceptable
data units would be the estimate for P,. If there are no
duplicates, then this applies. If the projection does not
include the primary key, then it is quite likely that
duplicates will exist and the Reference-Table Procedure
would have to be used. This is needed, as duplicates may be
incorrectly retained or incorrectly deleted. Issues involving
duplicates are discussed in more detail in the following
presentation of the Union operation.

3.2.3 Union

Although the following material is in the context of the
Union of two tables, it generalizes in the obvious manner to
multiple tables.

No Duplicates Exist. This case is relatively straightfor-
ward if there are no duplicate data units. Suppose a table
with N data units is combined via Union with a table
with M data units. Let P; and P, represent the estimates,
respectively, for the fraction of acceptable data units in
the two tables, based on samples of size n; and ny,
respectively. An estimate of the fraction of acceptable
data units in the union is P = (n; * P; 4+ ny % Py)/(n; + ny).
The standard deviation of the fraction P is given by
s=((P+(1-P)/(n; + Hg))l/Q. The confidence interval for
the true fraction II of acceptable data units in the union is
given by:

L=P-z,s <P +2z,,s=U. (3)

Duplicates. Determining the quality of an IP when there
are duplicate data units is considerably more difficult. In the
union of two tables, duplicates can be incorrectly retained or
incorrectly deleted. The Appendix illustrates issues similar
to this for the case of Joins. There does not appear to be a
simple method for analyzing the quality of IPs in such cases,
making it necessary to use the Reference-Table Procedure.

3.2.4 Difference

At first glance, this case appears to be relatively straightfor-
ward. Suppose that the IP is formed via T — S, where T and S
are tables, and let P be the estimate for the proportion of
acceptable data units in T. Then, P is also the appropriate
estimate for the quality of the IP, assuming that those data
units in T that are not in S do not possess a different quality
level than do those in both T and S. If one suspects that this
assumption is not valid, then it would be necessary to
sample from those data units found in T only. However, the
situation is subtler as the resulting number of data units in
the difference table could be fewer or greater than should be
the case. The issues that arise are similar to that of Union
with duplicates, and the Reference-Table Procedure can be
applied.

3.2.5 Cartesian Product

The case of the Cartesian product is considerably more
complex. At this stage, it would be appropriate to examine
the product of just two tables. However, when we discuss
the Join operation, it is necessary to work with many of
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TABLE 3
Summary of Procedures

Algebraic Operation

Procedure to evaluate quality of IP

Restriction Use Py the estimate for a sample from base table Ty
Union (if no duplicates Weighted average estimates of the two or more underlying
exist) tables

Union (duplicates Reference table procedure

deleted)

Projection (key included) | Use Py

Projection (key excluded
and duplicates deleted)

Reference table procedure

Difference

Reference table procedure

Cartesian Product

Product of the individual Py values of the underlying tables

the same concepts in the context of n tables. To facilitate
that discussion, we address at this time the more general
n-table case.

The product of an s-data unit table with a t-data unit
table is a table with s times ¢ rows. By the Inheritance
Assumption, a row of the product table is acceptable if, and
only if, each of the component data units is acceptable. This
concept generalizes naturally to n tables. Suppose that the
information product I; is formed via a Cartesian product of
tables Ty, ..., Tx),. Then, a row in Ij will be acceptable if,
and only if, each of the data units that are concatenated to
form the row is acceptable.

The fraction of acceptable values II(j) is given by
multiplying together the proportion of acceptable values
for the components, i.e.,

H(j) = Hl,j * HQJ EE 3 HN(j),j- (4)

It is important to note that II(j) is not a population
parameter in the statistical sense. Rather, the validity of (4) isa
direct consequence of applying the truth values for the logical
and (A A B) with true replaced with acceptable and false
with unacceptable. Thus, a row in a Cartesian product is
acceptable if, and only if, each of the components is
acceptable. This is a direct consequence of the Inheritance
Assumption. (It is important to note that since II(j) is not a
statistic, independence is not relevant to multiplying the
components.) Hence, the number of acceptable units in the n-
fold Cartesian product is the product of the numerators of the
IIs. (This can be established by induction on the number of
tables.) The total number of rows of the Cartesian product is
simply the product of the denominators of the IIs in (4). Thus,
the fraction of acceptable data units is given by (4).

Recall that Il represents the true proportion of data
units deemed to be acceptable in table Ty. Here, we use the
notation II(j) to represent the true proportion of acceptable
data units as found in I, which, in this context, is formed
via a Cartesian product. If the number of terms in the right-
hand side of (4) is sizable, then, unless all the II; ; are close to
1, the product will not be large. Thus, it is very difficult for
an IP to have a high acceptability value if it is formed via a
Cartesian product using many tables.

Definition. Our estimate for (4) is

P(j):Plj*PZJ*-~-*PN(j)J~ (5)

As before, P;; represents the estimate for the true propor-
tion of acceptable data units in Tj;.

The validity of (5) depends upon exactly the same chain
of reasoning used for (4). Since P(j) is by definition an
estimate for II(j), an expression for II(j) analogous to the
confidence interval for II given in (1) is:

L(j) <TI(j) < U(j), (6)
where L(j) is given by
L(j) = Lyj* Laj * ... * Ling)
and U(j) by
U(j) = Uy * Uz # ...+ Ungyye

The probability that II(j) lies outside this interval will be
developed below. It should be kept in mind that (6) is not a
confidence interval for II(j) but rather gives an interval
within which, with a certain probability, II(j) lies. We now
discuss the computation of the probability that II(j) > U(j).
The discussion for II(j) < L(j) follows the same reasoning.

The probability that TI(j) exceeds U(j) is simply the
volume bounded by the unit cube and the surface
Iyj* Ipj * ...+ Mgy = Upy * Uz + ... Uygy;. In general,
this would be evaluated using a numerical integration
package or via an N(j)-fold multiple integral. For the case
n =2, the probability (area) that II;;*Ilo; > Uy * Uy is
given by 1 — Uy ;Us; + Uy jUs; In(Uy jUy). This expression is
obtained by evaluating the integral

1 1
/ / 1 dIly ;dIl, ;. (7)
UrjUs J Up s /T

This concludes our discussion of the five orthogonal
algebraic operations. The approaches used to estimate the
results of these fundamental operations are summarized in
Table 3.

4 JoIN OPERATION

As most applications of normalized databases involve the
use of multiple tables that are joined to produce other
tables, the analysis of the quality of IPs involving Joins is
perhaps the most critical issue that has not been fully
explored. A simple example found in the Appendix
illustrates this issue. Because of space limitations, we deal
exclusively with inner joins; similar treatment applies to the
other types of joins.

The basis for this material was developed for Cartesian
products, but the special role of foreign keys complicates
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matters substantially. As discussed, a row of an IP would be
deficient if the row contains a segment from some table that
is not fit for use. In the case of a Join over a nonforeign key
field, problems arise whenever rows exist that should not or
rows are missing from the IP that should be included. We
first address Joins over foreign key fields. We then consider
Joins over nonforeign key fields.

4.1 Join over Foreigh Key

In this section, we consider the case for which unsuitable
records in the IP arise as the result of a Join over a foreign
key column. A row in the IP is unacceptable provided at
least one of the rows joined to form the row in question is
not acceptable. A Join is simply a Cartesian product
followed by a Select, each of which we have examined in
isolation earlier. The basic idea behind estimating the
quality of a Join is as follows: A sample has been taken
from each of the two base tables to be joined. As discussed,
the quality of each table is estimated in the context of the
particular Join. The product of these sample estimates is the
estimate for the quality of the Cartesian product. We use
that number for the quality of the join that arises when the
appropriate Select is applied. Thus, in theory, the quality of
a Join over a foreign key is simply the estimate for the
quality of the Cartesian product.

The underlying assumption is that the random sampling
process averages out atypical behavior. However, this
assumption may not be valid in the case of Joins over
foreign keys. If there is concern about the quality of the
primary and foreign key columns, then it is necessary to
resort to the reference table procedure, as is required for
Joins over nonforeign keys, details of which follow.

4.2 Join over Nonforeign Key Attributes

When nonforeign key fields are involved in Joins, the
situation is considerably less straightforward than the case
considered above. To conceptualize the potential difficul-
ties, suppose that Table X, say, with cardinality (number of
rows) M is joined to Table Y with cardinality N, yielding
Table Z. Then, the cardinality of Table Z can range from 0 to
M * N. If none of the values in the joining column of Table X
match those in the joining column of Table Y, then there
would be no rows at all in Table Z. The other extreme arises
when the values in each of the joining columns are all the
same. Thus, a priori, the size of Table Z can vary
considerably. It is possible that high error rates in the
two joining columns can have very little or no impact on the
error rates of the joined table. To see this, suppose that all
values in the joining column in Table X are wrong except for
one, and that one is the only value that matches values from
the joining column in Table Y. Supposing that the matched
rows in Table Y are acceptable, then the joined result,
Table Z, will have no errors in spite of the fact that all but
one of the values in the joining column of Table X are
wrong. The converse situation, namely, that all the values
are acceptable save one, and that one is the only matching
value, would lead to a result for which all the rows are
unacceptable in spite of a high correctness value for the
joining columns. This wide variation in possible outcomes
requires use of the Reference-Table Procedure.

Fig. 1 contains a summary of the steps of our methodology.

MAY 2006

1. Sample each base table

2. Determine the deficiencies in each sample

3. Evaluate all relevant samples in the context of the given specific query

4. Calculate the appropriate L and U values to estimate the quality of the IP

5. Determine whether the quality of the IP meets the pre-specified quality level
6. For subsequent queries re-apply the procedure starting at Step 3.

Fig. 1. Steps of the methodology.

5 SAMPLING IN THE RELATIONAL CONTEXT

Statistical sampling is a well-established field and we draw
on some of that work for this paper. Specifically, we make
reference to the acceptance sampling procedures used in
statistical quality control. Acceptance sampling plans are
used to determine whether to accept or reject a lot. In
particular, we consider double sampling plans, where the
decision to accept or reject the lot is made on the basis of
two consecutive samples. The first sample is of fixed size
(smaller than the size of a comparable single sampling
plan), and if the sample results fall between two prede-
termined thresholds for acceptance and rejection, then a
second sample is taken. The combined sample results are
then compared to the rejection threshold. Thus, in addition
to being more efficient than single sampling plans, the
double sampling plans have “the psychological advantage
of giving a lot a second chance” (Duncan [6, p. 185]).

Our approach involves two rounds of sampling from the
base tables. In the first round, a random sample is used to
obtain an initial, if not especially precise, estimate for the
true fraction of acceptable items in each table. The sample
must be large enough to satisfy the sample size require-
ment, as discussed in Section 5.1. Database administrators,
users, or other appropriate personnel need to determine
what kinds of deficiencies would be sufficient to classify a
data unit as unacceptable.

The fraction of acceptable items is used to identify those
IPs that meet prespecified (desired) quality levels Ay set by
the users of the IPs. If the prespecified quality level Ay is less
than the lower limit of intervals such as (1) and (6), then
there is strong evidence that whatever the true acceptability
rate for the IP is, the true rate is greater than the desired or
required quality level. Similarly, for those IPs with the
prespecified quality estimate Ay greater than the upper limit
of the appropriate interval (e.g., (1) or (6)), we can conclude
with a high level of certainty that they do not meet the
required quality level. Then, additional sampling is under-
taken to determine which of the remaining IPs meet their
required quality levels. For this, an approach is used to
sample some tables more intensively than others. The goal is
to ensure that the enhanced estimates for fraction of
acceptable items will contribute most to resolving the
remaining ambiguities as to whether or not the specified
quality levels are achieved. Issues involved with this second
round of sampling are discussed in Section 5.4. It should be
kept in mind that, for both rounds of sampling, the sample
taken from a particular table is used as part of the evaluation
of all IPs that use that table. However, as indicated above, the
quality of these samples is dependent upon its use in the IP.
(This implies that certain deficiencies that have been
identified may not be relevant for certain IPs.)
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Although, for some IPs (such as those resulting from
restrictions), only a subset of a base table is involved, we do
not sample from such subsets, as such a sample would not
apply to other IPs. In addition, a subset sample would no
longer be random, and our approach relies upon random
samples, which are required to avoid potentially serious
biases. An exception to this is for the Projection operation,
as the assumption of a constant probability of error may not
hold across all the columns.

For the Restriction operation, the sample would be taken
across the entire table, not just those rows identified by the
Restriction condition. Assuming that deficiencies are
randomly distributed across the entire table, the same
fraction of acceptable items and confidence intervals would
result for either case. There are situations, however, when
this assumption is not valid. If, for example, the rows in
some table are obtained from two different sources and
these sources have significantly different error rates, then
our Error Distribution Assumption requires that two tables
be formed, one for each source. A separate sample would
then be taken from each table and separate estimates for the
acceptability rates would be generated. At any point, as
needed, these two tables could then be combined using the
union operation and, as was explained, an error rate for the
combined table will be available.

The case for Projection is different. Here, the pilot sample
would consist of rows containing only those columns
specified by the restricting conditions. The reason is that it
is more reasonable to assume homogeneity across rows,
which have identical structure, than it is across columns,
which inherently tend to have differing error rates.

5.1 Sample Size Issues

How large should the pilot sample be? For this, some rough
idea of the underlying (true) error rate is required. This is
especially true if the error rate is low, as is likely to be the
case. If, for example, the true error rate is 1 percent and a
sample of size 10 is taken, then only occasionally will an
error show up in the sample. Under this circumstance, a
large enough sample needs to be taken so that defective
records appear in the sample. In auditing, discovery
sampling is used when the population error rate is believed
to be very small but critical. Similarly, in statistical quality
control, procedures exist for detecting low levels of defects.
A standard rule of thumb is that the sample should be large
enough so that the expected value of the number of
defective items is at least two (Gitlow et al. [11, pp. 229-
231]). Since sampling (with replacement) is a binomial
process, then n, the size of the sample, must satisfy the
inequality n > 2/(1 —1II), where II represents the true
proportion of acceptable data units. Clearly, there needs
to be some estimate for the value of II in order to use this
inequality. One way of estimating II is by taking a
preliminary sample before initiating the first round of
sampling. If I is close to 1, then a large sample size would
be required. In any case, using just the minimum will prove
to be of marginal value, i.e., not yield enough information to
allow us to make a decision.

5.2 Missing Rows

Missing or Null values in a particular row could result in
that row being labeled as unacceptable, but the assumption
to this point has been that if a row should be in the table,
then it indeed is. We now consider how to deal with rows
that ought to be in a particular table and are not. A table can
be such that the data in the existing rows are completely
acceptable. Yet, if there are rows that should be in that table
but are not present, then a consequence of the missing rows
could be a series of deficient IPs.

Two issues need to be addressed. The first is to obtain an
estimate for the number of rows that are missing from each
table, and the second is to analyze the potential impact of
these missing rows on the various IPs. The first issue is
handled at this point using an approach employed by
statisticians to address similar issues, such as census
undercounts. The second is handled via a simulation
approach in our discussion of the impact of missing rows
on Joins in Section 5.3.

A standard technique used by statisticians to estimate the
number of missing objects in a population is capture/
recapture sampling. This procedure involves a two-round
process. For the first round, a random sample is taken, the
captured individuals are tagged, and this tagged sample is
then mixed back into the population. At a later point in time,
a second sample is taken. The number of tagged individuals
in the second sample can be used to estimate the overall
population size. If the recapture takes place during a short
enough period of time that no additions to or removals from
the population have taken place between the samples, then a
closed statistical model can be used. The two major
assumptions are: 1) a thorough mixing of the sample with
the population and 2) the tagging has not affected recapture.
This procedure is described in detail in Fienberg and
Anderson [8] and the theory in Boswell et al. [5].

In applying these concepts to the determination of the
number of missing records in a table, the main obstacle
would lie in the capture (first) sample, which would have to
be generated in a manner independent from the way the
data are obtained for entry into the table in question. The
capture sample consists of “tagged” records. The variable n;
is the size of this independently generated sample. The
members of that sample would then be examined to see
which ones are also found in the table, which represents the
recapture sample. Essentially, in this round, one is counting
in the independently generated sample the number of
tagged members of the population. The number of records
from the sample also found in the stored table whose
quality is being determined is the value ms. If the size of the
stored table is ny, an estimate for the number of missing
rows is found from (n; * ny/my) — n,.

We illustrate this process through a hypothetical example.
Assume thata company database has a stored employee table
consisting of 1,000 (n) employees. An independent evalua-
tion (perhaps an employee survey) found 100 (n;) employees.
This sample of 100 would be the tagged members of the
population that we would try to locate in the database table. If
of these 100, 80 (m3) were in the database, then our estimate
for the number of missing employees from the table would be
(100 * 1,000/80) — 1,000 = 250.
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5.3 Impact of Missing Rows on Joins

We continue this discussion by examining the impact of
missing rows, an issue for all the algebraic operations but
more complicated in the context of Joins. If one wishes to
analyze the impact of missing rows on each IP created via
Joins, then it is necessary to estimate the number of missing
rows for each table using an approach such as the capture/
recapture approach discussed in Section 5.2. Should the
joining field be a foreign key, then each missing row in the
foreign key table would result in exactly one missing row in
the IP. (This statement is not exactly correct, as some of the
foreign key values may be NULL. For such situations, the
same fraction of NULL values found with the extant data
should also be used with the missing data, and missing
rows with NULL would not be involved in the Join.)
Assuming referential integrity, the missing foreign key row
would either pair with an existing row or possibly with a
missing row. It should be noted that, in either case, there
will be one missing row in the resulting table. The item of
concern, of course, is the number of missing rows in the IP,
each of which clearly would be labeled as unacceptable.

If the Join is over a nonforeign key field, then the situation
is more complex. In this case, once the number of missing
rows for each of the tables to be joined has been ascertained
using a procedure such as the capture/recapture method
described below, it would be necessary next to estimate the
distribution of values in each of the joining fields. Then, one
would employ Monte Carlo-type simulation to populate
those fields with values mirroring the original distributions.
(See Robert and Casella [27] for an explanation of Monte
Carlo simulation.) Once the joining table values have been
simulated, one would perform the Join to form the IP, which
could contain rows that involve missing rows from the
joining tables. The number of additional rows generated in
this manner in the IP would then be incorporated into the
acceptability measure for the IP in a straightforward manner.
For example, if m of N rows are correct prior to the missing
row analysis, and M rows are missing, the acceptability
measure would be m/(N + M).

5.4 Second Round Sampling

For the IPs not eliminated in the first round, an additional
sampling must be undertaken to shorten the confidence
intervals given in expression (1) so as to evaluate more
accurately whether or not they meet the desired quality
levels Ay. Note that second-round sampling applies to all
base tables needed for the IPs not eliminated from
consideration in the first round.

We now discuss issues regarding how to apportion the
resources available for the second-round sampling among
the tables used to generate the remaining IPs in a way that
optimizes usage of these resources. The estimates for II and
the confidence intervals based on them are used to
determine if the quality of the IPs is satisfactory or not.
Clearly, it is more important to shorten the confidence
intervals for some of these estimates as compared to others.
There are various reasons why this is so. Some tables may
be involved in many IPs, and, accordingly, having a good
estimate for their acceptability levels removes more ambi-
guity. Also, it is probably true that the IPs differ in terms of
their importance. If there should be a key IP, it is especially
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important for the accept/reject decision to have good
estimates for the acceptability levels for the tables that are
used to form that IP.

After the additional sampling has been done, the analyst
should proceed, as was done with the pilot sample to
determine which IPs definitely conform and which defi-
nitely do not. For those in the gray area, judgment has to be
used. For example, the analyst would consider whether the
acceptability level is closer to the product of the L’s (accept)
or the U’s (reject).

6 CONCLUDING REMARKS

Managers have always relied on data of less than perfect
quality in support of their decision-making activities.
Experience and familiarity resulting from use of the data
enabled them to develop a feel for its deficiencies and, thus,
an ability to make allowances for them. For some time now,
computer systems have extracted data from organizational
and other databases and manipulated them as appropriate
to provide information to managers in support of their
activities. As long as the data were extracted from a
relatively small number of transaction processing files, it
was still possible for management to develop a sense of the
quality of the information generated from such sources.
However, as the number and diversity of tables available to
managers has increased, any hope management might have
of intuitively assessing the quality of the information
provided to them has pretty much disappeared. The
purpose of this paper is to address this need by managers
for information regarding the quality of IPs generated for
them by computer systems using relational databases.

The problem is exacerbated by the fact that relational
tables often contain hundreds of millions of rows in mission
critical database applications. Since the diversity of IPs that
could be generated from databases is large, to address a
manageable subset, we chose to focus on those IPs
generated by applying queries formed from the funda-
mental operations of the relational algebra to relational
databases. Since, realistically, it is almost impossible to
know the quality of every data unit in a large database with
certainty, we use a statistical approach that allows for this.
Since it is important to accommodate ad hoc queries, which
of course a priori are unknown, one cannot assess data
quality in the context of known uses. We address this by
taking samples from the base tables independent of any
particular use and then identify all possible deficiencies.
One limitation of this work is the difficulty in identifying
these. Some of these deficiencies will be relevant for certain
information products, not for others. Thus, the samples
from those base tables involved in producing a certain
information product are evaluated for quality in the context
of that IP. Statistical procedures, among others, are then
used to provide intervals within which, with a known
probability, the true but unknown quality measure of the IP
would lie. This is the information provided to managers
regarding the quality of the IP.

The paper addresses several implementation issues of
concern to practitioners. For example, the section on
statistical sampling contains a discussion of sample size.
Also, there is material as to how to account for the
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Retail Outlet ‘Warehouse
RID* Location | WID WID* City
R1 Boston w2 Wi Hartford
R2 Boston NULL W2 Boston
R3 Boston W1 W3 Chicago
R4 Boston Wi
(a)
RID | Location | WID | WID | City RID | Location | WID | WID | City
R1 Boston | W2 W2 Boston R1 Boston W2 W2 | Boston
R3 Boston | W1 W1 Hartford R3 Boston w2 W2 | Boston
R4 Boston | W1 Wi Hartford R4 Boston Wi W1 | Hartford
(b) ()
RID | Location | WID | WID | City
R1 Boston w2 Wi Boston
R2 Boston | NULL | W1 Boston
R3 Boston Wi Wi Boston
RID | Location | WID WID | City R4 Boston | W1 Wi Boston
R1 Boston W2 w2 Boston R1 Boston | W2 W2 | Boston
R2 Boston NULL | W2 Boston R2 Boston NULL | W2 Boston
R3 Boston W1 W2 Boston R3 Boston W1 W2 Boston
R4 Boston Wi W2 Boston R4 Boston | W1 W2 Boston

(©)

Fig. 2. Potential data quality problems in the join operation. The “*”

(e)

indicates that the attribute is the primary key. (a) Two illustrative tables. (b) Correct

join. (c) Incorrect row is a placeholder. (d) Correct join. (e) Hartford recorded as Boston.

possibility of missing rows. This paper provides a staged
methodology for the estimation of the quality of IPs. For
example, suppose that the IP is a result of a union
operation. The first stage would be to assess the quality,
ignoring the impact of any duplicates that may have been
incorrectly retained or deleted. For a more precise estimate,
one would proceed to the second stage that would analyze
the IP using the Reference-Table Procedure. A still more
complete analysis would be in the context of missing rows.
Finally, one can employ a second round of sampling.

Note that the Reference-Table Procedure can be avoided
only in relatively straightforward cases (see Table 3 for a
complete listing). In order to make this process more easily
accessible to practitioners, further work is required. For
example, the methodology described in this paper could be
automated by writing applications using database retrieval
languages such as SQL.

APPENDIX
JOIN EXAMPLE

To see the impact of errors when tables are joined together,
in Fig. 2a, we have two tables that are linked by a one-to-
many relationship through the WID field. Assuming that
the data are correct, the Join over the WID attribute would
result in a table consisting of three rows, as shown in Fig. 2b.
If a value in the joining field is incorrect, then, assuming
that referential integrity has been enforced, the Join would
result in a row that, while incorrect, at least should be there.
To see this, suppose that in the R3 row of Retail Outlet, the
correct value W1 is replaced by an incorrect value, say W2.
Then, the Join operation would generate an incorrect row,
which is a placeholder for a correct one, as shown in Fig. 2c.

If the joining field is not a foreign key, then the resulting
table could contain for each incorrect joining value multiple
rows that should not exist. For instance, in Fig. 2a, consider
joining the two tables over the Location field of Retail
Outlet and the City field of Warehouse. The result would
yield four rows, as shown in Fig. 2d. Now, assume that the
value Hartford in the W1 row of the Warehouse table is
incorrectly replaced by the value Boston. The resulting Join
would now have eight rows as shown in Fig. 2e, four of
which would be incorrect (in bold and italic). Another type
of error in that field could lead to multiple missing rows. To
see this, consider the case where, in the W2 row of the
Warehouse table, the value Boston is incorrectly replaced by
San Francisco. In this case, the resulting Join would yield an
empty table.

The motivating example has used small tables solely for
the purpose of illustration. In practice, the IPs would be
generated from tables typically containing thousands or
even hundreds of millions of rows (Funk et al [10]). Also
note that, although the motivating example is in the context
of the accuracy dimension, the same methodology applies
to any other data quality dimension or combination of
dimensions. The rows of the samples must be evaluated as
acceptable or unacceptable using the specified dimensions.
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